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STABILITY OF PERIODIC SOLUTIONS OF HAMILTONIAN
SYSTEMS WITH LOW DIMENSION

Abstract. These notes were prepared for a course on stability of periodic orbits (Torino,
November 2015). The contents are structured in six lessons and most of them are taken from
previous publications. A new result is presented in the last lesson.

1. Introduction

Consider a Hamiltonian system with two degrees of freedom

OH . OH
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where H = H(q, p) is a smooth function defined on an open and connected set Q C
R? x R2. The study of periodic solutions (existence and stability) is an old problem
(> 120 years). There are many results but most of the results dealing with stability
are either local (small parameters) or use the computer. We are interested in non-local
stability results.

The prototype can be the stability of the libration point L4 in the circular re-
stricted three body problem. The primaries have masses 1 — y and y with u €]0, %]
The whole plane is rotating around the vertical axis and the satellite is placed at the
vertex of an equilateral triangle composed by the three bodies. Note that in the rotating
system L4 is an equilibrium but in the inertial system it is a periodic solution. In this
case the periodic solution is known explicitly and the linearized system is autonomous
and can be solved. For linearized stability we find the necessary and sufficient condi-

tion
0< < —1 1_2
H=H=3 9 |-

The eigenvalues lie on the imaginary axis (u < 1), then collide (u = u) and then get
out of this axis (u > u1). For nonlinear stability there exist two numbers 0 < u3 < tp <
41 which can be computed and such that Ly is stable (in the Lyapunov sense) if and
only if

O<wu<u and u+#pw,us.

The nonlinear analysis is very delicate and the proof was obtained once KAM theory
was available (see [7] for more details).

The purpose of this course is to develop some tools which can be useful to study
more general non-local stability problems. Ideally I would like to apply these tools to
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the general case (1) but by now I can only deal with a special family: periodic systems
with one degree of freedom. That is,

H=H(t,q,p), q,peR, H(t+2m,q,p)=H(t,q,p)

oH . oH

q= g» D= —%~
This system can be immersed in the larger family (1) by introducing new variables
Q:t7 PZH? ‘{]—[(Q7Q7P7P):H(Q’q7p)+[)'

The periodicity of time allows us to interpret Q as an angular variable (Q € T =
R/277Z),

)

,_9# _oH . JH _ oH
q_ap_ap P= dg  Jq
. 0H . oH oH
== PE30 T

At each energy level # = constant, the dynamics of (2) is repeated. Let us now see
some non-local results for (2).

1.1. The pendulum of variable length

Consider the equation

3) 6+ o(r)sin6 =0
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where o is 27t-periodic and positive. After a change of the independent variable this
is the equation of a particle moving on a pulsating circle (cu(t) = gl(¢)*) under the
action of gravity. The stability of the equilibrium 8 = 0 for small parameters (o.(f) =

o® +ep(t) with @ # n,n+ %, n=0,1,2,...) is a typical illustration of KAM theory
(see the book [1]). We are interested in the non-local problem with

o e C(T), mina(t) > 0.
Again the periodic solution is explicitly known (8 = 0) but now the linearized equation
“ y+or)y=0

cannot be solved explicitly. As we will see this linear equation contains all the infor-
mation about the stability of 8 = 0 if we exploit the symplectic structure. To explain
the result we make our first digression on the symplectic group.

The group Sp (R?) is composed by the 2 x 2 matrices A satisfying
detA =1.

Associated to this group we have a notion of conjugate matrices, A ~ B if there exists
P € Sp(R?) such that A = PBP~!. The conjugacy classes in Sp (R?) are

cos® —sin6
R[G]-( sin® cos® )’ 6 € [0,2n]

Lchd  sho
Hi[e]‘( sho ichﬂ)’ 6>0
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Note that there are matrices which are conjugate in G1(R?) but not in Sp (R?).
R[6] #R[-0] inSp(R%), 0+£0,m
R[6] ~ R[—6] in GI(R?)
P, 4P_ inSp(R?) but P, ~P_ inGI(R?) ...

We can now state the characterization of stability for 8 = 0. Let M be the
monodromy matrix of (4), then

e 0 =0 is linearly stable if and only if M ~ R[] in Sp (R?) for some 8
e 0 =0 is stable (Lyapunov) if and only if M2 ~ R[B] or M?> ~ P_ in Sp (R?).

In contrast to L4, now linearized stability implies stability but there are cases where the
linearized equation is unstable and the equilibrium is stable. More details can be found
in[11].

Exercise 1.1. Explain why the local result is a consequence of the non-local result.

1.2. A quadratic Newton’s equation

Consider the equation

T
g4 =p), [ pdr<p
0
where p is T-periodic. It was proved in [10] that if
T3p0 < 64

then there are at most two 7'-periodic solutions. Assume now that p(z) has been chosen
so that there exist exactly two, then if

T3p0 <4

one of them is linearly stable. The number 4 is sharp. Moreover, there exists a number
Oy, % <0, < %?7 which can be computed such that if

T?po < o

then this solution is stable. Then number G, was not optimal and it was later improved
by Zhang, Chu, Li [20] although the optimal value is not known.

In contrast to the previous results the periodic solution is not explicitly known,
the existence is determined via degree theory and some other global techniques. The
disadvantage of this type of result is that it depends on very special properties of the
nonlinearity x>. It is my impression that more flexible results should not be valid for
all p’s but for almost all.
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1.3. The forced pendulum equation

Consider the equation
X+ Bsinx = p(z)

where 3 > 0 and p € C(T) with fozn p(t)dt =0. It is well known that there exist at least
two 2m-periodic solutions (variational or symplectic methods). If

1
< —
P=3

then, for almost all p’s, at least one of them is stable (see [12]). Moreover the number
% is sharp (see [13]). The techniques employed to prove this result are rather flexible.
They have been already used by J. Chu, F. Wang in a recent paper [2]. My original
intention was to prove this result in the course but later I realized that the proof is too
long. Instead I have prepared a toy problem which is easier to prove but employs the
same techniques.

For more references on non-local results and different types of extensions I refer
to the papers by Liu [6], D. Nuiiez [9], M. Zhang and his school [18, 19, 5], P. Torres
[17], HanBmann and Si [4]. This list is not complete.

2. Definition of stability

Let ¢, (z) be the flow associated to the Hamiltonian flow (1). For each z € Q the solution
0;(z) is defined on a maximal (open) interval I;.

Let z, € Q be a given point and assume that ¢,(z.) is well defined for ¢ > 0.
This solution is called stable (in the Lyapunov sense) if given € > 0 there exists & > 0
such that ¢ (z) is well defined for 7 > 0 and |0, (z.) — ¢:(z)| < € if |z —z*| < &.

This is the notion of stability for the future. If we replace t > 0 by r € R we
obtain the notion of perpetual stability.

For periodic solutions this notion is too restrictive. For instance the motion of
a planet around the sun is unstable. This is a problem in our framework with Q =
(R?\ {0}) x R? and H(q,p) = %|p|> — 5. The reason for this instability is the third

IR
Kepler law: the minimal period of an elliptic orbit is 7 = 2ma’/2 where a = %x major

axis. If we select an initial condition z, = (g, p«) with energy H(q.,p«) < 0 and
angular momentum g, A p, # 0 then ¢,(z,) is periodic. The same will be true for a
small perturbation z, if the major axis of the first orbit is 2a,, the major axis of the
second, 2a, will be close but in general it will be different. Then the period 7, and
T will be close but different. Let us think of the positions of the two orbits at times
T.,2T.,3T;...ifa, <a

4+ = q+(T.) = ¢« (2T;) = --- = q«(NT.).

Every year (period T,) the perturbed planet will not close the orbit and after many years
q«(NT,) and g(NT,) can be far away.
The following exercise makes this idea more precise.
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Exercise 2.1. Assume that F : Q C R? — R? is smooth and let @,(t) and ¢(z) be
periodic solutions of z = F(z) with minimal periods 7,, and T. In addition,

% ¢ Q, () isnon constant, @,(0) = ¢(0).

Then @(t) is not stable (in the Lyapunov sense).

If we go back to the elliptic orbits of Kepler problem we observe that a small
perturbation will change slightly the geometry of the ellipse, hence the orbit

v={(q(),p(1)) :1 € R}

will change slightly.

We are led to the following definition: a closed orbit y C Q is called orbitally
stable if given a neighborhood U = U(Y) there exists another neighborhood V' = V(y)
such that if z € 1V then ¢;(z) € U for eacht > 0.

If v is a closed orbit (not an equilibrium), VH(z) # 0 for each z € y and so the
energy level {H = c} where ¢ = H|y is a 3d-manifold, at least in a neighborhood U of
Y. We can restrict the flow ¢ (z) to this submanifold and consider the orbital stability
only with respect to orbits lying on the same energy level, this leads to the weaker
notion of isoenergetic orbital stability. In most cases both notions coincide but there
are exceptional cases (see the Appendix at the end of this lesson).

Next we are going to introduce an important tool for the study of orbital stabil-
ity: transversal sections.

In the closed orbit y we fix a point z, € 7. We know that VH(z,) # 0 and we

assume, for instance,

oH
T@(Z*) # 0.

Then there exists a neighborhood U of z, in R* such that

X={(q.p) €Q|H(q,p) =0,p2=p>}NU

is a surface contained in the energy level. Moreover the flow is transversal to X at z,
(P2 =—55).

In a neighborhood £ C X of z, we can find a return: for each z € ¥, there exists
T=1(z) > 0 such that ¢(;(z) € Z. Moreover, T is a smooth function with T(z.) =1, >0

period.
Exercise 2.2. Justify this via the implicit function theorem.

We define the Poincaré map P : Xj — X, P(z) = 0r(;)(z) and it turns out that P
is symplectic, that is

o((dP).C,(dP)m) =w(n) ifzeX;,{neT(D).
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Here o denotes the restriction to the tangent plane 7;(X) of the form

o=, tnert = 0 &),

Note that ®|7,(x) is non-degenerate. In the surface £ we can express g2 and p; as
functions of g1 and py, p» = constant = p; and ¢» = ¢(q1, p1) from H(q1,92, p1,p2) =
c. Then the projection I1(q, p) = (q1, p1) defines a diffeomorphism between X and R?.
We can transport P to R? via the commutive diagram

ncr & b
KA i

DcR L p cRr?

where P : D C R? — R? is an area-preserving diffeomoprhism from 2 onto Dy = P(D)
with a fixed point at I1(z,). Note that

IT*(dg1 ANdp1) = 0s.

There is a natural notion of stability of fixed points for the discrete system {,1 =
P(C,). Given the fixed point {, = I1(z.) we say that {, is stable if for each neighbor-
hood U = U(L,) there exists another neighborhood ¥ = /(L) such that the iterates
P"(1) are well defined for each n > 0 and contained in .

By continuous dependence (with some care) it is possible to prove that , is
stable for P if and only if 7 is isoenergetically orbitally stable. In the special case of
time periodic systems of one degree of freedom this is just stability in the Lyapunov
sense for the original system. For more details we refer to [8] and [7]. See also

http://www.ugr.es/~rortega/PDFs/Talca.pdf

Appendix. A closed orbit orbitally unstable but isoenergetically orbitally stable.

We work with symplectic polar coordinates
qi+ipr=/2r1e",  gr+ipy =+/2re™
and consider the Hamiltonian function
H(ry,r) = (r1—r) (1 +(r — rg)zr%) , Q= (Rz \ {O}) X (Rz \ {O}) .

Let us concentrate on the energy level H = 0, this is equivalent to rj —rp, = 0. We
compute the derivatives of H

oH _
8r1 -

oH
o —1-3(ri—n)*r}

14 (r1 — )2 [577 = 2r112)
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and observe that gTH. =1, g% = —1 on H = 0. This implies that on the level H = 0 all

orbits are 27-periodic
Pa— g,:_aﬂ ri(t) = po=r(t)
' ’ ! ari el(t):—l+910,92(t):[+920.

We select y: ri =rp =1, 0 = —0; and observe that this closed orbit is isoenergetically
stable. Let us prove that 7y is orbitally unstable when we include other energy levels.
Wetakeri =1+4¢€,mn =1—¢, 019 =09 =0 then

oH

6= —-— = —1—4e>(1+¢)(3+7¢)
8r1

. oH

0 = ——— = 1+12*(1+¢)°.
8r2

Now we select € so that the quotient of the two frequencies is irrational, say €, = %

Then the orbit v, is dense on the torus r; = 1 +¢,, r» = 1 — ¢, and so the points of 7,
accumulate on the whole torus r; = r, = 1 which strictly contains the closed orbit 7.

3. Stable fixed points of area-preserving maps

3.1. Stable fixed points
We first recall the notion of stable fixed point. Let D and D; be open subsets of R? and
/’ll@—)ﬂ)], Z[Zh(z)

a homeomorphism having a fixed point z, € D, h(z.) = z.. We say that z, is stable (in
the future) if given any neighborhood U = U(z,) there exists another neighborhood
1V = 9(z,) such that the iterate #"(V) is well defined and

W(V) C U

for any integer n > 0. The notion of perpetual stability is obtained after replacing n > 0
by neZ.

Exercise 3.1. Discuss the stability properties of z, = 0 if

h(Z) =A\z (7\' > 0) or h(z) = R[G]Z, R[e] _ ( cos® —sinB )

sin® cos0

A rather obvious property of the notion of stability is that it is invariant under
changes of variable. By a change of variable we understand a homeomorphism ¥ :
A — A} between two open sets in R? with Y(z,) = wy. Then h=Woho®!is well
defined on some neighborhood of w, and w, is stable under h if and only if z, is stable
under A.

Next we present a characterization of stability in terms of invariant neighbor-
hoods.
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PROPOSITION 1. The following statements are equivalent:
(i) z« is stable in the future [resp. perpetually]

(ii) There exists a sequence {U,} of open and bounded sets satisfying

alH»l C una ﬁ C @a maﬂ - {Z*}
n

and
h(U,) C U, [resp. h(U,) = Uy

Proof. (ii) = (i) The compact sets U, converge to {z.} in the Hausdorff topology.
Given U we can find n large enough so that U, C U. Then we select V = U,,.

(i) = (ii) Fix a disk Dy centered at z, and such that Dy C D. We find 4} such that
W' (Y) C Dy for each n > 0. Then Uy = Uy,>0h™ (V) is open, contains z, and satisfies
Uy C Dy and h(Uy) C Uy. We construct U, by induction with D, — {z.}, Dy11 C
U,. O

3.2. Area-preserving maps

The map h : D — D is area preserving if

u(h(B)) = u(B)
for each Borel set B C D. Here u is the Lebesgue measure in the plane*.
Simple examples are linear maps h(z) = Az with A € R**2, |detA| = 1.

Exercise 3.2. Prove that the non-linear map h(z) = R[0 + B|z|?]z with B # 0 is an
area-preserving map. Describe the dynamics.

Let X : R x R? = R2, X = X(¢,x) be a C%! vector field with
div, X =0.

Let x(#;x0) be the solution of % = X (¢,x), x(0) = x¢. For fixed t € R, the map h(xp) =
x(T;x0) is an area-preserving homeomorphism between appropriate domains. This is
a consequence of Liouville theorem. In particular this is the case for Hamiltonian
systems X =JV,H.

Area-preserving maps can have positively invariant open sets that are not invari-
ant. We present two examples:

. 2 0
Oua=(g ) K-l R bi<a), ME)CK
2
(ii) Let {¢;} be the Hamiltonian flow with phase portrait as below. Let Q be the
region in the interior of y; excepting y> N {p > 0} and the origin. Then, for each
t>00,(Q) C Q because ¢ () contains a smaller piece of v,.

* A more restrictive notion appears when Borel sets are replaced by Lebesgue measurable sets (see [14]).
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The next result shows that in many cases positive invariance implies invariance.

_ LEMMA 1. Assume that Q is an open set of bounded measure with QC Dand
int(Q) = Q. If h(Q) C Q then h(Q) = Q.

Proof. If h(Q) C Q we claim that Q C h(Q) for otherwise Q\ 4(Q) should be a non-
empty open subset of Q, hence a set of positive measure. But

oo > u(Q) > pu (Q\h(Q)) +u(h(Q)) > u(Q),

lead to a contradiction. Once we know that Q C i(Q) the rest of the argument is purely
topological. Indeed,

Q Cint (h(Q)) = h (int(Q)) = h(Q).
O

Exercise 3.3. Let Q be an open subset of R? and ® = int(Q). Then Q C ® C Q and
int(®) = .

PROPOSITION 2. For area-preserving maps, stability in the future and perpet-
ual stability are equivalent notions.

Proof. 1f z, is stable in the future then by Proposition 1 we can find neighborhoods
{Uy,} in the conditions prescribed by the result. In particular, 2(U,) C U,. Define
V, = int(U,), then U, C V), C U, and h(V},) = V,. This is a consequence of the
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previous exercise and Lemma 1. Again Proposition 1 implies that z, is perpetually
stable. O

3.3. Lyapunov functions and first integrals
Let V : D — R be a continuous function satisfying

V(z) >0 ifze D\{z}, V(z«) =0.
We say that V is a Lyapunov function if

V(h(z)) <V(z) foreachze€ D withh(z) € D.

Exercise 3.4. Prove that the existence of a Lyapunov function implies the stability of
Tk

We prove that every Lyapunov function is (locally) a first integral.

PROPOSITION 3. Assume that there exists a Lyapunov function V. Then there
exists a neighborhood U of z,. such that h(U) = U and V(h(z)) =V (z) ifz € U

Proof. We know that z, is stable and so there is a bounded and open invariant set U
with z, € U, U C h~ (D). Since h is area-preserving and i(U) = U we deduce that

AV(}C) dx— /LIV(h(x))dx.
Note that [,V = [;"Fy(t)dt and [,V oh= [y Fyon(t)dt, with
FF)=pu({xeU:Vx)>t})=u({xe U :V(h(x)) >1t}) = Fyon(t).

From V—-Voh>0on U and [;(V —V oh) =0 we deduce that V =V ok almost
everywhere, but we are dealing with continuous functions and so it holds everywhere.
O

3.4. Invariant “curves” and stability

Up to now all discussions could be adapted to measure-preserving maps in R? with
d > 2. The contents of this section are specific of two dimensions. First we recall some
facts of the topology of the plane: given a domain (open + connected) Q C R?, we
denote by Q the smallest simply connected domain containing €2, that is

i) QC Q.0 simply connected domain
ii) if Q C m, o simply connected domain = Qco.

Intuitively we can say that Q is obtained by filling in the holes of Q. Note that Q~R2
(this is a consequence of Riemann’s theorem on conformal mappings).
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Exercise 3.5. Prove that Q always exists. Given Q with Q C D, prove that h(ﬁ) =

—

h(Q).
Assume that z, is stable and let U, be a sequence of bounded and open sets with

anJrl C Uy, uc D, ﬂan = {Z*}a h(un) = Uy.
n

We can assume that T, is connected since otherwise we would take the connected
component of z,.. Next we fill in the holes of U,, ¥, = U,. We observe that V), is also
invariant under h. Moreover V,, — {z,} in the Hausdorff sense (Take a sequence of
disks centered at z, with U, C D, and D, — {z.}). The sets V), are homeomorphic
to open disks but the boundaries can be very strange. In any case £(d%},) = 9%),. In
some books of topology of the plane the boundary of a simple connected domain is
called a “curve”. With this terminology we have proved the following result: a fixed
point is stable if and only if it is surrounded by invariant “curves”. Handel constructed
in [3] an example where all invariant “curves” were non locally connected continua
(pseudo-circles).

4. Linearization around fixed points

4.1. The symplectic group

We recall that Sp (R?) is composed by the matrices A € R>*? satisfying detA = 1. They
represent linear maps preserving area and orientation.

The Lie group Sp (R?) has a well known topological description
Sp (R?) = open solid torus.

To understand this homeomorphism it is convenient to represent the group in complex
notation. The linear map induced by A can we written as

Ly:C—C, Ljy:z—az+bZ

with a,b € C given by

_ . _ . [ a+y 8-B
a=0ao+iP, b=v+1i9, A_(5+B ay)'

Then detA = 1 is equivalent to
jaf? = b = 1.

We construct the homeomorphism

CxS' = Sp(R?), (b,e®)— Ly wherea=/1+|b2e®.

The 6-axis (b = 0) is the circumference of rotations. To understand the stability of the
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— | — |

R[ 6]

=6, 0=6y+27

origin z, = 0 with respect to L4 we employ the trace of A,

A:=trA =2%Ra =24/1+|b|*cos.

If |A| > 2 the eigenvalues are real [A;| < 1 < |A2|. The matrix A is conjugate in GI (R?)

to Mo 0 and so the origin is unstable.
0 A

If |A| < 2 the eigenvalues are complex and conjugate A; = A, = ¢/, 8 €]0, 7|
U]m, 27, and A is conjugate in Gl (R?) to R[8], the origin is stable.
Finally, if |A| = 2 there is a double eigenvalue Ay =Xy = 1 or A} = Ay = —1,

b1 )inGl(]Rz)

then either A = £/ (parabolic stable) or A is conjugate to ( 0 41

(parabolic unstable).

Let us now describe this dynamical classification in a topological way. We
visualize Sp (R?) as an infinite rectangle with coordinates [b| > 0 and 6 € [0, 0 + 27|
that is rotating around the 6-axis and such that 6y and 6 + 27 are identified. For
convenience we chose ) = —5. We draw the parabolic set A = £2, /14 [b|> = cisle'

Then Sp (R?)\ {A = +2} has 4 components, two of them elliptic and two of hyperbolic.

Exercise 4.1. Describe the level sets A = constant.

Exercise 4.2. Describe the stability properties of z, = O for linear maps with detA =
—1.
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]

4.2. The first approximation

Let i : D — D be a C!-diffeomorphism with

deth'(z)=1, ifzeD.
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Then A is area-preserving and given a fixed point z, the differential at z,
L= h, (Z*)

is in Sp(IR?). It seems natural to compare the dynamics of 7,1 = h(z,) and 2,1 =
Lz, in small neighborhoods of z, and the origin. We say that z. is linearly stable
if the origin is stable for L. This means that either L is elliptic or parabolic-stable
(L = £I). We want to discuss possible connections between stability and linearized
stability. When L is hyperbolic, Hartman-Grossman theorem says that the dynamics of
h and L are locally conjugate. Hence,

L hyperbolic = z, unstable for A.

In general there are no further connections between stability and linearized sta-
bility. We illustrate it with two examples.

Example I: z, is stable but linearly unstable.

Consider the Hamiltonian function

1 1
H()C,y): 5y2+2)€4, <= ()C,y)

and the associated flow ¢; in R, The phase-portrait is a center around the origin and
the flow is globally defined. Let us fix T # 0 and consider 4 = ¢7. Then £ is an area-
preserving analytic diffeomorphism. Moreover the origin z. = 0 is stable because H is
a Lyapunov function (Hoh=H, H > 0if z # 0, H(0) = 0). To compute

)
L:hanzg?ﬁmﬂ

we differentiate with respect to initial conditions. For the Hamiltonian system x =y,
y = —x7, the linearized system around a solution (x(¢),y(t)) is

E=n, N=-3x0)%

Forx =y =0 we obtainé_,:n,f] =0. Then

1
t=(

because %’(0) is the matrix solution ( (1) i )

—
——

Example I1: z, is linearly stable but unstable.
We fix an integer N > 3 and consider the real analytic Hamiltonian function
H(z,2) =3 ().

The phase-portrait of the associated flow is a generalized saddle having stable/unstable
manifold with N branches. This can be checked via the symplectic change of variable
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7 = \/2re®® leading to the new Hamiltonian function #(0,r) = (2r)V/?sinN@. Let
¢; be the Hamiltonian flow associated to H and consider #; = ¢r. This map is well
defined in a neighborhood of the origin and satisfies 4 (0) = 0, 4} (0) = I because the
linearized system around the origin is

£=0, n=0.
Note that H = o(|z|?).
Next we consider a rotation of angle 2}‘7“ and define

h=R|:2]]\<;t] ohy.

From the above computations we know that /:(0) = 0 and L = //(0) = R[%Z]. More-
over z, = 0 is unstable because the stable and unstable manifolds for 4; are also invari-
ant under 4.

Exercise 4.3. Prove that there exists a subset D C Sp (R?) which is dense and such
that for each A € D there exists an analytic area-preserving map % satisfying ~(0) = 0,
h'(0) = A, z. = 0 is unstable.

5. Nonlinear approximation
To simplify the exposition we shall work with a real analytic map
h:UCR—R?
satisfying 4(0) = 0 and deth/(z) = 1 if z € U.
Here U is an open set containing the origin. We observe that the inverse func-

tion theorem implies that 4 is an area-preserving diffeomorphism between two small
neighborhoods of the origin.

5.1. Birkhoff Normal form
Assume that
2k
K(0)~R[6] inSp(R?) “mhe¢7;,n=Lza4

Then there exists a real analytic area-preserving diffeomorphism ¥ (defined on a neigh-
borhood of the origin) and a number 3; € R such that

¥l oho®(z) = RO+ Bi]z*]z+ O (|2*)

as z — 0.
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This result more or less says that if the linear map is elliptic then the third order
approximation is a twist map. The proof is purely algebraic and can be found in [16].
See also

http://www.ugr.es/~rortega/PDFs/buenosaires4.pdf

The change of variable W is highly non-unique but the number ; is independent of the
chosen . In this sense we can say that B; is a symplectic invariant.

When /' (0) = R[6] the number ; can be computed by the following formula

3sin0 | ‘2 sin36 P2
1 —cos360

where we are using complex notation and A has the expansion

5) Bi=S (V) —<

—cosO

2+ A7 + Bz +CZ + M + N2+ PiZ* + Q7

The excluded angles are called strong resonances.

It is possible to obtain normal forms of higher order if some more angles are
excluded. In particular if we assume that the angle is not commensurable with 27,

2%
04" L —12,....N,...
n

then for each N > 1 there exists Wy as before and numbers By, ...,By such that
W lohoWy(z) = RO+Bi[z + -+ Bule*M]z+ 0 (]22V12) .

This iterative process suggests a tentative proof for the stability of z, = 0. Assume that
we are lucky and the map Wy converges as N — o to some diffeomoprhism W¥. The
numbers B, Bs,. .. are independent of N and perhaps the power series

OByl + Byl -
would converge to a function ®({). The we could expect
Yl ohoW(z) = R[®(|2))]z.

The origin is stable for A(z) = R[®(|z|?)]z and so the same should be true for A. Typi-
cally this program will fail. A typical area preserving analytic map will have a count-
able set of periodic points but h has many continua of periodic points and so they cannot
be conjugate. Dynamics of /: invariant circles, they are composed by periodic points
when ®(|z|?) is commensurable with 27.

5.2. Some consequences of the KAM method

As a corollary of Moser’s small twist theorem it can be proved that z, = 0 is stable if
some By does not vanish. See [16]. Russmann proved, using also the KAM method,
that if the number % satisfies a Diophantine condition and B = 0 for each N > 1 then
h is conjugate to the rotation R[6]. See [15]. In particular z, = 0 is stable.

We state as corollaries two consequences of there results.
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COROLLARY 1. Ifh'(0) ~ R[8] in Sp (R?) with

2
e;«éﬂ n=1,2,3,4

and
B1#0

then z, = 0 is stable.

COROLLARY 2. If h'(0) ~ R[@] in Sp (R?) and % satisfies a Diophantine con-
dition then z, = 0 is stable.

The results on the pendulum of variable length and the quadratic equation (pre-
sented in the first lesson) were obtained via Corollary 1 and formula (5). Indeed it was
an extension of this corollary which also deals with strong resonances. The result on
the forced pendulum equation is based on the second corollary.

5.3. Some remarks on Diophantine numbers

A number x € R\ Q is called Diophantine if there exists two positive constants y > 0
and ¢ > 0 such that

x‘ZY
q|” 4¢°

The class composed by those numbers with fixed constants will be indicated by DC(Y,0).
Also

for each £ €Q withg>1.
q

DCs = | JDC(y,0).
>0

For ¢ < 2 the set DC; is empty. For ¢ > 2 the set DC; has an interesting structure.
From the point of view of category it is a small set but from the point of view of measure
is a big set when ¢ > 2. Given Y and ©,

-myy|e-L2. 1l

G
q=1pe’ q q

Then DC(Y,G) is the complement of an open set in R and does not contain any rational
number. In consequence DC(Y,0) is closed and has empty interior. Since

DCG—UDC(] )

n=1

we deduce that DCy is of first category.

Let us now assume that ¢ > 2. We prove that DC; N [0, 1] has measure one.
From here it is easy to deduce that DC; has full measure in R. From

e QU542+

{o)
g=1p=0 q
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we deduce that ( 2
o (g+1)2y
u([0,1]\DC(y,0)) < Z,l T = SsY
q:

where So =2Y7 <"q+51> < oo if 6 > 2. Therefore
u([0, 1]\ DCs) < u([0,1]\DC(y,06)) < So¥— 0
asy— 0.

Exercise 5.1. Consider the Haar measure in the symplectic group Sp (R?) and let E
be the open subset of elliptic matrices. Prove that there exists a subset £ C ‘E of full
measure in ‘E such that if #'(0) € E then z, = 0 is stable.

6. A result with proof

Consider the equation
(E) i+¥(x)=p(t)+Ar
where W : R — R is analytic and satisfies

(i) Forsomen =0,1,2,...
1\2
n2<0c§‘P’(x)§B<<n+2> , x€R,

(ii) The limits W' (£e0) = limy_, 1o P’ (x) exist and
W (o) £ W (o).

The function p : R — R is continuous and 27-periodic. This function is arbitrary but
fixed, in contrast the number A € R must be interpreted as a parameter.

THEOREM 1. Inthe above conditions, the equation (‘E) has a stable 21-periodic
solution for almost every A € R.

REMARK 1. 1. Under the less restrictive condition
<o <W(x)<B<(ntl1)?
there exists a unique 27-periodic solution. This was proved by Loud (1967) and there
are also earlier results for Hammerstein’s equations which are related.
2. The condition (i) can be replaced by

1y <¥(x) < 1)
<n+2> <ou<W(x)<B<(n+1).
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The proof will be divided in three steps:
1. Existence and uniqueness. This is very well known and there are many possi-
ble proofs (Contraction principle, Global inverse function theorem, Variational

methods,...). We choose a proof that will be useful for the following steps.

2. Linearized stability. This will be a consequence of a very old stability criterion
for Hill’s equation (Krein attributes it to Zhukovskii)

3. Nonlinear stability. This will be the key step.

6.1. Existence and uniqueness

We start with two results on linear equations. The proofs are in the Appendix. We em-
ploy some more or less standard notations on spaces of 27-periodic functions. Namely
L*(T), C(T),... where T =R/2rZ. The norm in the Sobolev space W>>(T) is denoted

by [| - [l

LEMMA 2. Assume that a € L*(T) satisfies
nP<a<at)<Pp<(n+1)?, a.et €R.
Then y = 0 is the only 2w-periodic solution of
y+a(t)y=0.

LEMMA 3. Assume that a is as before and b € L*(T). Then there exists a
number K = K(o, ) > 0 such that the only 2m-periodic solution of

J+a(t)y=b(r)
satisfies [yl < K]
In this part it is sufficient to assume ¥ € C'(R) and
<o <W(x)<B<(nt1)?,
Uniqueness. Assume that x| # x; are two 2n-periodic solutions of (‘£) and define

Yo ¥o)
dﬂ:{ a0 a) e

W (x1 (1) otherwise .

Then a(t) is in the conditions of Lemma 2 and y = x; — x is a 2n-periodic solution of
4 a(t)y = 0. This is a contradiction.



Stability of periodic solutions 21

Existence. Consider the homotopy
(%) 54 () = ep(t) + M
and let us define
E ={e€0,1] : there exists a 2n-periodic solution}.

Since W is a diffeomorphism of R, the constant x = ¥~!(1) is a solution for € = 0.
Hence O € E.

E isopenin [0, 1].

Given &) € E let x.(r) be a 2m-periodic solution for € = €y. The linearized
equation around x, () is
Y+ (x.(1))y =0.

From Lemma 2 we deduce that the number 1 is not a Floquet multiplier. This implies
that there exists a 2n-periodic solution x(t) = x.(¢) + O(g) for € close to €.

E is closed.

Given g, — €, with g, € E, we find a 2n-periodic solution x,(¢) of (%, ). It also
satisfies the linear equation

j/'—l—an(l‘)y = bn(t)
with

xn(t)
W (x4 (1)) otherwise

Y (0))=%0) |
an(t) = { if x,(¢) #0

and b, (t) = €,p(t) + A —¥(0). From Lemma 3 we deduce that
% llw2e < Kllballz= < K[l pllz=+ A —¥(0)]].

By Ascoli theorem we extract a subsequence x; converging to a solution of %, . Hence
&, cE.

From now on the unique 27nt-periodic solution of (‘£) will be denoted by x(¢, 7).
We are going to prove that the function

A€ R (x(0,1),%(0,1)) € R?

is analytic.
To this end we introduce the Poincaré map

P RE SR (xo,v0) — (x(2m5x0,v0), £(275x0,v0))

and notice that P = Py (xp, vo) is analytic as a function of the three arguments (A, xo, v) €
IR3. The possible lack of smoothness in ¢ does not play a role because we are freezing
the time (t = 0,1 = 2m).
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The periodic problem is equivalent to the equation
CI’()C(),V(),)\,) = (id — Px) (xO,V()) =0.

This can be seen as a problem of implicit functions if we seek the solution in the form
xo0 =x0(A), vo = vo(A). Note that, by uniqueness, xo = x(0,A), vo = %(0,A).
To check the transversality condition we observe that

8<I>(x0, V0, 7\.)
a(.xo,V())

where the derivative is evaluated at the solution and M is the monodromy matrix asso-
ciated to

—I1-M

J+9 (x(t,1))y = 0.

By Lemma 2 we know that 1 is not an eigenvalue of M and so the implicit function
theorem (real analytic version) can be applied at each point (x(0,1),%(0,A),A).

6.2. Linearized stability
The key is the following stability criterion for Hill’s equations:

Assume that a € C(T) satisfies

W< o<alt)<P< (H;)z.

Then j+a(t)y = 0 is stable.

This is the classical statement but we will see that the proof gives some useful

additional information.
- ) w0
yilr) »nl
D)= . .
0=(36 50 )
be the matrix solution with solutions y; (), y»() satisfying

y1(0) =y2(0) =1, y1(0) =y2(0) =0.

The stability of the equation is equivalent to the stability of the monodromy matrix
M = ®(2x) € Sp(R?). We shall prove that the trace satisfies |trM| < 2 and so M is
elliptic.

LEMMA 4. Assume that a € C(T) satisfies
1 2
n2<(x<a(t)<[3<<n+2> .

Then j+ a(t)y = 0 has no periodic solutions of period 4 different from y = 0.
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This is a direct consequence of Lemma 2 after changing the time scale.
Consider the homotopy of equations

¥+ Ra()+(1-Ma)y=0,  Ael0,1]
with o, a fixed number lying on [c, B]. Let ®(#, ) be the matrix solution as before and
A(A) = tr®(2m, A).

The discriminant function A(A) is continuous and we can apply Lemma 4 to the equa-
tion with A. This implies A(A) # £2 for each A € [0,1]. For A = 0 the equation
¥+ oy = 0 can be solved and |A(0)| < 2. Then |A(A)| < 2 for each A and, in par-
ticular, |A(1)] < 2.

6.3. Nonlinear stability

We start with a result on analytic functions.

LEMMA 5. Let f: R — R be a non-constant analytic function and let Z C R be
a set of zero measure. Then also f~'(Z) has zero measure.

Proof. The set A={A€ R : f/(A) =0} is discrete and closed. In particular R\ A =
Uil; where I; is an open interval and the union is disjoint. Define f; = f];. This is a
diffeomorphism from /; onto f(I;) and so f;~'(Z) has zero measure. Finally we observe
that

@ cUs@ua.

The set of indexes I = {i} is at most countable. Also A is countable, implying u(A) =
0. O

Let x(¢,A) be the 2n-periodic solution of (E). We shall prove that the fixed
point (x(0,A),x(0,A)) is stable with respect to Py. The derivative

L=P,(x(0,A),%(0,1))
is the monodromy matrix of
V+W (x(t,A))y = 0.
From the previous section we know that
L~R[0] in Sp(R?).

The trace is an invariant under conjugacy and so the trace of L is precisely 2cos 6.
Let ®(z, ) be the matrix solution of the linearized equation, we define the func-
tion
A(A) = trd(2m, ).
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This is an analytic function and

0
— €DCs <= A(L) € Ds
21

where
0
Ds = {ZCOSG T — EDCG}.
271

Here we are using that 2cos 6 defines diffeomorphisms ]0,nt[~] —2,2[ and | — T, [~
] —2,2[. If we define f(x) =2cos(2nx) then D5 = f(DCs). Then, if 6 > 2, D5 has
full measure in | —2,2[.

Unless A were constant we can now say that

A1 (] —-2,2[\Ds)

has zero measure. This implies that % € DCg for almost every A € R and the conclu-
sion follows from Corollary 2.

We prove that A(A) is not constant in three steps:
1. x(t,A) =¥ '(A) +0(1) as |A| — o, uniformly in ¢ € R.
Let u =¥~ !(A) and y(t) = x(¢) — . Then y(¢) is a 2n-periodic solution of
F+¥(+u) =) = p().

In particular y(¢) is also a solution of

PO+ W)
. , : ¥(1) #0
+au(t)y = p(t with a,(t) = ()
V+au(t)y = p(t) u(t) {\P,(y) it 3(1) = 0.
We apply again Lemma 3 to deduce that
G M) llwee < Kllpllz-

2. A(A) — 2cos (2P (£e0)!/2) as A — oo,
From step 1 we deduce that x(¢,A) — o as A — =eo uniformly in ¢. Then

W (x(1,1)) = W (£e0)  as A — too

uniformly in # € R. By continuous dependence A(A) — tr (M) where M. is the
monodromy matrix of j +¥’(+eo)y = 0.

3. tr(M,) # tr(M_) because 2t (+o0)!/2 and 2 (—o0)'/2 lie on the interval
12nm, (2n+ 1)x|.

Appendix.
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Proof of Lemma 2. Assume by contradiction that y(¢) is a non-trivial 2x-periodic so-
Iution. The zeros of this periodic function are simple and so there is an even number
of them in any interval of the type [t,%o + 2%[. According to Sturm comparison theory
this number must be greater than 2n and less than 2(n+ 1). This is absurd.

Proof of Lemma 3. The existence and uniqueness of 2m-periodic solution is a conse-
quence of the previous Lemma. We will prove the estimate by an indirect argument.
Assume by contradiction that there exist sequences a, € L*(T), b, € L(T) satisfying

@< an(t) < B, [balli= =1, [yully — =,
where y, () is the 2m-periodic solution of

y+an(t)y: bn(t)'

This equation leads to the inequality ||,||z= < B|lyallz= + 1. Since ||yu||z= < 7|30l L=
we deduce that ||y, ||z~ — e. Define z, = y,/||yn||~. From the identities ||z, ||z~ =1
and %, + an(t)zy = by (t)/||yn|| .~ we deduce that ||Z,||z> < B+ 1/||ya||z=- In particular
|| 2|2 is bounded and we can extract a subsequence z; converging to some z € C' (T).
This convergence means that ||zx — z||z= + [|Zx — Z||z= — 0. In particular, ||z|;= = 1.
We extract new subsequences with an additional property: the sequence a; converges
to some a € L=(T) in the weak™ sense. In particular, o < a(r) < f§ almost everywhere.
Next we employ test functions ¢ € C*(T) and deduce that the identity below holds,

by

/{—Z'k¢+ak2k¢— 0} =0.
T [yl

Letting k — oo,

/{—Zd) +az} =0.
T

Then z(¢) is a 27-periodic solution of the equation 7+ a(f)z = 0. This is a contradiction
with the previous Lemma because we know that z has L™-norm one and so it is a non-
trivial solution. Note that the previous reasoning really proved that z(z) is a solution
in the variational sense, but this implies that it is also a solution in the Caratheodory
sense.
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