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Abstract

A new relativistic extension of the one-dimensional simple harmonic oscillator is pre-
sented. The equations of motion express the proportionality between the relativistic force
acting on a particle and the distance to the oscillation center measured by a comoving
observer with the particle, instead of the distance measured by a certain inertial observer.
The resulting trajectory is really harmonic, i.e., the period of the oscillations does not
depend on the amplitude, against the anharmonicity of the standard relativistic harmonic
oscillator.
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1 Introduction

In Classical Mechanics, a linear restoring force acting over a mass produces isochronous oscilla-
tions, that is, the period of the oscillations is constant and does not depend on the amplitude.
The classical harmonic oscillator is a key piece in the modelling of many physical phenomena
related to mechanical devices, electric circuits and Quantum Mechanics. For a Newtonian
oscillator, a classical result [12] states that the quadratic potential is the unique symmetric
isochronous potential; in this way isochronicity characterizes the harmonic oscillator. Then,
it is natural to ask if this property of isochronicity is preserved in the framework of Special
Relativity.

Let us consider the one-dimensional motion of a particle of mass m subjected to a lin-
ear restoring force (Hooke’s law) with stiffness constant k. In the Newtonian ambient, the
equation of motion is as simple as

mx′′ + kx = 0.
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The standard relativistic version of the harmonic oscillator simply replaces the Newtonian
momentum mx′ by the relativistic momentum, giving rise to mx′√

1− x′2

c2

′ + kx = 0. (1)

Here, m is the mass of the particle at rest, c is the speed of light in the vacuum, and
it is understood that |x′| < c at any time. This equation is generally recognized as the
natural relativistic extension of the harmonic oscillator and has been studied by many authors
[5, 6, 7, 8, 9, 10]. One of the main features of the model is that the period of the oscillations
depends on the amplitude, i.e., the relativistic harmonic oscillator is in fact anharmonic (see
for instance [8]).

In the present article, we propose a different model for the relativistic extension of the
harmonic oscillator. The standard and the alternative equations are derived from the same
scheme: the ‘proper force’ acting on a relativistic particle is proportional to the ‘distance
to a fixed point’. Of course, in the non relativistic setting, this property is tantamount to
Hooke’s law leading to the simple harmonic oscillator. However, in Relativity each term
written between commas must be clarified. First, the ‘proper force’ acting on a particle is the
intrinsic force which a comoving observer is able to measure by using an accelerometer. An
accelerometer may be intuitively thought of as a sphere in whose center there is a small round
object which is supported on elastic radii of the sphere surface. So, if a free falling observer
carries such an accelerometer, then it will notice that the small round object remains right at
the center. Yet it will be displaced if the observer obeys an accelerated motion. Therefore,
the proper force may be computed as the product of the proper acceleration (measured by the
accelerometer) and the rest mass of the particle. It is important to remark that this proper
force is in general different from the force measured by another observer, even though this
observer is inertial (obviously, the last claim does not happen in Classical Mechanics). On
the other hand, we fix an inertial observer to be considered as a ‘fixed point’. The distance
between the moving particle and this inertial observer depends on who measures it. In the
standard relativistic harmonic oscillator (1), this distance is measured by the fixed inertial
observer, situated in the ‘center’ of the oscillations. In the new proposed model, the distance
is measured by the observer comoving with the particle.

Summarizing, we pretend to describe the harmonic oscillator motion as the oscillating
particle would observe it. The solutions of this new equation turn out to be periodic and
really harmonic, i.e., the period of the oscillations does not depend on the amplitude. It is
important to remark that this period is measured in the proper time of the moving particle.
In the time of the fixed inertial observer, it is possible to design an isochronous restoring
force [3], but this force is singular and not defined on the whole space, so the linearity of the
restoring force is lost. Our model tries to conceal isochronicity and linearity of the restoring
force.

The rest of the paper is organized in three sections. In Section 2 we expound the nota-
tion and some preliminaries of Relativistic Dynamics. Section 3 provides the details of the
new model in comparison with the standard model stated in [9]. Finally, we present some
conclusions in Section 4.
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2 ‘Newtonian’ and Lagrangian approach to the relativistic
equations of motion

We consider the motion of a particle of rest mass m in the (n+1)-dimensional Minkowski
spacetime A. Throughout the paper, the signature of the metric will be (− + · · · +). Its
world line is represented by a timelike future pointing curve σ : I ⊆ R −→ A satisfying
the normalization condition |σ′(τ)|2 = 〈σ′(τ) , σ′(τ)〉 = −c2 (see for instance [11]). Here, the
parameter τ is the proper time of σ and the tangent vector σ′ is known as the relativistic
velocity of σ. Also, we denote by P = mσ′ the relativistic momentum of the particle σ.

Now, we fix an arbitrary inertial observer in A whose world line is described by the unit,
future timelike curve O : R −→ A. Its proper time will be denoted by t. Associated with
O there exists a family of inertial observers, at rest relative to O and containing O, which
are synchronized with their proper time (also denoted by t). This family defines a reference
frame for the spacetime and a global chart ϕ = (t, x1, · · · xn). Coordinate functions x1, · · · xn
will be the usual Cartesian coordinates that determine the position in each hyperplane of
the foliation {t = constant}. The coordinate t of an event p ∈ A precisely corresponds to
the proper time elapsed until p from an initial hyperplane of reference, relative to the unique
observer of the family passing through p. Therefore, these inertial observers are given by the
integral curves of the vector field ∂t. By simplicity, we suppose that the observer O has the
expression O(t) = (t, 0, · · · , 0). The metric of the spacetime is given by

〈 , 〉 = −c2 dt2 + dx21 + · · ·+ dx2n,

where c is the speed of light in the vacuum.

The classical way to derive the equation of motion of a relativistic particle comes from
considering the analogue of the classical Newton law,

m
Dσ′

dτ
=
DP

dτ
= F, (2)

where D
dτ is the covariant derivative along σ induced by the Levi-Civita connection in A, and

F is a spacelike vector field along σ, named relativistic force. We recall that F is orthogonal
to σ′(τ) at each event σ(τ). As a consequence, F necessarily depends on the relativistic
velocity because, at each event, it must be simultaneously orthogonal to all possible velocities
of the particle in that event [2]. We may appreciate this dependence by expressing F in
the coordinate system associated to the observer O. The relativistic velocity and force are
expressed as follows,

σ′(τ) =
1√

1− v2

c2

(
∂t + v

)
, F =

1√
1− v2

c2

( 〈f ,v〉
c2

∂t + f
)
,

where v = d
dt(x1 ◦ σ)∂1 + · · · + d

dt(xn ◦ σ)∂n, with σ parametrized by the coordinate time t,
and v2 = 〈v ,v〉 < c2. The vector v is the velocity of the particle relative to the observer O
and f is interpreted as the force acting on the particle measured by O. Then, equation (2)
provides the following relativistic equations of motion, obtained first by Poincaré,

d

dt

 mc2√
1− v2

c2

 = 〈f ,v〉, (3)
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d

dt

 mv√
1− v2

c2

 = f. (4)

It may be checked that Equation 4 is deduced from 3, which is the better known relativistic
equation for the motion of a particle, from the point of view of an inertial reference system.
Observe that mv√

1− v2

c2

is the relativistic momentum of the particle measured by O.

The Lagrangian setting has been extensively explored in the related literature, and its
study is still underway. The free motion in Special Relativity is an extremal of the proper
time of the particle. However, when there exists some interaction, the Lagrangian is more
complicated and its choice depends on the nature of the physical phenomenon under study.
If we are interested in describing a motion through covariant equations, we must impose
that the Lagrangian is a (Lorentz) scalar. For instance, this is the case of the Lorentz
force equation, which describes the motion of a charge in the presence of an electromagnetic
field. However, relativistic harmonic oscillator equations are not Lorentz invariant; rather,
they come from the following sort of Lagrangian (not Lorentz invariant in general). Let us
consider a differentiable function V : Rn+1 −→ R, and let ϕ : A −→ Rn+1, ϕ = (t, x1 · · · , xn)
be the chart of the inertial observer O. For every λ-parametrized curve ξ : I ⊆ R −→ A, we
define the Lagrangian

L[ξ] = −mc |ξ′|+ (V ◦ ϕ)(ξ) (t ◦ ξ)′. (5)

The prime means the derivative with respect to λ and |ξ′| =
√
〈ξ′ , ξ′〉. The function V ◦ ϕ

represents the potential measured by the observer O. Note that the second added term is not
a Lorentz invariant in general, because we are using a special frame of reference (V ◦ϕ is not
a Lorentz scalar). By imposing the restrictions t′ = 1 or t′ = 1√

1− v2

c2

on the Euler Lagrange

equations of L (see [9]), we arrive at the relativistic equations of motion (3)-(4). Another
alternative Lagrangian formalism of relativistic mechanics is more recently exposed in [5].

3 Two models for the relativistic harmonic oscillator

In this section we intend to model a relativistic oscillator attending to the proper force that
the particle measures through an accelerometer. By analogy with the classical harmonic os-
cillator, we consider an oscillator in which the proper force is proportional to the distance to
a ‘fixed point’. However, distances in Relativity depend on which observer does the measure-
ment. Depending on the distance we take, we will obtain two models of relativistic harmonic
oscillators. The first one will coincide with the standard relativistic harmonic oscillator, but
the second one will be different. Moreover, as we have commented in the Introduction, the
second model is more suitable to be named harmonic oscillator because the period of the
oscillations observed by the moving particle does not depend on the amplitude. The key
difference between the two models is illustrated by Figure 1.

For simplicity’s sake, from now on we will consider the 2-dimensional Minkowski space-
time A. From [1], we know that in a 2-dimensional spacetime, each observer obeys an un-
changed direction motion, i.e., it measures a ‘constant’ proper acceleration (if we consider an
n-dimensional spacetime, it would be necessary to impose that the particle is in addition an
unchanged direction observer).
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Figure 1: For a trajectory σ(τ) = (t(τ), x(τ)), this picture illustrates the idea behind the two
models. In the first model, which corresponds to the standard relativistic harmonic oscillator,
the proper force is proportional to x(τ), while in the new model it is proportional to dσ(τ),
defined by (14).
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We continue considering the coordinate system associated to the fixed observer O. This
inertial observer will be considered as the center of the oscillations. The coordinates will be
denoted by (t, x) : A −→ R2. To simplify notation we will respectively write t and x instead
of t ◦ σ and x ◦ σ whenever there is no confusion. In this way, we write σ(τ) = (t(τ), x(τ)).

With respect to the initial conditions, we suppose that when the clocks of the particle and
the observer O mark zero, the particle passes through the spacial origin of O at a velocity
equal to v0 = v0 ∂x. Written in coordinates,

t(0) = 0, x(0) = 0, t′(0) =
1√

1− v20
c2

, x′(0) =
v0√

1− v20
c2

, (6)

where we have taken into account that v = x′/t′ ∂x and the normalization condition

〈σ′(τ) , σ′(τ)〉 = −c2t′2 + x′2 = −c2. (7)

3.1 The classical relativistic an-harmonic oscillator

In this first model, the proper force is proportional to the distance between the particle and
the observer O, measured by O. This means that∣∣∣m Dσ′

dτ

∣∣∣2 = k2 x2,

k being a positive constant with units of [M ][T ]−2, the usually named elastic or stiffness
constant. Therefore, taking into account that σ′ ⊥ Dσ′

dτ , the equation of this oscillator may
be expressed as

m
Dσ′

dτ
(τ) = k x(τ)N(τ), (8)

where N is the unit normal vector along σ pointing to the observer O (the center of the
oscillations). The coordinates of this vector may be easily computed as

N = −x
′

c2
∂t − t′∂x.

Thus, equation (8) results in

mt′′ = − k
c2
xx′, mx′′ = −k x t′, (9)

plus the initial conditions (6). Since t′ ≥ 1, we may parametrize σ through the coordinated
time t. Denoting by v = dx

dt ∂x = x′

t′ ∂x and v = |v|, from (7) we deduce that

d

dτ
=

1√
1− v2

c2

d

dt
.

Therefore, according to the second equation of (9), we obtain

m
d

dt

 v√
1− v2

c2

 = −k x. (10)
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This equation is recognized as the standard relativistic equation (1). Let us remark that it
also may be obtained from equation (4) when the force observed by O is

f = −k x ∂x,

The relativistic force associated with this f is

F = k x
[ 1

c2
x′ ∂t − t′ ∂x

]
,

which is explicitly non Lorentz covariant.
Equations (9) can also be obtained from the Lagrangian formalism, as is done in [9]. These

equations can be manipulated to obtain a suitable representation of the solutions. Integrating
the first equation of (9) and taking into account the initial conditions (6), we have

t′(τ) = − k

2mc2
x2(τ) +

(
1− v20

c2

)−1/2
. (11)

Inserting this identity into the second equation of (9), it turns out that x(τ), that is, the
motion of the particle in its proper time, obeys the Duffing equation

x′′ +
k

m

√
1− v20

c2

x− k2

2m2 c2
x3 = 0. (12)

A first integral of this equation is

φ(x, x′) =
m

2
x′2 +

k

2

√
1− v20

c2

x2 − k2

8mc2
x4.

By imposing the initial conditions, the energy level of our solution is

φ(x, x′) = E(v0) :=
mv20

2
(
1− v20

c2

) > 0. (13)

Besides, the normalization condition (7) implies that t′ ≥ 1, and making use of (11), we
deduce the boundedness of the orbit, in fact,

x2(τ) ≤ 2mc2

k

 1√
1− v20

c2

− 1

 .

In view of the phase plane of the Duffing equation, the orbit is closed and it is inside the
separatrix (see Fig. 2), which corresponds to the energy level E0 = mc2

2
(
1−

v20
c2

) . In conclusion,

the trajectory of the particle is periodic and implicitly given by (13). As a matter of fact, an
explicit expression of the solution can be given by using Jacobian elliptic functions (see [4,
Section 4.2] or [9, Eq. 41]).

Summing up, it is shown that x(τ) is periodic, although the period is not constant and
depends on the initial condition v0. Indeed, it tends to +∞ as v0 → c. On the other hand, if
the oscillations are measured with the proper time of the inertial observer O, from (11) and
the periodicity of x(τ), we conclude that the particle σ describes a periodic motion as well.
Nevertheless, the period still depends on v0, and so it is not constant. In conclusion, this
motion can not really be considered harmonic.
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Figure 2: The energy level φ(x, x′) = E(v0) (thick curve) and the separatrix (dashed curve)
of the Duffing equation (12).

3.2 A new model for the relativistic harmonic oscillator

For the second model, we assume that the proper force is proportional to the distance between
the particle and the inertial observer O measured by the particle, i.e., by the inertial observer
which is instantaneously at rest with O. From now on, we will refer to this observer as the
comoving inertial observer with O. If the observer O measures a distance x(τ) when its clock
marks t = t(τ), then the distance measured from the particle when its clock marks τ is equal
to

dσ(τ) := x(τ)

√
1− v2(τ)

c2
, (14)

where v(τ) = x′

t′ (τ) is the velocity of the particle measured by O. In this way, the equation
for this model is expressed as

m
Dσ′

dτ
(τ) = k x(τ)

√
1− v2(τ)

c2
N(τ), (15)

k > 0 being the elastic constant and N the unit normal to σ′. Developing this equation, we
arrive at

mt′′ = − k
c2
xx′

√
1−

(
x′/t′

)2
c2

, mx′′ = −k x t′
√

1−
(
x′/t′

)2
c2

, (16)

with the initial conditions (6). Surprisingly, by using the normalization condition (7), the
second one simplifies to the familiar equation of a Newtonian harmonic oscillator

mx′′ + k x = 0, (17)

whose solution is
x(τ) =

v0

w

√
1− v20

c2

sin
(
w τ
)
, (18)

where w =
√

k
m .
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As in the standard model presented in Subsection 3.1, the solution x(τ) is periodic and,
taking into account that

t′2(τ) = 1 +
x′2(τ)

c2
, (19)

we conclude that the proper acceleration Dσ′

dτ is periodic. Therefore, in its proper time the
particle obeys a periodic motion with period T = 2wπ. But we highlight that now this period
does not depend on the amplitude of the oscillations (or the initial velocity v0), i.e., a sort
of ‘isochronicity principle’ holds for this model. This is a justified reason to claim that the
particle σ is harmonically oscillating, at least from the perspective of the moving particle.

From the viewpoint of the inertial observer O, the particle also describes a periodic tra-
jectory. In order to check this claim, let us write (17) in terms of the variable t, which is the
proper time of O, giving

mx′′(
1− x′2

c2

)2 + k x = 0. (20)

This equation presents the conserved quantity,

ψ(x, x′) =
mc2

1− x′2/c2
+ k x2,

so in consequence its solutions may be represented in the phase plane as the level curves
ψ(x, y) = E. Such level curves are closed and therefore all the solutions are periodic. The
quantitative difference between the solutions of equations (10) and (20) is illustrated in Fig.
3.

Figure 3: For k = m, c = 1 and initial velocity v0 = 0.8, this figure depicts the orbit (x, x′)
of eq. (10) (dashed curve) and eq. (20) (thick curve) respectively.

Despite the fact that the inertial observer O also observes a periodic trajectory of the
particle σ, it will not measure isochronous oscillations. The relation between the time t of
the inertial observer O and the proper time τ of the particle is directly obtained from (19) as

t(τ) =

∫ τ

0

√
1 +

v20
c2 − v20

cos2(ws) ds. (21)
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Hence, the relation between the two periods is

TO =

∫ T

0

√
1 +

v20
c2 − v20

cos2(ws) ds.

Therefore, the period measured by O, TO, is variable and depends on initial velocity, tending
to +∞ when v0 → c−.

As a last remark, note that, when comparing (4) and (20), equation (15) may be inter-
preted as the relativistic equation of motion of a particle under the action of a force which, for

the observer O, takes the value of f = −k x
√

1− v2

c2
∂x, v being the velocity of σ relative to

O. Since f depends explicitly on the velocity, equation (15) does not derive from a Lagrangian
of the form (5). Moreover, once again (15) is not Lorentz covariant because of the explicit
use of a special reference frame in its formulation.

4 Conclusions

In this note, a new model for the relativistic harmonic oscillator is presented. In the standard
model, the proper force acting on the moving particle is proportional to the distance measured
by an inertial fixed observer. In contrast, in our model the proper force is proportional to the
distance measured from the point of view of the moving particle. With this modification, we
have proven that the oscillations observed by the particle are isochronous. Also, it is shown
that the two models are not Lorentz covariant.
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