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Abstract7

In this paper, we find two families of planar maps with a finite number of fixed points.8

Further we apply our results to study the number of periodic solutions of some forced second9

order differential equations.10
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1 Introduction13

Given a fixed number T > 0, we consider a system of differential equations in the plane

x′ = X(t,x), x ∈ D ⊆ R2, (1.1)

where the vector field X : R×D → R2 is T -periodic in time, i.e.,

X(t+ T,x) = X(t,x), for (t,x) ∈ R×D.

We will say that this system has the NS property if the set of T -periodic solutions is finite. Nakajima and
Seifert found in [8] a class of real analytic systems with this property. The systems in [8] were defined in
the whole plane, D = R2, and they include as a remarkable example the system associated to the forced
Duffing equation

u′′ + cu′ + αu+ βu3 = B sin t, (1.2)
where the parameters c and β satisfy14

(C1) c > 0, β > 0.15
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In this case, x = (u, u′) and the period can have the values T = 2nπ for each n = 1, 2, · · · .16

The goal of the present paper is to introduce some variants in the ideas developed in [8] that allow to17

enlarge the class of known systems with the NS property. In particular, for the Duffing equation we will18

prove that this property is satisfied for the set of parameters described by any of the two conditions below:19

(C2) c 6= 0, β 6= 0;20

(C3) c = 0, β < 0, α ≤ 1
n2 if T = 2nπ.21

In [8], the condition β > 0 was imposed to guarantee that the system associated to the Duffing equation22

was dissipative in the sense of Levinson (see [6] and [8]). In a dissipative system all solutions will eventually23

enter into a compact set and will remain there for larger times. This implies in particular that there exists24

a common bound for all T -periodic solutions. Indeed, it is the existence of this bound what plays a role in25

the proof of NS property, rather than the more restrictive dissipativity assumption. This observation will26

allow to replace the condition (C1) by (C2). Note that the cases c > 0 and c < 0 are equivalent via the27

change of independent variable t 7→ −t.28

Another condition imposed to the systems in [8] was the negative divergence of the vector field X(t, ·).29

This excludes all Hamiltonian systems and, in particular, the Duffing equation with c = 0. Some modifi-30

cations in the geometric arguments of the proof in [8] have allowed us to obtain the condition (C3). Note31

that in some aspect that condition is optimal because there exists infinitely many 2π-periodic solutions of32

(1.2) when c = 0 and β > 0 (see [7] and [2]). An elementary phase portrait argument shows that this is33

also the case if c = 0, β < 0, B = 0 and α > 1
n2 .34

As it is well known the search for T -periodic solutions for the system (1.1) can be reduced to the study
of the fixed points of a certain planar map, sometimes called the Poincaré map (see [10]). Most of the proofs
will be connected with this map rather than with the differential equation. For this reason we present our
results in the language of maps. We will consider a real analytic map

T : D ⊆ R2 → R2,

and we will look for conditions allowing to conclude that the set of fixed points is finite. An important35

assumption will be the compactness of the set of fixed points. In the applications this assumption will be36

linked to the existence of a priori bounds for T -periodic solutions. Another important feature of the results37

is that the domain of the map D can be a proper subset of the plane. This gives more flexibility in the38

applications and we will deal with systems having solutions that can blow up in finite time or even with39

systems having singularities, D 6= R2.40

In the paper [11], Smith obtained an extension of Nakajima-Seifert theorem to higher dimensions. In41

Rd with d ≥ 3, the condition of negative divergence is replaced by a condition on the second truncated42

trace of the vector field. We will only work on the plane, but some extensions to higher dimensions in the43

line of [11] seem plausible.44

The rest of the paper is organized in three sections. In Section 2, we state and prove two results for45

analytic maps in the plane. In Section 3, we present an extension of Nakajima-Seifert’s result. Finally, in46

Section 4 some applications to Hamiltonian systems are given.47

2 Two theorems on analytic maps48

Let D be an open and simply connected subset set of R2 and let

T : D → R2

be a real analytic map. We will be concerned with the set of fixed points

Fix(T) := {x ∈ D : T (x) = x} . (2.1)

Our first result can be seen as a discrete version of the main theorem in [8]. The novelty is that the map49

is not necessarily defined in the whole plane.50
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Theorem 2.1. Assume that T is one-to-one and two conditions below hold:51

(A1) Fix(T) is compact;52

(A2) 0 < det T′(x) < 1 for each x ∈ D.53

Then Fix(T) is finite.54

From now on, the Jacobian matrix of the map T is denoted by T′(x).55

Remark 2.1. The previous result is not valid when the domain D is an open set with holes. To illustrate
this, we consider the case of an open set D such that

S1 ⊆ D ⊆
{
x ∈ R2 : ‖x‖ >

1

3

}
.

and the map
T(x) =

(
1

2‖x‖ +
1

2

)
x.

Here ‖ · ‖ denotes the Euclidean norm in R2 and

S1 := {x ∈ R2 : ‖x‖ = 1}.

A direct computation shows that

0 < det T′(x) =
1

4

(
1

‖x‖ + 1

)
< 1, for x ∈ D.

The map T is one-to-one and Fix(T) = S1. In this case the condition (A1) and (A2) hold but the set of56

fixed points is a continuum.57

To prepare the proof of Theorem 2.1, we need two preliminary results. The first of them is concerned58

with the set of zeros of an analytic function and the second has a more topological flavor.59

Lemma 2.1. Let F : D → R2 be a real analytic map with set of zeros

O(F) := {x ∈ D : F(x) = 0}. (2.2)

Assume that
F′(x) 6= O for each x ∈ O(F), (2.3)

where O denotes the 2 × 2 zero matrix. In addition, assume that O(F) is compact and infinite. Then at60

least one of the connected components of this set is a Jordan curve.61

In the case D = R2, this result is exactly Lemma 5 in [8]. The proof in [8] is easily adapted to the case62

D 6= R2.63

Given a Jordan curve Γ ⊆ R2, the bounded connected component of R2 \ Γ will be denoted by Ri(Γ).64

Since D is simply connected, Γ ⊆ D implies that Ri(Γ) ⊆ D.65

Lemma 2.2. Assume that Γ ⊆ D is a Jordan curve. Then T(Ri(Γ)) = Ri(T(Γ)).66

Proof. Since T is one-to-one, we know that also T(Γ) is a Jordan curve. In the case D = R2, this result
is a consequence of Lemma 6, Chapter 3 of [10], where this result is proved for topological embeddings of
the plane. In the case D 6= R2, we first select a homeomorphism φ : R2 → D. This is possible because D is
simply connected (see [9]). The map φ can be seen as a topological embedding and therefore

φ(Ri(γ)) = Ri(φ(γ)),
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where γ := φ−1(Γ).
Define T̂ = T ◦ φ. Again we have an embedding of the plane and we know that

T̂(Ri(γ)) = Ri(T̂(γ)).

Combining both identities, we obtain the same conclusion for the curve Γ and the map T.67

Proof of Theorem 2.1. By a contradiction argument assume that Fix(T) is infinite. The map F(x) =
x−T(x) is real analytic in D and

O(F) = Fix(T).

We know that O(F) is compact by assumption (A1). Also, from (A2) it is easy to deduce that T′(x) cannot
be the identity matrix and so the non-degeneracy condition (2.3) will hold. We employ now Lemma 2.1 to
deduce that Fix(T) contains a Jordan curve, say Γ ⊆ Fix(T) ⊆ D. In particular, this curve is invariant
under T,

T(Γ) = Γ.

From Lemma 2.2, we deduce that also Ri(Γ) is invariant,

T(Ri(Γ)) = Ri(Γ).

This is not compatible with (A2). In fact, this condition implies that T is area contracting. From the
theorem of change of variable in Lebesgue integral it is easy to deduce that

µ(T(A)) < µ(A),

where A is any non-empty, open and bounded subset of D, and µ is the Lebesgue measure in the plane.68

The choice A = Ri(Γ) leads to a contradiction.69

The previous argument also works for mappings contracting other measures in the plane. These mea-70

sures must have the property: the measure of bounded and open sets is positive and finite. However,71

Theorem 2.1 cannot be applied to area-preserving maps. For that case, we need a different principle.72

Theorem 2.2. Assume that the two conditions below hold,73

(H1) Fix(T) is homeomorphic to a compact subset of the real line;74

(H2) T′(x) 6= I for each x ∈ Fix(T).75

Then Fix(T) is finite.76

The 2× 2 identity matrix is denoted by I.77

Proof. We proceed as in the proof of the previous theorem to obtain a Jordan curve Γ ⊆ Fix(T) ⊆ D. The78

condition (H2) plays a role in the argument. Then we find a contradiction with (H1) because S1 is not79

homeomorphic to any subset of R.80

This argument is valid for any open set D, it is not necessary to assume that D is simply connected.81

3 A variant on Nakajima-Seifert theorem82

In this section, we consider the system (1.1) where D is an open and connected subset of R2, and the vector83

field X is real analytic in x, and continuous and T -periodic in t. This assumption can be understood in84

different ways and we refer to [10, p. 121] for a more detailed formulation. In particular, it implies that85

the initial value problem associated to (1.1) is unique.86

We present an extension of the main result in [8].87
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Theorem 3.1. In addition to the above conditions on the vector field, assume that the set D is simply88

connected and the following conditions hold,89

(α1) There exists a number C > 0 such that

‖x(t)‖ ≤ C, dist(x(t), ∂D) ≥ 1

C
, for t ∈ R,

for each x(t), T -periodic solution of (1.1).90

(α2) divxX(t,x) := ∂X1
∂x1

(t,x) + ∂X2
∂x2

(t,x) < 0 for (t,x) ∈ R×D.91

Then the set of T -periodic solutions is finite.92

There are two differences with respect to the original result in [8]. The domain can be a proper subset93

of R2 and the dissipativity condition has been replaced by the existence of a priori bounds. Note that we94

must control the distance to the boundary of D when D 6= R2. In contrast to previous papers such as [1],95

we do not need to assume that the solutions of the initial value problem are globally defined. This is crucial96

for the applicability of the theorem to the Duffing equation.97

Example 3.1. The equation (1.2) has the NS property if c > 0 and β < 0.98

Proof. In this case, x = (u, u′) and D = R2. The condition (α2) is satisfied because divxX(t,x) ≡ −c.
To prove that there are a priori bounds, we take a periodic solution u(t) and assume that it reaches its
maximum at some instant tM . The u′(tM ) = 0 and u′′(tM ) ≤ 0. From the equation (1.2), we obtain the
inequality

−B ≤ B sin tM ≤ αu(tM ) + βu3(tM ).

Since β is negative, it is not hard to get an upper estimate of u(tM ) depending only on B,α and β.
Similarly, we can obtain a lower bound for the minimum. Once we have obtained a uniform bound for
|u(t)|, we observe that v(t) := u′(t) satisfies a first order equation of the type v′+ cv = b(t) with |b(t)| ≤ C1

and C1 = C1(B,α, β). Then, given t∗ ∈ R with v′(t∗) = 0,

|v(t∗)| ≤
1

c
C1.

We have obtained a bound of maxt∈R[|u(t)|+ |u′(t)|] depending only on B,α and β.99

Example 3.2. Consider the singular differential equation

u′′ + cu′ + g(u) = p(t),

where c > 0, g :]0,+∞[→ R is real analytic and

lim
u→0+

g(u) = lim
x→+∞

g(u) = +∞.

The function p(t) is continuous and T -periodic. This equation has been considered in several papers. See [3]100

and the reference therein. As in the previous example we can prove that the NS property is valid.101

Proof. Again x = (u, u′) but now the domain is a half-plane. More precisely, D =]0,+∞[×R, ∂D = {0}×R
and

dist((x1, x2), ∂D) = x1 if (x1, x2) ∈ D.

To check (α1), we must take an arbitrary T -periodic solution u(t) and obtain an upper bound of |u(t)|+|u′(t)|102

and a positive lower bound of u(t). For those estimates, we refer to [3, Lemma 2.2].103
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After these examples, we are going to prepare the proof of Theorem 3.1 with several auxiliary results.104

Given p ∈ D, the solution of (1.1) satisfying x(0) = p will be denoted by x(t;p). This solution is defined
on a forward maximal interval [0, ω(p)[. Further, according to [4], ω = ω(p) is a lower semi-continuous
function. Define

D := {p ∈ D : x(t;p) is defined on [0, T ]}. (3.1)
This set can be also described by ω(p) > T , and so it is open. We want to prove the following result.105

Proposition 3.1. Assume that D ⊆ R2 is simply connected, and D is given by (3.1). Then every connected106

component of D is simply connected.107

Proof. It will rely on a well known fact: if Ω ⊆ R2 is open and connected, then it is simply connected if and108

only if Ri(J) ⊆ Ω for every Jordan curve J ⊆ Ω. Here Ri(J) denotes the bounded connected component of109

R2 \ J .110

We are going to apply this characterisation with Ω = D̂, where D̂ is any connected component of D.
Given a Jordan curve J ⊆ D̂. We consider the set defined by

C := {(x(t;p), t) ∈ D × [0, T ] : p ∈ J, t ∈ [0, T ]} ,

and we make the following topological claim:111

C is a topological cylinder (that is, homeomorphic to S1× [0, T ]), and (R2× [0, T ])\C has two connected112

components B and U. Moreover, B is bounded, Ri(J)× {0} ⊆ B and B ⊆ D × [0, T ].113

By now this claim will be taken as evident, and we will try to prove that every point p ∈ Ri(J) also114

belongs to D̂.115

Given p ∈ Ri(J), since D is simply connected, and J ⊆ D, we know that p ∈ D. Then we can consider
the solution x(t;p) defined on a certain interval [0, ω(p)[. The corresponding graph

G := {(x(t;p), t) : t ∈ [0, T ] ∩ [0, ω(p)[} ,

is a connected subset of R2 × [0, T ]. The uniqueness of the initial value problem implies that G ∩ C = ∅.
Then G is contained in one of the components of (R2 × [0, T ]) \ C. The point (p, 0) belongs to G ∩ B,
therefore, G ⊆ B. We can conclude from here that ω(p) > T . In fact, the solution x(t;p) cannot blow up
in [0, T ] because B is bounded and it cannot touch the boundary ∂D because

B ⊆ B ∪ C ⊆ D × [0, T ].

Summing up, we have proved that ω(p) > T if p ∈ Ri(J). This implies that Ri(J) ⊆ D. The set Ri(J)∪ J116

is connected and contained in D, then it must remains inside some component of D. But J is contained in117

D̂ by assumption, and so also Ri(J) must be contained in D̂.118

Proof of topological claim. Since C is compact, we can find two bounded and open subsets U and V
of R2 × [0, T ] such that

C ⊆ U ⊆ U ⊆ V ⊆ D × [0, T ].

Note that U and V are open with respect to the relative topology of R2 × [0, T ]. Then we can find a C∞

function α : R2 × [0, T ] → R such that

α(x, t) = 1 if (x, t) ∈ U, and α(x, t) = 0 if (x, t) /∈ V.

With the help of this function, we construct the modified vector field

X̃ : [0, T ]× R2 → R2, X̃(t,x) =

{
α(x, t)X(t,x), if (x, t) ∈ V,

0, otherwise.
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This vector field is smooth and the solution x̃(t;p) of the initial value problem

x′ = X̃(t,x), x(0) = p,

is well defined on [0, T ]. In addition, the map

Φ : R2 × [0, T ] → R2 × [0, T ], (p, t) 7−→ (x̃(t;p), t)

is a homeomorphism. Since X and X̃ coincide in a neighborhood of C, x(t;p) = x̃(t;p) for each t ∈ [0, T ]
and p ∈ J . Then

Φ(C̃) = C with C̃ = J × [0, T ].

The set (R2 × [0, T ]) \ C̃ has two connected components

B̃ = Ri(J)× [0, T ], Ũ = Re(J)× [0, T ],

where Re(J) is the unbounded component of R2 \ J . In consequence, B = Φ(B̃), U = Φ(Ũ) are the
components of (R2 × [0, T ]) \ C. Since B̃ ∪ C̃ is compact, the same can be said about B ∪ C. Moreover, if
we consider the Jordan curve

Jt = {x(t;p) : p ∈ J},
we observe that Jt ⊆ D for each t ∈ [0, T ]. Then, since D is simply connected, Ri(Jt) ⊆ D. The proof of
claim is completed from the decomposition

B =
⋃

t∈[0,T ]

(Ri(Jt)× {t}) .

119

Proof of Theorem 3.1. In view of Proposition 3.1, each member the family {Di}i∈I of connected com-120

ponents of D is simply connected.121

Define now the Poincaré map associated to (1.1) by

PT : D ⊆ D → R2, p 7→ x(t;p).

The set Fix(PT ) is in a one-to-one correspondence with the set of T -periodic solutions, and we will prove
that Fix(PT ) is finite by an application of Theorem 2.1 to the map PT . The general theorems of the
initial value problem imply that PT is one-to-one and analytic (see [5]). Moreover, (A2) is a consequence
of Liouville formula

det P′
T (p) = exp

{∫ T

0

divxX(t,x(t;p)dt

}
.

We must prove that Fix(PT ) is compact. From the assumption (α1), we know that this set is contained122

in the ball centered at the origin of radius C. Once we know that Fix(PT ) is bounded, we prove that it is123

also closed in R2.124

By a contradiction argument, assume that {pn} is a sequence in Fix(PT ) with pn → p and p /∈ Fix(PT ).
A first observation is that p lies in D. In principle, we know that it belongs to the closure of D but the
condition (α1) implies that

dist(pn, ∂D) ≥ 1

C

and, letting n → +∞, we deduce that p /∈ ∂D. Also, p ∈ ∂D, for otherwise p should be in D and a passage125

to the limit in the identity PT (pn) = pn would imply that also p is a fixed point. From there we deduce126

that ω(p) ≤ T and so there exists a sequence tn → ω(p) such that one of the following alternatives holds127

(i) ‖x(tn;p)‖ → ∞;128

7



(ii) There exists ξ ∈ ∂D such that x(tn;p) → ξ.129

Then we can find an instant τ ∈ [0, ω(p)[ such that either ‖x(τ ;p)‖ > C or dist(x(τ ;p), ∂D) < 1
C

. By130

continuous dependence, we know that x(·;pn) converges uniformly to x(·;p) on the interval [0, τ ]. Therefore,131

for large n, either ‖x(τ ;pn)‖ > C or dist(x(τ ;pn), ∂D) < 1
C

. Since x(·;pn) is a T -periodic solution, this is132

not compatible with (α1).133

The compact set Fix(PT ) is contained in

D =
⋃
i∈I

Di,

and there exists a finite set J ⊆ I such that

Fix(PT ) ⊆
⋃
i∈J

Di.

We can now apply Theorem 2.1 on the simply connected domain Di with i ∈ J . The set of fixed points is134

Fix(PT ) ∩Di, a compact set.135

4 Application to Hamiltonian systems136

To finish the paper, we present a result on Hamiltonian systems. Assume that D is an open and connected
subset of R2 and H : R×D → R is real analytic and T -periodic in t. The system

ẋ = J∇xH(t,x), J =

(
0 1
−1 0

)
(4.1)

does not satisfy (α2) because the divergence vanishes. We replace this assumption by137

(α3) ∂2H
∂x2

2
(t,x) > 0, D2

xH(t,x) < 2π
T
I, for (t,x) ∈ R×D.138

The Hessian matrix of H(t, ·) has been denoted by D2
xH(t,x) and we are using the ordering in the space

of symmetric matrices. More precisely, given A,B ∈ R2×2 symmetric, A < B means that

〈Ax,x〉 < 〈Bx,x〉 ∀ x ∈ R2 \ {0}.

Theorem 4.1. In the previous setting assume that (α1) and (α3) hold. Then the set of T -periodic solutions139

of (4.1) is finite.140

To prepare the proof, we recall a property of linear Hamiltonian systems of the type

ẏ = JS(t)y, (4.2)

where S : R → R2×2, S(t) = (sij(t))1≤i,j≤2, is continuous, T -periodic and symmetric.141

Lemma 4.1. Assume that, for each t ∈ R,

s22(t) > 0, S(t) <
2π

T
I.

Then every nontrivial T -periodic solution y(t) of (4.2) satisfies y1(t) 6= 0 for each t ∈ R.142

Proof. Given a nontrivial T -periodic solution y(t), we write it in polar coordinates

y(t) = r(t)

(
cos θ(t)
sin θ(t)

)
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where θ : R → R is C1 function satisfying

θ(t+ T ) = θ(t) + 2πN,

for some integer N . The condition s22(t) > 0 implies that y′
1(t0) > 0 if y1(t0) = 0 and y2(t0) > 0. In a

similar way, y′
1(t0) < 0 if y1(t0) = 0 and y2(t0) < 0. Then N cannot be positive. Either y(t) remains in

{y1 6= 0} and N = 0, or y(t) crosses {y1 = 0} and N < 0. We are going to prove that the second alternative
is impossible. From (4.2),

θ′(t) =
1

r2(t)
〈y(t),Jy′(t)〉 = − 1

r2(t)
〈y(t),S(t)y(t)〉 > −2π

T
,

implying θ(T )− θ(0) > −2π and N ≥ 0.143

Proof of Theorem 4.1. As in the proof of Theorem 3.1, we consider the Poincaré map PT , now associated144

to (4.1). The condition (α1) allows to prove that Fix(PT ) is a compact subset of D. We apply Theorem145

2.2 at each connected components of D, say D̂. Note that this time we do not need a simply connected146

domain.147

To prove that (H1) holds, we must show that the projection

Fix(PT ) ∩ D̂ → R, p = (p1, p2) 7→ p1

is one-to-one. Since Fix(PT ) ∩ D̂ is compact, we conclude that it is homeomorphic to its projection in R.148

Given p,q ∈ Fix(PT ) ∩ D̂,p 6= q, we define

x0(t) = x0(t;p), x1(t) = x0(t;q).

Then y(t) = x1(t)− x0(t) is a non-trivial T -periodic solution of (4.2) with

S(t) =

∫ 1

0

D2
xH(t,xλ(t))dλ,

and xλ = λx1 + (1 − λ)x0. Since we are in the conditions of Lemma 4.1, y1(t) 6= 0 for each t ∈ R. In149

particular, for t = 0, q1 6= p1.150

To prove (H2), we observe that if p ∈ Fix(PT ), then

P′
T (p) = Υ(T ),

where Υ(T ) is the matrix solution of (4.2) with Υ(0) = I and S(t) = D2
xH(t,x(t;p)). Again Lemma 4.1151

can be applied to prove that Υ(T ) cannot be the identity. Otherwise, Υ(T ) = I would imply that all the152

solutions of (4.2) are T -periodic and this is not compatible with the conclusion of the Lemma.153

Example 4.1. The NS property holds for (1.2) when c = 0, β < 0, α < 1
n2 and T = 2πn.154

We take D = R2 and x =
(
εu, 1

ε
u′), where ε > 0 will be chosen later. Then (1.2) is equivalent to (4.1)

with
H(t, x1, x2) =

1

2
ε2x2

2 + V
(x1

ε

)
− 1

ε
x1B sin t, V (u) =

αu2

2
− βu4

4
.

To check the condition (α1), we can employ the same argument as in Example 3.1. To check the condition
(α3), we compute

D2
xH(t,x) =

(
1
ε2
V ′′(x1

ε
) 0

0 ε2

)
and observe that V ′′(u) ≤ α.155

The case α = 1
n2 can be treated using an improved version of Lemma 4.1 under the condition

S(t) ≤ 2π

T
I, for t ∈ R,

with strict inequality somewhere.156
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