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Abstract. We give an alternative proof for the celebrated Bertrand’s theorem as a corollary of the
isochronicity of a certain family of centers.

1 Introduction and main results

Given a field of forces in the Euclidean space which is central and attractive there always exist circular
periodic solutions. In 1873 Bertrand [2] proved the following result: among all central fields of forces in the
Euclidean space there are only two exceptional cases (the harmonic oscillator and the Newtonian potential)
in which all solutions close to the circular motions are also periodic. From a philosophical point of view
this result has strong implications on the Gravitation Law. Besides the original proof, nowadays there are
several methods of proof. See [1, 6, 12] for more information.

The goal of the present paper is to show the connection of Bertrand’s theorem with the theory of planar
isochronous potential centers. Given a C2-potential V = V (x) defined on an open interval I ⊂ R and an
equilibrium x∗ ∈ I, V ′(x∗) = 0, we say that the potential V is T -isochronous around x∗ if there exists a
neighborhood U ⊂ R2 of (x∗, 0) such that every solution of the system

ẋ = y, ẏ = −V ′(x) (1)

passing through U \ {(x∗, 0)} is periodic with T as minimal period. This is a local notion depending only
of the behavior of V around x∗. Isochronous potentials have been considered by many authors and we
refer to [3, 10] for more information. Next we introduce a notion of common isochronicity for families of
potentials. Assume that λ > 0 is a parameter and Vλ = Vλ(x) is a C2-potential defined on I. We say
that the family {Vλ}λ>0 is T -isochronous if each Vλ has at most one equilibrium and the potential Vλ is
T -isochronous around it. To avoid trivial situations we also assume that Vλ has an equilibrium for some
λ > 0. This definition can be illustrated by the simple families

Vλ(x) =
x2

2
+ λx and Ṽλ(x) =

λx2

2
,

defined on the whole real line I = R. The first family is 2π-isochronous while the second is not T -isochronous
for any T > 0. Note that Ṽλ is isochronous but the period depends upon λ.

We will be interested in families of potentials of the type

Vλ(x) =
x2

2
+ λΦ(x), x ∈ (0,∞) (2)
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where Φ ∈ C2(0,∞) is a given function. In the next result we show that there are only two isochronous
families of this type. The first family corresponds to a harmonic oscillator with constant forcing and the
second appears frequently in the literature associated to different names (see [5, 7, 9]).

Theorem 1.1. There are only two families of the type (2) which are T -isochronous for some T > 0. They
correspond to

Φ(x) = Kx and Φ(x) = −K
2
x−2

for some K < 0. In the first case T = 2π and in the second T = π.

This result is somehow related to Theorems 2 and 8 in [12]. There the notion of isochronous family is
replaced by the stronger concept of rationally closing Φ′.

We claim that Bertrand’s theorem follows as a corollary of the previous result. The assumption on the
smoothness of the central force will be just C1. In previous proofs it has been assumed that the force was
analytic or C∞.

Theorem 1.2 (Bertrand’s theorem). Consider the central force problem

ẍ = −φ(r2)x, ÿ = −φ(r2)y (3)

with r2 = x2 + y2 and φ ∈ C1(0,+∞). Assume that the force is attractive somewhere and that all solutions
near circular motions are periodic. Then there is a constant K < 0 such that either the central force is
φ(η) = K or φ(η) = Kη−

3
2 .

We refer to Section 4 for a more precise statement.

The rest of the paper is divided in three sections. In Section 2 we review the elegant theory of isochronous
potentials developed by Urabe in [10] and [11]. The original formulation was only valid in some small
neighborhood of the equilibrium and we will work in a more global setting. Urabe’s theory will allow us to
derive a useful consequence on the behavior of the potential at the end points of the region of isochronicity.
These ideas are applied in Section 3 to prove Theorem 1.1. In Section 4 we prove Bertrand’s Theorem as
a consequence of Theorem 1.1. The proof is more or less direct when φ is real analytic but there are some
subtleties when φ is only C1.

2 Remarks on Urabe’s theorem

Given an interval I = (α, β) with −∞ 6 α < 0 < β 6 +∞, the Urabe class U(I) is defined as the set of
functions u : I → R satisfying u(0) = 0, u ∈ C(I) and v ∈ C1(I) where v(x) = xu(x). As an example we

consider the function u(x) = x
1
3 , it belongs to U(R). It is not hard to prove that a function u belongs to

U(I) if and only if u ∈ C(I) ∩ C1(I \ {0}), u(0) = 0 and limx→0 xu
′(x) = 0.

Theorem 2.1. Assume that V ∈ C2(I) satisfies V (0) = V ′(0) = 0, xV ′(x) > 0 if x 6= 0 and there exists
V ∈ (0,+∞] such that

lim
x→α+

V (x) = lim
x→β−

V (x) = V .

In addition, assume that there exists T > 0 such that for each x0 ∈ I, x0 6= 0, the Cauchy problem

ẍ+ V ′(x) = 0, x(0) = x0, ẋ(0) = 0

has a solution with minimal period T .

Then there exists an odd function S ∈ U(J) with J = (−(2V )
1
2 ,+(2V )

1
2 ) and |S(X)| < 1 if X ∈ J such

that the solution X(x) of
dX

dx
=

2π

T

1

1 + S(X)
, X(0) = 0 (4)

is defined on the interval I where it satisfies

V (x) =
1

2
X(x)2. (5)
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Remark 2.2. 1. The solution of (4) is unique. In general the solution of the initial value problem
dX
dx = G(X) is unique as soon as G is continuous and G 6= 0 everywhere. See [4].

2. The converse of the above Theorem also holds. Given a function S(X) in the above conditions and a
number T > 0, the function V (x) can be defined by the identities (4) and (5). It can be checked that
this function satisfies all the conditions imposed in the direct Theorem. Note that I = (α, β) now is

the maximal interval for the solution of (4) and X(x)→ −(2V )
1
2 as x→ α+ and X(x)→ +(2V )

1
2 as

x→ β−.

3. An interesting consequence of this Theorem is the non-existence of potential isochronous centers
whose period annulus is a vertical strip of the type (α, β)× R with −∞ < α < β < +∞. Assume by
contradiction that every non-constant orbit with initial condition in (α, β)×R has minimal period T .
The orbits approaching (α, 0) and (β, 0) would cross the y-axis at points (0, y) with |y| → +∞. This
would imply V = +∞. We claim that the function 1 + S should be integrable in the Lebesgue sense
on the whole real line, that is 1 + S ∈ L1(R). Since it is a positive function it is enough to prove that
the integral is finite and this is a consequence of (4). Indeed,∫ +∞

0

(1 + S(X))dX =
2π

T
β,

∫ 0

−∞
(1 + S(X))dX = −2π

T
α.

Since S is odd, ∫ +∞

0

(1− S(X))dX = −2π

T
α.

From |S(X)| < 1 we deduce that 1 − S(X) is positive and 1 − S ∈ L1(0,∞). Summing up, both
functions 1 + S and 1 − S belong to L1(0,∞) and this is absurd because the sum function is the
constant 2, a non-integrable function. �

The proof of Theorem 2.1 requires two previous lemmas. The proof of the first one is immediate whereas
the second is a consequence of [11].

Lemma 2.3. Assume that V ∈ C2(I) satisfies V (0) = V ′(0) = 0, xV ′(x) > 0 if x 6= 0, V ′′(0) 6= 0 and

lim
x→α+

V (x) = lim
x→β−

V (x) = V

for some V ∈ (0,+∞]. Then the function X(x) := sign(x)
√

2V (x) is a C1 diffeomorphism from I to J .

Moreover, X ′(0) = +
√
V ′′(0).

Lemma 2.4. Let R > 0 and assume that T ∈ C(−R,R) is even and∫ 2π

0

T (r cos θ)dθ = 0 for each r ∈ (0, R).

Then T is zero everywhere.

Proof of Theorem 2.1. By assumption the origin is an isochronous center with minimal period T and
this implies

V ′′(0) =

(
2π

T

)2

.

Let us define X(x) by Lemma 2.3. We consider the map A → B, (x, y) 7→ (X,Y ), X = X(x), Y = y
between the domains

A = {(x, y) ∈ I × R :
1

2
y2 + V (x) < V } and B = {(X,Y ) ∈ J × R : Y 2 +X2 < 2V }.
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Figure 1: Urabe’s map.

This map is a C1-diffeomorphism transporting those orbits of ẋ = y, ẏ = −V (x) crossing the x-axis to
concentric circles. The case V < +∞ is illustrated in Figure 1. The system becomes in the new variables{

Ẋ = H(X)
X Y,

Ẏ = −H(X),

where H = V ′ ◦ x and x = x(X) is the inverse function of X = X(x). The associated vector field is
continuous on B and there is uniqueness for the initial value problem because the system is equivalent to
the system ẋ = y, ẏ = −V (x). In addition, X2 + Y 2 is a first integral and the punctured disk B \ {(0, 0)}
is invariant. Using polar coordinates X = r cos θ, Y = r sin θ the system is written as{

ṙ = 0,

θ̇ = −ω(r cos θ),

where ω(X) = H(X)
X . We observe that ω(0) =

√
V ′′(0) = 2π

T . At this point the reader who is familiar
with the theory of integrable Hamiltonian systems will realize that these coordinates designed by Urabe
are reminiscent of the classical action-angle variables. However they are not the same, note that the above
system in (r, θ) is not of Hamiltonian type.

The function ω(X) is positive on J and all orbits on B \ {(0, 0)} have minimal period T , this implies
the identity

T =

∫ 2π

0

dθ

ω(r cos θ)
(6)

for each r ∈ (0,+(2V )
1
2 ). On the other hand, the function u(X) = 1

ω(X) −
T
2π belongs to U(J). It is clear

that u(0) = 0 and u ∈ C(J) ∩ C1(J \ {0}) and it remains to prove that limX→0Xu
′(X) = 0. For X 6= 0,

Xu′(X) = −X ω′(X)

ω(X)2
=

1

ω(X)2

(
H(X)

X
−H ′(X)

)
.

By L’Hôpital rule, limX→0
H(X)
X = limX→0H

′(X) = 2π
T , and then Xu′(X)→ 0 as X → 0.

We can decompose u(X) in the odd and even part so that

1

ω(X)
=

T

2π

(
1 + S(X) + T (X)

)
where S(X) = π

T (u(X)−u(−X)) and T (X) = π
T (u(X) +u(−X)). From these formulas we deduce that the

functions S(X) and T (X) belong to U(J). Let us now prove that T (X) is identically zero. The identity (6)
can be reformulated as

σ(r) + τ(r) = 0, r ∈ J
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where

σ(r) :=

∫ 2π

0

S(r cos θ)dθ and τ(r) :=

∫ 2π

0

T (r cos θ)dθ.

Since σ is an odd function and τ is even we deduce that τ(r) = 0 for every r ∈ J . Then Lemma 2.4 implies
that T ≡ 0. In consequence

ω(X) =
2π

T

1

1 + S(X)
.

From the definition of X(x) we deduce that (4) and (5) hold. It remains to prove that |S(X)| < 1. We
already know that 1 + S(X) = 2π

Tω(X) > 0. Since S is odd also 1− S(X) > 0. and the conclusion follows.

We finish this Section with a result on the behavior of the potential at the end points of the interval of
isochronicity.

Corollary 2.5. Let V be a potential in the conditions of Theorem 2.1. Then

lim sup
x→α+

√
2V (x)

|V ′(x)|
+ lim inf

x→β−

√
2V (x)

V ′(x)
= lim inf

x→α+

√
2V (x)

|V ′(x)|
+ lim sup

x→β−

√
2V (x)

V ′(x)
=
T

π
.

Proof. The function S(X) is determined from the formula

S(X(x)) = −1 +
2π

T

√
2V (x)

V ′(x)
sign(x). (7)

This is a consequence of (4) and (5). Also, from (5) we deduce that X(x) → −
√

2V as x → α+ and

X(x)→ +
√

2V as x→ β−. Since S is odd,

lim sup

X→+
√

2V

S(X) = − lim inf
X→−

√
2V

S(X).

Obviously the sup and inf can be interchanged. The conclusion follows by letting x to go to the end points
α and β in the identity (7).

3 Proof of Theorem 1.1

Assume that V = V (x) is a C2 function defined on a neighborhood of x∗ with V ′(x∗) = 0. Then x = x∗ is
an equilibrium of ẍ+ V ′(x) = 0 and it is well known that when x∗ is an isochronous center then V ′′(x∗) is
positive and the minimal period is given by the formula

T =
2π√
V ′′(x∗)

. (8)

This is a reformulation of a fact already mentioned in the proof of Theorem 2.1. Let us assume that Vλ is
a T -isochronous family of the type (2). Define the set

Λ:= {λ ∈ (0,∞) : Vλ has a critical point}.

By assumption we know that Λ is non-empty. From now on we employ the notation ϕ = Φ′ so that x(λ) is
the unique solution of

x+ λϕ(x) = 0, x ∈ (0,∞) (9)

when λ ∈ Λ. We claim that Λ is an interval. Given λ1, λ2 ∈ Λ, λ1 < λ2, we take any λ ∈ (λ1, λ2) and
consider the continuous function f(x) := 1

λx + ϕ(x). Then f(x(λ1)) < 0 < f(x(λ2)) and therefore f has a
zero between x(λ1) and x(λ2). In consequence λ ∈ Λ and Λ is an interval. We know by assumption that
Vλ is T -isochronous around x(λ) and therefore V ′′λ (x(λ)) = 1 + λϕ′(x(λ)) > 0. The function x = x(λ) is
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defined by the equation (9) and the implicit function theorem can be applied. We deduce that Λ is open
and λ ∈ Λ 7→ x(λ) ∈ (0,∞) is a C1 function with positive derivative everywhere. In consequence the image

J := {x(λ) : λ ∈ Λ}

is an open interval and the inverse function x ∈ J 7→ λ(x) ∈ Λ is an increasing diffeomorphism. The
identity (8) together with the definition of x(λ) yields to the differential equation

ϕ′(x) =
a

x
ϕ(x), x ∈ J (10)

where a := 1−
(

2π
T

)2
. We also notice that ϕ(x) must be negative on J . Solving the linear equation (10) we

obtain ϕ(x) = Kxa, x ∈ J , for some negative K. The function λ(x) is now easily computed,

λ(x) = − x

ϕ(x)
= − 1

K
x1−a, x ∈ J .

We claim that J = (0,∞). Otherwise let x∗ ∈ ∂J ∩ (0,∞). Then a sequence xn ∈ J with xn → x∗
produces a sequence λn = − 1

Kx
1−a
n → − 1

Kx
1−a
∗ = λ∗ ∈ (0,∞) and λ∗ ∈ Λ. Thus x∗ ∈ J arriving to

contradiction.

From the previous discussion we can write Vλ(x) = x2

2 + λK xa+1

a+1 with a < 1 and K < 0. We know that

Vλ is T -isochronous around x(λ) and therefore V (x) = x2

2 −
xa+1

a+1 , a 6= −1, or V (x) = x2

2 − lnx, a = −1,
must be T -isochronous around x = 1. This is a consequence of the homogeneity of the function xa and a
rescaling argument. It will be useful to simplify the computations. We intend to apply Corollary 2.5 to this
potential but then we must translate the equilibrium to the origin. From now on we consider the potential

V (x) =
(x+ 1)2

2
− (x+ 1)a+1

a+ 1
− 1

2
+

1

a+ 1
, a 6= −1

and

V (x) =
(x+ 1)2

2
− ln(x+ 1)− 1

2
, a = −1

and assume that V is T -isochronous around x = 0. To adjust to the setting of Corollary 2.5 we define
α = −1 and

β =

−1 +
(

2
1+a

) 1
1−a

if |a| < 1,

+∞ if a 6 −1.

We know that the solution of ẍ + V ′(x) = 0, x(0) = x0, ẋ(0) = 0 has minimal period T if x0 6= 0 is
sufficiently small. The function xa is analytic on the interval (α, β) and all the solutions of the above
initial value problem with x0 ∈ (α, β) are periodic. Let τ = τ(x0) be the corresponding minimal period.
This function is constant (τ ≡ T ) in a neighborhood of x0 = 0 and analytic on (α, 0) ∪ (0, β). Therefore
τ ≡ T everywhere and the assumptions of Theorem 2.1 hold. In consequence the conclusion of Corollary 2.5
holds. The isochronous potentials postulated by the Theorem correspond to a = 0 and a = −3. We
must exclude the remaining cases and to this end we distinguish cases. Assume first that a ∈ (0, 1).

Then limx→α+ V ′(x) = 0 and limx→α+

√
2V (x)

|V ′(x)| = +∞. This is absurd because this last limit is below

T
π . Next we assume a ∈ (−1, 0). In this case limx→α+ V ′(x) = −∞ and limx→α+

√
2V (x)

|V ′(x)| = 0. Then

limx→β−

√
2V (x)

V ′(x) = T
π . Since V (β) = − 1

2 + 1
a+1 , V ′(β) =

(
2

1+a

) 1
1−a ( 1−a

2

)
and V ′′(0) = 1− a, we combine

this limit with (8) to obtain the equation 2V (β)
V ′(β)2 = 4

V ′′(0) , equivalent to

(1 + a)1+a = 4.

We point out that the previous equality has no solution for a ∈ (−1, 0) since the function y = xx remains

below the constant 1 if x ∈ (0, 1). Finally, we consider the case α 6 −1. Again limx→α+

√
2V (x)

|V ′(x)| = 0 and
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limx→+∞

√
2V (x)

V ′(x) = T
π . On the other hand it is easily checked that limx→+∞

√
2V (x)

V ′(x) = 1 and with a similar

reasoning as in the previous case we conclude that a = −3.

There is an alternative proof of the previous result once we know that the potential family must write
V (x) = x − xα. This second way consists on the computation of the first few Birkhoff coefficients (period
constants) on the asymptotic development of the period function at the center. This gives several candi-
dates of parameters α that can be checked to be isochronous potentials by using the characterization with
involutions given in [3]. The details of this proof can be found in [8, Theorem 3.3]. This type of argument
is also related to the proofs in [1, 6].

Remark 3.1. In the definition of T -isochronous family we imposed the uniqueness of the equilibrium. This
is essential for the previous proof. To show this we are going to construct a function Φ ∈ C∞(0,∞) such

that the family Vλ(x) = x2

2 + λΦ(x) is not T -isochronous for any T but every Vλ is 2π-isochronous around
an equilibrium. Let us define ϕ = Φ′ as a function in C∞(0,∞) satisfying ϕ(x) = −3n if x ∈ In, n ∈ Z,
where In is an open interval containing [6n, 2 · 6n]. Note that this function can be constructed because the
compact intervals [6n, 2 · 6n] are pairwise disjoint, 2 · 6n < 6n+1. For each λ ∈ [2n, 2n+1] we observe that
ẍ+ x+ λϕ(x) = 0 becomes, on the interval In,

ẍ+ x− λ3n = 0.

Then x(λ) = λ3n ∈ [6n, 2 · 6n] is an isochronous center with period 2π. �

4 Proof of Theorem 1.2

Let us first be precise on the statement of the Theorem. The attractivity of the force somewhere means that
φ(η) > 0 for some η ∈ (0,∞). A circular motion is a non-constant solution (X(t), Y (t)) of the system (3)
such that X(t)2 + Y (t)2 ≡ r2

0 is constant. It is easily checked that circular motions have constant angular
velocity. Actually, X(t) + iY (t) = r0e

iωt where ω = ±
√
φ(r2

0) and φ(r2
0) > 0. The phase space associated

to (3) can be identified to (C\{0})×C. In this space we consider the orbit associated to the circular motion

γ = {(r0ξ, iωr0ξ) : ξ ∈ S1}.

The assumption on solutions near circular motions means that there exists a neighborhood U of γ, U ⊂
(C \ {0}) × C, such that all solutions (x(t), y(t)) of (3) with initial conditions (x(0) + iy(0), ẋ(0) + iẏ(0))
lying in U are periodic. In general the size of U will depend upon r0.

Identifying the plane of motion with C, setting ~r = reiθ, by Clairaut’s change of variable ρ = r−1 the
central force problem can be written as

d2ρ

dθ2
+ ρ− 1

C2
ρ−3φ(ρ−2) = 0, (11)

where C = r2θ̇ 6= 0 denotes the angular momentum, which remains constant. Circular motions of (3)
correspond to equilibrium points of (11). This type of motion must exist for some values of C, indeed we
can adjust this parameter so that (11) has an equilibrium on the region where φ(ρ−2) is positive. A well-
known fact is the following: A solution of the central potential problem associated to a periodic solution
(ρ(θ), ρ′(θ)) of system (11) is periodic if and only if the minimal period of the solution (ρ(θ), ρ′(θ)) is
commensurable with π. This period is called the angular period Θ. For future use we present the previous
discussion as an auxiliary result.

Lemma 4.1. Let (x(t), y(t)) be a non-circular periodic solution of (3) with C 6= 0. Then ρ = ρ(θ) is a
non-constant periodic function whose minimal period is commensurable with π.

Proof. Given a period T > 0 of the solution of (3) we obseve that r(t+T ) = r(t) and θ(t+T ) = θ(t)+2nπ
for some integer n. The formula for angular momentum, C = r2θ̇ implies that θ̇(t) is a T -periodic function.

Hence the primitive θ(t) satisfies θ(t+ T ) = θ(t) + S with S =
∫ T

0
C

r(τ)2 dτ > 0. Hence S = 2nπ. Finally we
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observe that the inverse function t = t(θ) will satisfy t(θ+S) = t(θ) +T and so ρ(θ) = 1
r(t(θ)) has period S.

The minimal period will be a divisor of S; that is, 2nπ
m .

In view of this connection between the system (3) and the equation (11) we will employ the following
strategy. It will be assumed that the system (3) is in the assumptions of Bertrand’s Theorem to prove that
the family of potentials associated to (11) is T -isochronous for some T > 0 commensurable with π. Here
λ = 1

C2 and Φ′(ρ) = −ρ−3φ(ρ−2). This program will be done in three steps.

Claim 1. For each C > 0 the equation (11) has at most one equilibrium.

We start the proof of this claim with another auxiliary result.

Lemma 4.2. Assume that V ∈ C2(0,∞) has more than one equilibrium. Then one of the following
alternatives holds:

(i) There exists x∗ ∈ (0,∞) with V ′(x∗) = 0 and a non-constant solution x(t) of ẍ+ V ′(x) = 0 such that
x(t)→ x∗ and ẋ(t)→ 0 as t→ +∞.

(ii) E := {x ∈ (0,∞) : V ′(x) = 0} is a non-degenerate interval.

Proof. Assume that (ii) does not hold. The set (0,∞) \ E is open and can be partitioned as a disjoint
union of open intervals, say (0,∞) \E = ∪α∈AIα with A ⊂ N. Assume that some α is such that Iα = (a, b)
with 0 < a < b < ∞ and V ′(a) = V ′(b) = 0, V ′ > 0 on (a, b) (alternatively, V ′ < 0 on (a, b)). We solve
ẋ = +

√
2(V (b)− V (x)), x(0) = a+b

2 and observe that x(t) → b as t → +∞. When V ′ < 0 on (a, b) we

replace the equation by ẋ = −
√

2(V (a)− V (x)). In both cases (i) holds. The property ẋ(t)→ 0 as t→ +∞
follows from the first order equation.

After this result is applied to (11), we are ready to prove the claim. By an indirect argument it is
assumed that there are at least two equilibria for some C > 0. We must look for a contradiction when each
of the alternatives given by the Lemma holds.

Assume first that (i) holds. Then there exists a non-constant solution of (11) such that ρ(θ)→ ρ∗ and
ρ′(θ) → 0 as θ → +∞. Here ρ∗ > 0 is an equilibrium. The conservation of angular momentum can be
interpreted as a first order equation, namely

θ̇(t) = Cρ(θ(t))2.

Define m := inf{ρ(θ) : θ > θ(0)} and M := sup{ρ(θ) : θ > θ(0)}. From the assumptions we know that
0 < m 6 θ̇(t) 6M < +∞ whenever t > 0 and θ(t) is well defined. This implies that θ(t) is well defined on
[0,+∞) and θ(t) → +∞ as t → +∞. In consequence the associated solution of (3), ~r(t) = 1

ρ(θ(t))e
iθ(t) is

well defined in [0,∞). Then, as t→ +∞, (~r(t), ~̇r(t)) accumulates around

γ = {( 1
ρ∗
ξ, Cρ∗iξ) : ξ ∈ S1},

an orbit associated to the circular motion ~R(t) = 1
ρ∗
eiCρ

2
∗t. This is not compatible with the assumption

because the solution ~r(t) is not periodic.

To discuss the second alternative we first present another auxiliary result.

Lemma 4.3. Assume that V ∈ C2(0,+∞) and

E = {x ∈ (0,∞) : V ′(x) = 0}

is a non-degenerate interval. Let γn be a sequence of closed orbits of ẋ = y, ẏ = −V ′(x) approaching
E × {0}; that is,

dist(γn, E × {0})→ 0 as n→∞.

Let τn > 0 be a sequence of periods associated to γn, then τn → +∞.
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In the above statement we have employed the notation

dist(A,B) = inf{‖p− q‖ : p ∈ A, q ∈ B}

where A,B ⊂ R2.

Proof. In the plane each closed orbit must surround an equilibrium. Then γn must go around E × {0},
meaning that E × {0} lies in the bounded connected component of R2 \ γn. Assume by contradiction that,
after extracting a subsequence {γn}, the corresponding periods remain bounded, say τn 6 τ < +∞. By a
compactness argument we can extract a new subsequence {γk} such that dist((x0, 0), γk)→ 0, where x0 is
some number in E. The property of continuous dependence with respect to initial conditions, applied on
the interval [0, τ ], implies that γk converges to (x0, 0) in the Hausdorff distance. This is not possible if γk
goes around E × {0} and the interval E is not a point.

After this result is applied to the potential V (ρ) = 1
2ρ

2 + 1
C2 Φ(ρ) we know that the interval E should be

of the type E = [γ,Γ] with 0 < γ < Γ < +∞. If γ = 0 or Γ = +∞ the orbits of (11) could not go around
E × {0} and they could not be closed. This would imply that some non-circular motions of (3) could not
be periodic and arbitrarily close to circular motions. We will also assume that the condition below holds,

V (ρ) > V (E) if ρ ∈ (0,∞) \ E. (12)

Otherwise the inequality V (ρ) < V (E) could be valid on (0, γ) or (Γ,+∞). The argument of case (i) could
be adapted to find non-periodic solutions of (3) approaching a circular motion with radius 1

γ or 1
Γ . From

now on we assume that (12) holds. The solution of (11) with initial conditions ρ(0) = ρ0, ρ′(0) = 0 is
periodic if ρ0 ∈ (Γ,Γ + δ) and δ > 0 is small enough. This solution is denoted by ρ(θ, ρ0), with minimal
period Θ = Θ(ρ0). We claim that the function Θ : (Γ,Γ + δ)→ R is continuous. This can be proved using
the formula

Θ(ρ0) =
√

2

∫ ρ0

A(ρ0)

dξ√
V (ρ0)− V (ξ)

,

where A is the only root of V (ρ0) = V (A) lying in (0, γ). An alternative method, proving that Θ is indeed in
the class C1, could consist in the application of the implicit function Theorem to the equation ρ′(Θ, ρ0) = 0.
Going back to Lemma 4.3 we observe that Θ(ρ0) → +∞ as ρ0 → Γ+. This implies that Θ is not constant
and therefore there are many values of ρ0 ∈ (Γ,Γ + δ) such that Θ(ρ0) is not commensurable with π. In
this way we construct solutions of (3) which are not periodic (in fact they are quasi-periodic) and remain
close to the circular solution with radius 1

Γ . The first claim has been proved.

Claim 2. The set C = {C ∈ (0,∞) : (11) has an equilibrium} is connected.

Define Ψ(ρ) = ρ−4φ(ρ−2) and P = {ρ ∈ (0,∞) : Ψ(ρ) > 0}. We first prove that P is an interval.
Otherwise there should exist three numbers 0 < ρ1 < ρ2 < ρ3 with Ψ(ρ1) > 0, Ψ(ρ2) 6 0, Ψ(ρ3) > 0. Since
Ψ is continuous we can find σ1 ∈ (ρ1, ρ2) and σ2 ∈ (ρ2, ρ3) with Ψ(σ1) = Ψ(σ2) > 0. These two numbers
would produce two equilibria of (11) for the same C. This is against the previous claim.

The set C can be expressed as
C = {

√
Ψ(ρ) : ρ ∈ P}

and therefore it is connected, proving the second claim.

Claim 3. The family of potentials associated to (11) is T -isochronous for some T ∈ πQ.

At this point it is convenient to emphasize the dependence of the potential associated to (11) with
respect to the angular momentum. We write

V (ρ, C) =
1

2
ρ2 +

1

C2
Φ(ρ).

For each ρ ∈ C we know that V (·, C) has a unique equilibrium producing a circular motion of (3). By the
main assumption in Bertrand’s Theorem and Lemma 4.1 the equation (11) has a center at ρ∗ = ρ∗(C), the
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critical point of V (·, C). Let Θ = Θ(ρ0, C) be the minimal period of the solution with initial conditions
ρ(0) = ρ0, ρ′(0) = 0. The function Θ(·, C) is continuous in a neighborhood of ρ∗(C) and Θ(ρ0, C) ∈ πQ.
This implies that Θ(·, C) is constant. In consequence V (·, C) is T (C)-isochronous around ρ∗(C) with
T (C) = 2π√

V ′′(ρ∗(C),C)
. We will prove that T (C) is constant. Since V ′′(ρ∗(C), C) > 0, the function ρ∗(C) is

defined implicitly by the equation V ′(ρ∗(C), C) = 0 and it is C1 on the interval C. In consequence T (C) is
a continuous function defined on C and taking values on πQ. From Claim 2 we know that C is connected
and so T is independent of C. The family {V (·, C)}C>0 is T -isochronous. This proves the last claim.

On account of Theorem 1.1 the only two possibilities when equilibria exists are ϕ(ρ) = K and ϕ(ρ) =
Kρ−3. Using the identities ϕ(ρ) = ρ−3φ(ρ−2) and ρ = r−1, the corresponding central problems are the
Harmonic oscillator φ(x) = K and Kepler problem φ(x) = Kx−3/2.
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[6] J. Fejoz, L. Kaczmarek, Sur le théorème de Bertrand (d’après Michael Herman), Ergod. Th. & Dynam.
Sys. 24 (2004) 1583–1589.

[7] P.G.L. Leach, K. Andriopoulos, The Ermakov Equation: a commentary, Applicable Analysis and Dis-
crete Mathematics 2 (2008) 146–157.

[8] F. Mañosas, D. Rojas, J. Villadelprat, Study of the period function of a two-parameter family of centers,
J. Math. Anal. Appl. 452 (2017) 188–208.

[9] E. Pinney, The nonlinear differential equation y′′ + p(x)y + cy−3 = 0, Proc. Amer. Math. Soc. 1 (1950)
681.

[10] M. Urabe, Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961)
569–578.

[11] M. Urabe, The potential force yielding a periodic motion whose period is an arbitrary continuous func-
tion of the amplitude of the velocity, Arch. Rational Mech. Anal. 11 (1962) 27–33.

[12] O.A. Zagryadskii, E.A. Kudryavtseva, D.A. Fedoseev, A generalization of Bertrand’s theorem to sur-
faces of revolution, Sbornik: Mathematics 203 (2012) 1112–1150.

10


	Introduction and main results
	Remarks on Urabe's theorem
	Proof of Theorem 1.1
	Proof of Theorem 1.2

