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Abstract

In this work we consider the Kepler problem with linear drag, and
prove the existence of a continuous vector-valued first integral, ob-
tained taking the limit as ¢ — 400 of the Runge-Lenz vector. The
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norm of this first integral can be interpreted as an asymptotic eccen-
tricity es with 0 < es < 1. The orbits satisfying e, < 1 approach
the singularity by an elliptic spiral and the corresponding solutions
z(t) = r(t)e'’® have a norm r(t) that goes to zero like a negative
exponential and an argument 6(¢) that goes to infinity like a positive
exponential. In particular, the difference between consecutive times

of passage through the pericenter, say T,, 11 — T}, goes to zero as %

Keywords: Kepler equation, linear drag, first integral, confor-
mally symplectic

1 Introduction

In this work we prove the existence of a Runge-Lenz-type first integral for
the Kepler problem with linear drag,

i+ei:—%, z e R\ {0, (1)
where the dot denotes the derivative with respect to time and e is a positive
constant. Using this first integral we can give a geometrical description of the
evolution of the orbits, as well as quantitative estimates of the corresponding
solutions. These results, together with those in [14], allow to give a fairly
complete characterization, mostly from a qualitative point of view, of the
global dynamics associated to equation (1).

Our approach is based on the ideas on asymptotic integrals developed by
Moser in [16] for the study of the Stérmer problem (see also [17]). Given
a solution z(t) of (1) with z(0) = x¢ and #(0) = vy, we will consider the
corresponding Runge-Lenz vector R(t) and prove that the limit

I'= lim R(t)
t—4o00
exists. Just from the definition it follows that the vector I = I(xg,vp) is a
constant of motion. As we will see this vector contains relevant information
on the orbit.

Runge-Lenz-type vectors (also referred to as Hamilton-like vectors or as
Laplace-like vectors) have been already used in the literature on dissipative
problems (see [13], [11], [15]). These vectors are useful to deduce the orbit
equation in a Kepler problem with the so called Poynting-Plummer-Danby
drag (see [7] and [3] and the references therein). In this case the corresponding
equation is of the form

i+ D(z, @) = r € R*\ {0}, (2)
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with o

D(x,&) = PR (3)
and o > 0. In general, in these works, taking advantage of the integrability of
equation (2) with dissipation (3), a closed form formula involving the Runge-
Lenz vector is provided for the orbit equation, that is given as a function of
the polar angle. Some corresponding numerical simulations are presented to
show how the orbits spiral down towards the singularity.

Our interest in the linear dissipation is mainly driven by the attempt to
give a contribution to a qualitative theory of the dissipative Kepler problem.
Ideally, one would like to be able to divide the drags in classes according to
the global dynamics they induce in the phase space. In this setting, as far as
we know, there are few results. In [6] a dissipative force such that

D(x, &) = k(|])/]2] (4)

is considered. Assuming the convergence of a suitable integral, it is shown
that all solutions go to the singularity (but it is not studied if that occurs
in finite or infinite time). In particular the assumption holds when k(|%|) =
e|z|*, € > 0 (a drag introduced by Jacobi in [12]) and o < 1. We point out
that the linear drag is a particular case of the Jacobi’s drag.

From our perspective, it is very interesting the fairly exhaustive qualita-
tive study presented in [8] for the Kepler problem with a generalized Stokes’s
drag force of the type

=—0n7 ()

where a and [ are positive constants and v,., vy are, respectively, the ra-
dial and angular vector components of the velocity. It is worth to recall
that the important Poynting-Robertson drag is a special case of (5). The
same problem was already considered in [3] from an analytical point of view.
Comparing our results with the ones in [8], we see that the way many solu-
tions approach the singularity in the Kepler problem with drag (5) is sharply
different from the one corresponding to the solutions of equation (1). Post-
poning to Section 4 the discussion on this point, we focus here on the results
we have obtained for the solutions of (1). In [14] we showed that the non
linear motions of (1) approach the singularity in infinite time. In this work,
exploiting the existence of the aforementioned first integral, we prove that,
actually, as t goes to 400 the orbits with |/| < 1 are asymptotically of the
form y(t)e™2<, where y(t) travels along a suitable fixed ellipse (see Corollary
3.1) with an angular velocity that grows exponentially with ¢ (see Corollary
3.3). As a consequence, the orbits pass infinite times through the pericenter



and the time T, of the n-th passage behaves like i logn for n large. In
addition, the time between two consecutive passages through the pericenter
tends to zero as % This last property is reminiscent of the phenomenon of
decreasing orbital periods observed from the data of the orbital parameters
collected from the Sputnik 1 mission [18, page 105]. As it is well known, the
atmospheric drag effects are of non linear type (see [2]). We think that some
theoretical work on non linear drags is needed to understand some observed
aspects of the dynamics of the corresponding Kepler problem (see Section 4
for more details).

Qualitative results for a Kepler problem with dissipation are also obtained
in [1], where a simple model to study the effect of tidal dissipation on the mo-
tion of celestial bodies is presented. For the general class of dissipative forces
considered to model the tidal effect, it is found that every non rectilinear
orbit approaches a circular orbit with nonzero angular momentum.

A linear dissipation term has already been considered in celestial mechan-
ics to model the so-called ’spin-orbit problem’ (see, for example, [4]) leading
to the study of conformally symplectic systems [5]. In this connection, it may
be worth to point out that among all the dissipative mechanisms correspond-
ing to equations of the form & =y, §y = —D(z,y)y — VV(x), the linear one
(with D(z,y) = positive constant) is the unique to generate a flow that is a
conformally symplectic mapping.

This paper is organized as follows. In Section 2 we prove the existence
of the first integral and discuss some of its properties. In Section 3 we use
the first integral to get geometrical informations about the orbits as well as
some estimates on the asymptotic dynamics of non rectilinear motions of (1).
Also, we single out two open subsets of the phase space whose intersection
corresponds to solutions of (1) on which the first integral I satisfies 0 < |I| <
1. For one of these solutions we present a simulation to illustrate our results.
Section 4 contains a discussion of our results. Finally, in the Appendix we
give the proof of an auxiliary result, namely Lemma 2.2.

2 Existence of the Runge-Lenz-type first in-
tegral for the Kepler problem with linear
drag

As mentioned in the previous section, the Kepler problem with linear drag
is described by equation (1).



We consider the equivalent system in the phase space = (R?\ {0}) x R?

=
{2‘1%—61}2—%. (6)

We recall that a solution of (1) (and hence of (6)) such that z(0) = zg
and ©(0) = vy is defined for ¢ € [0, w[ where w = w(xg, vp) is finite in the case
of a rectilinear motion, whereas w = +o0 for a non rectilinear motion. In any
case, all solutions of (1) tend to the singularity, and are therefore bounded
on [0, w[. The non rectilinear motions are actually defined for all time, come
from infinity with energy which goes to 400 as t — —oo and tend to the
singularity with energy that goes to —oo (see [14] for more details).

In what follows, sometimes we will employ the notation x(t; xq, vg) for the
solution of (1) such that z(0) = xg, v(0) = vy, with (x,v) € €.

The conservative Kepler problem, which corresponds to € = 0, has many
first integrals, but the most popular are the energy

1, 1
Bw.v) = 5hf - 1. @
the angular momentum?!
C(z,v) =z A, (8)

and the Runge-Lenz vector

R(:B,v):v/\(x/\v)—%.

(9)

None of the above quantities is preserved by the dissipative flow but
we will show below in our main result that the Runge-Lenz vector has an
analogue in system (6).

Theorem 2.1 There exists a continuous vector field
I:Q—=R? [=1I(x,0)
satisfying
(i) I(ox,ov) = ol(x,v), for each (z,v) € Q and each rotation
> ( cosf) —sinf )
sinf cosf '
'From now on the wedge A will be employed to denote the vector product in R3. Due

to the identification of R? with R? x {0} C R3, the arguments of the vector product of the
form (w,0) € R? will be denoted simply by w € R2.




(i) The norm of I satisfies
[I(z,v)] <1, (z,0) € Q. (10)

Moreover the function e (z,v) := |I(z,v)| takes all values in the in-
terval 10, 1].

(111) Each solution (z(t),v(t)) of (6), defined on a maximal interval of the
form o, wl, satisfies

I(z(t),v(t)) = lim R(x(1),v(T)). (11)

T—W

Remark 1 The property (ii7) implies that the coordinates of I = (11, I5)
are first integrals of (6), that is I(z(t),v(t)) = constant, for each solution
(z(t),v(t)). By now we can only say that I is continuous, but it could be
interesting to know if it has some additional smoothness properties. The
properties (i) and (i) imply that the two first integrals I; and I, are func-
tionally independent. To see this, assume that F : R? - R, F = F(£,&) is
a continuous function such that F(I;(z,v), Ir(x,v)) = 0 for each (z,v) € €.
Then F should vanish on the whole unit disk because the image of I is dense
in this disk.

Remark 2 The invariance under rotations described in property (7) is also
shared by the Runge-Lenz vector R. However the property (i7) has no
analogue for R. In the conservative Kepler problem the condition |R| > 1
corresponds to hyperbolic motions. The condition |I| < 1 somehow expresses
that there are no hyperbolic motions in the dissipative problem. This vague
statement will become more precise after we discuss the geometric meaning
of the theorem. Indeed if € = 0 and |R| < 1, the vector R is the eccentricity
vector corresponding to the Keplerian ellipses. In particular, if R # 0, the

unit vector @ is the direction of the major axis and e = | R| is the eccentric-

ity. In the dissipative case I can be interpreted as an asymptotic eccentricity
vector and so ey is an asymptotic eccentricity. Solutions with |/| < 1 tend
to the origin along a spiral determined asymptotically by I. The geometry
of the corresponding orbits will be described in Corollary 3.1.

In preparation for the proof of the theorem, we start by recalling two
formulas, the first connecting the functions R and C, and the second linking
the functions R, C' and E, see also [10], 3-9, where these formulas are derived
along the solutions of the Kepler problem. Here we stress the fact that they
hold as functional relationship between functions of the real variables (x,v).
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Namely, denoting by < v, w > the inner product between the vectors v and

w, we have
|z|+ < R,z >= |C|?, for any z € R*\ {0} (12)
and

|R|? — 1 =2|C]*E. (13)

The identity (12) follows from the properties connecting the inner and vector
products. Indeed

lz|[+ < R,z > = <vA(@xAv),z>=—<(zAv)Av,x>= (14)
= —<zAv,vAzT>= v AV (15)

To prove (13) we first observe that v L x A v, and by (9) it follows that

2
'R+‘I—| = [vA (@ Av))* = v [z Aol (16)
T

Expanding the square we obtain

\R|2+1+% <R >= ] |C] an)
Using (12) we get
\R|2+1+%(\C|2— |z[) = |v[*|C] (18)
and finally
B2 1= 2|C)? (%W _ %) | (19)

To end our preparatory work, we state the following lemma, needed to
prove the continuity of I on €. Its proof is postponed to the Appendix.

Lemma 2.2 Let K be a compact subset of €2. Then there exists mg > 0
such that
|(t; 20, v0)| < M

for any (xg,v0) € K and t € [0,w].

We are now in a position to prove our theorem.

Proof of Theorem 2.1 Fixed (zg,v9) € Q, let (z(t),v(t)) be the solution of
system (6) such that (z(0),v(0)) = (z¢,vo). In what follows we let C'(t) =



C(z(t),v(t)) and denote by C' its derivative with respect to time. Analogous
notations will be used for R and E. For any smooth function z = x(¢),

%(%):#[(x/\:&)/\x]:CA<#). (20)

Hence, recalling that for the linear drag we have C' = —eC, along a solution
of (6) we obtain

R = iAC+iAC—CA— =
||

= i NC— T ANCH+EANC—CANE =
|3 |3
= —2exNC.

From this identity it is easy to deduce the existence of the limit of R at ¢t = w.
In fact, as

R(t) = R(0) — 26/0 (r) N C(7)dr (21)

and C(t) = C(0)e™ we obtain
R(t) = R(0)—2e /0 "o () A C(0))dr
— R(0) = 2€fe-"x(7) A C(0)], — 2 /0 "o (u(r) A C(0))dr.
Now from the attraction of the origin, (t) — 0 as t — w, we get

lim R(t) = R(0) + 2€ 2(0) A C(0) — 2¢2 /0 Ce@(n) ACO)dr (22)

t—w

At this point we can define the function

I(xg,v9) = R(xo,v0)+26:£o/\0(x0,vo)—262/ e~ (x(T; g, vo) NC (20, Vo) )dT.
0

(23)
To prove that I is a continuous function on {2 we use the standard results
on functions defined by parametric integrals together with Lemma 2.2.
Since properties (i) and (7i7) follow immediately from the definition of
I, we prove now (ii). In the case xg A vy = 0, by (23) we get I(xg,v9) =

x
R(zo,v0) = —I—O and therefore we have |I(xg,v9)| = 1. Let us assume then

0
that xg Avg # 0. Since C(t) # 0 everywhere and F(t) — —oo when t — +o0,

8



by (13) we see that |R(t)|> — 1 < 0 if ¢ is large enough. We conclude that
lim; 400 |R(t)| < 1 and hence

|I(Zl§'0,’l}0)| S 1 (24)

Incidentally we notice that, since |C(t)| — +o00 and E(t) — +oo ast — —o0
(see [14]), by (13) we get

tgr_noo |R(t)| = +o0. (25)
Let us now analyse the range of e,, = |I|. We are going to work with

initial conditions (xg,vg) satisfying xg A vg # 0 and E(zg,ve) < 0. Then, as
Vo 7é O>

1 1 1
E = Cur < —. 26
B, w0)l = o glool < - (26)
Since E(t) is decreasing
1
t < if t > 0. 2
PO 5@ = BGewr 120 )
From (23) we have
(0, 00) — R, 10)] < 4elCF0 00| (28)
| E (0, v0)|

Let us apply this estimate to the sequence of initial conditions x(()n) = (#, 0),

o™ = (0,n). Then E(z{",v{") = <0, 1C(z{, o™ = 1 20 and
R(z{™, o) = 0. Then (28) implies that |I(z{",v{")| < 8¢ — 0. Since we
know that |I| =1 if 29 A vg = 0 we deduce that e, = |I| takes all values on

10, 1].

3 Geometrical and dynamical properties of
the solutions

In this section we consider some consequences of Theorem 2.1. We present
them in the three corollaries below. The first one deals with the geometry of
the orbits for which |I| < 1, whereas the others give information on the way
such orbits are traversed.



Let us recall that the family of ellipses with a focus at the origin is de-
termined by the equation in R?

||+ < L,z >= K2, (29)

where L € R?) |L| < 1 and K > 0. From now on we denote by £ = £(L, K).
the ellipse of this family corresponding to a fixed pair (L, K).

Corollary 3.1 Fized (xg,vo) € Q, let (x(t),v(t)) be the solution of (6) such
that (z(0),v(0)) = (xq, vo). If

‘I(QE‘O”U()” <1

then w = +00 and
et

e“z(t) = &€ ast — +oo, (30)
where £ = E(L, K) with L = I(xg,v) and K = |C(xq, vo)|.

Proof. Since we know that for linear motions |I(xg,vg)| = 1, the condition
|I(x0,v9)] < 1 implies that the corresponding motion is non rectilinear, so
that w = 400 (see [14]). From (12) we conclude that

le® 2(t)|+ < R(t), e* x(t) >= |C(x0,v0)|%, (31)
which means that, for each ¢, e z(t) belongs to an ellipse £ of the form

E =E(I(xg,v0) + &(t), |C(x0,v0)|) where ¢(t) — 0 as t — +oo.
]

As a consequence of the previous result, we are able to give some estimates
about the asymptotic dynamical behaviour of the solutions.

Corollary 3.2 Assume that (z(t),v(t)) is a solution of (6) satisfying
|1 (o, vo)| < 1. (32)
Then, the following estimates hold for sufficiently large t :
Are™ < a(t)| < Age™ (33)

Bre® < |i(t)| < Bge® (34)

for suitable constants A; > 0,B; >0, i=1,2.

10



Proof. Let 9y, and vy, denote, respectively, the distance from O at
the pericenter and apocenter along the ellipse £((xo, vo), |C(xg, vp)|). From
Corollary 3.1 we have that for each n > 0 there exists ¢, such that for each
t > t, we have

(Yomin = n)e™>" < |2(t)] < Ymas + n)e>" (35)
and (33) is proved. Now, from (17) we obtain
(1 =R < pPICP < (1+|R])? (36)
and this implies that, choosing 7 < 1 — |I| and if necessary a larger t,,

(1= 1@ t) =0 s 1oy (L (o, w)] )2
< <
Canuwp ¢ <HOFs——ea wp © - &7

for each ¢t > t,,, and also (34) is proved.

Finally we give a result which describes quantitatively the way the solu-
tions rotate around the origin as they spiral down to the singularity. Given a
solution in the conditions of Corollary 3.1, the angular momentum does not
vanish and so the orbit will rotate around the origin with positive or negative
orientation. At least for sufficiently large time it makes sense to define the
time of passage through the pericenter as a time T such that the solution
crosses the ray spanned by the vector I(xg,vp); that is,

x(T) = M (x9,v0) (38)

for some A > 0. If I(zg,v9) = 0 one can consider the intersection of the
trajectory with any fixed ray emanating from the origin.

Corollary 3.3 Assume that (x(t),v(t)) is a solution of (6) satisfying (32).
Then the set of times T > 2 defined by the condition (38) can be arranged
in an increasing sequence {1, }n>1 satisfying

1
T, ——1 <K 39
T, — 5 logn] < Ky (39)
K. K.
n n

where K1, Ky and K3 are suitable positive constants.

11



As a consequence, the solution crosses infinitely many times the asymp-
totic eccentricity axis determined by I(xg,v). From the proof we will see
that this solution winds around the origin faster and faster. Also we will
obtain the estimates on the argument function that were announced in the
abstract.

Proof. For the angular coordinate, defined by z(t) = 7(t)e®), we have that
r2(£)16(t)] = |C (o, vo) e (41)

As r(t) = |z(t)], by (35), we conclude that, for large ¢,

|C (0, v0)] 3 ; |C (0, v0)] 3
Te?’ t< 10(t)] < T%e?’ ¢ (42)
This leads to the estimate
Cre® < |0(t)] < Cue®t, t>0 (43)

where O] < w and Cy > w are suitable positive constants.
2 1

Assuming for simplicity 8(t) > 0 (the case f(t) < 0 is analogous) and
6(0) € [0, 2|, we integrate (43) to get the inequality

Die® < (t) < Dye®', t>0 (44)

where D; > 0, i = 1,2, are suitable constants. Let 6, € [0,27| be the
argument of I(xg,vp). The condition (38) is equivalent to 0(T) — 0y € 27Z.
Hence we can use (43) to deduce that, for each n > 1, the equation

0(T) = 0y + 207 (45)

has a unique solution 7,,. Moreover the sequence {T,} is increasing and tends
to infinity. To prove (39) we evaluate (44) at t = T,,. To prove (40) we apply
the intermediate value theorem to find §,, €]T,,, T,+1[ such that

21 = 0(Thia) — 0(15,) = é(fn)(TnH —Tn). (46)

Thus

and the estimate follows by a combination of these inequalities and (39).
n

We do not know if there are motions with |I| = 1 and C' # 0. If they exist
they could be called asymptotically linear motions. The same is open for [ =

12



0, corresponding to asymptotically circular motions. Our final proposition
singles out two subsets 2; and )y of the phase space which correspond to
initial conditions of solutions of (1) for which, respectively, 0 < |I(xg, vp)|
and |1 (zg,v9)| < 1.

Proposition 3.4 Let

2v/2¢
Oa S R Z,v
V82 + |E(x,v)]3 1A )|}

Q= {(:)s,v) € (R*\ {0}) xR? : E(z,v) <

(48)
and
B , - |E(z,v)|> — 8¢
0, = {(gj"[}) e (R*\ {0}) xR : E(z,v) <0, |R(z,v)| < \E(:c,v)\3+8(129) .

If (zg,v0) € 4, then |I(xg,v)| > 0. If (xg,vo) € Qo, then |I(zg,v0)| < 1.

Proof. Assume by contradiction that (zg,v9) € € and that I(zg,v) = 0.
Then, by (28)
|C' (o, vo)|

R <4 . 20
| (ZL'(),'U())| € |E(I0,’U0‘ ( )
Squaring this inequality, and using it in (13) one gets readily
2/2¢
| R(x0,v)| < , (51)
V8 + [E(z,v)[3
which is absurd since (zg, vg) € €. The case (xg,vg) € (2o is similar. []

Figures 1 and 2 below illustrate the geometrical content of Corollary 3.1
by considering a solution of (1) whose initial condition belongs to €; N Q.
For the same solution, the exponential growth of the polar angle stated in
Corollary 3.3 is plotted in Figure 3. All the figures were obtained by using
the MATLAB solver ode23 to numerically integrate equation (1).

13



__ solution x(t)
51 __ final segment of the curve y(t)=e25 'x(t)

Figure 1: Plots of a solution z(t), t € [0,35], of (1) with e = 0.01 and initial
condition (29, v9) = (0, —1,v/3/2,—1/2) € ©; Ny, and of the corresponding
curve y(t) = e**x(t) which approximates the ellipse £ defined in Corollary
3.1. To have a better view of the approximate shape of £ only the final

segment of the curve y(t) = e*“x(t) was plotted.

4 Discussion

In this work we showed that the Kepler equation with linear drag admits
a continuous vector-valued first integral and we exploited it to obtain both
geometrical and dynamical insights about the non rectilinear orbits and the
corresponding solutions. These results complement those in [14] and allow
to understand thoroughly the global dynamics of (1), making possible a
comparison with the dynamics produced by other drags. However, due to
the lack of available qualitative results, we were able to carry out a detailed
comparison just with the generalized Stokes’s drag force

, a, >0 (52)

As showed in [8], for this resistive force many non rectilinear solutions, cor-
responding to an open set of initial conditions, collide in finite time and with
finite velocity with the singularity, spiralling just a finite number of times be-
fore collision. Moreover, the approach to the singularity occurs with angular

14
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Figure 2: Plot of the evolution in time of the eccentricity vector R(t) corre-
sponding to the solution in Figure 1. As ¢ varies in the interval [0,35] the
vector describes the black curve. It is apparent its tendency to stabilize. To
highlight its final value R(35) is represented with a line segment starting at
(0,0).

velocity which tends to zero and along a limit direction (this last property
was also presented in [3]). This is in sharp contrast with the results obtained
in [14] for the non rectilinear motions of the linear drag (no collision in finite
time, energy which goes to —oo as t — +00) and in corollaries 3.1 and 3.3 of
this paper (motions with |I| < 1 tend to the singularity along spirals which
shrink exponentially with time. In addition these motions wind around the
origin with angular velocity that increases exponentially with time).
Although the linear drag is not relevant for artificial satellites dynamics,
since in this setting it is assumed a velocity square law in drag acceleration
together with an atmosphere density exponentially decreasing with altitude
(see [2]), we would like to mention that the formulation of Corollary 3.3 was
inspired by the data of the orbital parameters collected from the Sputnik
1 mission [18, page 105]. In particular, these data showed that the orbital
period was decreasing as the satellite was getting closer to the Earth. Quoting
[18] “..a fact which may appear paradoxical at a first glance: the atmosphere

15



—— Plot of the logarithm of the polar angle o(t) against time

10 i i I i i i
0 5 10 15 20 25 30 35

Figure 3: For the same solution as in the previous figures, the plot of the
evolution in time of log(A(t)) illustrates the exponential growth of (t) cor-
responding to (44).

impedes the motion of the satellite, yet the latter circuits the Earth faster
and faster!” To obtain a result analogous to Corollary 3.3 for a physically
realistic drag of the form e=®*l|z|#, « > 0, would allow to give a theoretical
explanation of this phenomenon.

We remark that the results presented here for the linear drag follow quite
directly from the existence of a continuous first integral, obtained as asymp-
totic Runge-Lenz vector. The problem of its actual degree of smoothness
seems difficult, as does the problem of its existence for a more general drag
of the form D(z,4) = D(|z|), with A < D(|z|) < B.

Finally, we think that a qualitative theory of the Kepler problem with
drag should aim at an understanding of the qualitative differences in the
global dynamics for different classes of drags. We intend to continue our
efforts in this direction.
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5 Appendix

Proof of Lemma 2.2. To understand the need for all the subtleties involved
in the proof it is convenient to start with a special case. By now we impose
the additional assumption K N My = 0 with My = {(z,v) € Q: 2 Av =0},
In this case we know that the energy FE(t;zo,vy) tends decreasingly to —oo
as t — +oo for each (xg, 1) € K. By continuous dependence we can find an
instant ¢, = t.(zo,v9) > 0 and an open neighbourhood U = U(zy, vy) such
that

1
E(t*;l'o,’l}()) < —5 if (1’0,1)0) eU. (53)

Next we use the compactness of K to find a finite covering of the type
{U(i’fg)> U(()Z))}lgign. If we define

T = max{t*(:cg),v(()i)) : 1 <i<n},

we obtain )
E(7;20,v9) < ~3 for each (xg,vo) € K. (54)

Then

|z (t; xo, vo)| <2ift>rT. (55)

< —_
|E(t7 Zo, Uo)‘

By continuous dependence we know that the number
my = max{|z(t; zo,vo)| : t € [0,7], (20, v0) € K} (56)

is finite. The claim holds with myx = max{2, mx}.

The previous argument cannot be employed when K N My # (). In this
case some solutions are only defined in the future on an interval [0, w[ with
w < oo and the limit of the energy as t — w can be any number (see again
[14]). However, if we replace classical solutions on Mj by bouncing solu-
tions (obtained by gluing collision-ejection solutions in a sequence, adjacent
ejection and collision occurring with the same energy) then they will be de-
fined for all future times and the energy will eventually become negative.
This observation will be made rigorous via the Levi-Civita regularization
that was presented in [14]. We recall that, after the natural identification of
x = (x1, z3) with the complex number z7 +ixs, the Levi-Civita regularization
is defined by the change of variables
(57)

r=w? ds=—.
||
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Using this regularization equation (1) is transformed into the polynomial
system of ODEs in the new time s

E
w=v, v = Tw —clw|*v, E'= =2¢(Elw|*+1). (58)

This system has to be considered on the invariant manifold
M={(w,v,E) e C>* xR : Elw|®>+1-2|v|* =0}, (59)

which contains all the physically meaningful solutions. Let (w(s), v(s), E(s))
be a solution lying on M. We claim that this solution is defined on [0, co|
and that the energy F(s) eventually becomes negative. Assume that [0, o] is
the maximal interval to the right. From the equation defining the manifold

M we deduce that
1+ E(s)|w(s)”
uf(s)| = o L EIE
This leads to the differential inequality for |w(s)|,

L)) < o) < o SEOIRE (60

and a standard continuation argument shows that ¢ = co. To prove that the
energy is eventually negative we reason by contradiction and assume that
E(s) has a limit E, > 0 as s — +o00. Then E(s) > 0 for each s > 0 and

E(s) = B(0) 26/05(E(5)\w(g)|2 +1)de < B(0) — 2es — —c0,  (61)

a contradiction with F,, > 0. We are ready to present the complete proof

of the lemma. Given (z9,v9) € K we can produce two initial conditions

(wo, Do, Ep) for the regularized system (58)-(59). After identifying xy and
|Zolvo

vp with complex numbers, wg will be a square root of xg, U9 = 5w and

Ey= %|v0|2 — ‘x—lo‘ We observe that the triplets (wyg, 09, Eo) lie on a compact

subset K of M. The same type of compactness argument as in the previous
case shows the existence of a number s, depending only on K (and hence on
K) such that

1
E(S;’LUQ,IA)Q, E()) < —5 if s> s, and (wo,’f}o, E()) e K. (62)
Define
My = max{|w(s;wo,@0,E0)|2 s €0, 84, (wo, 0o, Ep) € K} <o00.  (63)
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Going back to the original variables and time we deduce that

|z (t; o, v0)| < My if 0 <t <t, and |x(t; 20, v0)| < 21if t > ¢, (64)
where .
te = / lw(s; wo, Do, Eo)|*ds for each (wo, 0o, Ey) € K. (65)
0
The instant t, will be different for each initial condition but this creates no
trouble because the number my = max{2, mx} only depends on K. u
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