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Abstract

We prove the existence of periodic solutions and solitons in the nonlinear Schrédinger
equation with a nonlocal integral term of convolution type. By separating phase and
ampllitude, the problem is reduced to an integro-differential formulation that can
be written as a fixed point problem for a suitable operator on a Banach space. Then
a fixed point theorem due to Krasnoselskii can be applied.
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1 Introduction and main results

Our aim in this paper is to study the existence of periodic and solitary waves
of the Schrodinger equation with nonlocal term
[e.e]

mh+%m+V@m+uux/ K(z, 8)|u(s)[2ds = 0 (1)

— 00

where the kernel K (z, s) is assumed to be of the form
K(‘ra S) = 7(‘T)W<J; - S)a

being W a function (or distribution) with non-negative values such that

Wl = [~ Wis)ds < +oo. (2)

In Bose-Einstein condensates, the non-local integral term in (1) is a rather
general form of the nonlinearity due to the two-body interactions [1]. A typ-
ical approximation is that of the local interactions K(z,s) = y(z)d(x — s),
where y(z) plays the role of the z-dependent scattering length (such depen-
dence on the spatial coordinate can be induced through the technique called
Feshbach resonance, see [2] for a review). If one limits the consideration by non-
long-range interactions, then the natural generalization of form for the kernel
K(z,s) could be a Gaussian function K(x,s) = y(z)exp (—(z — s)?), super-
Gaussian K (z,s) = v(z) exp (—(z — s)?), or the step-like function (z)0(a —
|z — s|) simply indicating that two atoms interact as two hard spheres of the
radius a. Then the integral in (3) is reduced to

Y@u(@) [ K, )lu(s)ds. 3)
See also [3] and references therein. On the other hand, the linear term V' (z)u
is relevant in Bose-Einstein condensates as a model of a possible external
magnetic trap.

By setting u(z,t) = e®*u(x), the above partial differential equation can be
directly reduced to de second order integro-differential equation

+o0

—(z) + alw)ulw) = y(@yu() [ W(x - s)lu(s) Pds (4)

—0o0

where a(z) = 0 — V (x). We look for an analytical proof of the existence of two
types of solutions:

(i) Periodic waves:
u(z) =u(x+7T), forallz



(ii) Solitary waves:

u(—00) = 0 = u(400).

Recently, huge amount of work has been done in the literature analyzing the
existence and properties of solutions of nonlinear Schrodinger equation with
different kinds of nonlinearities (we cite [4]-[14] only to mention some of them).
Many authors use substitution based techniques to find explicit solutions, by
forcing the solution to have a given specific form. In other cases, iterative
methods are used without checking the convergence and the existence of the
solution before applying it. The consideration of an integral term of convolu-
tion type like in our case makes the application of such methods much more
difficult or even impossible in most of the cases.

In this paper we will deal with the problem from a different point of view
by using the classical Fixed Point Theory for operators on Banach spaces,
and more concretely the Krasnoselskii’s fixed point Theorem for compression-
expansion of conical sections. This tool has been successfully applied to related
local problems (see [15,16] for the periodic problem and [17-19] for solitary
waves).

At this point, it is worth to precise the notion of solution for equation (4). In
the rest of the paper, the coefficients V' (), y(z) belong to the space of bounded
functions L>°(R) and solutions of (4) are understood in the Caratheodory
sense, that is, belonging to the Sobolev space W°°. To avoid trivialities, v(x)
is always assumed to be not identically zero. Below we state our main results.

Theorem 1 Assume that V(z),v(x) are T-periodic functions. If vy takes non-
negative values, 6 > ||[V|| . and W verifies condition (2), then eq. (4) has at
least one positive T-periodic solution u € W>°°(0,T).

Theorem 2 [If v(z) is a non-negative function with non-empty compact sup-
port, 6 > ||V||, and W verifies condition (2), then eq. (4) has at least one
non-negative solution (not identically zero) such that u(—oc0) = 0 = u(400).
Besides, it has finite energy in the sense that u € W»*°(R).

This paper is organized in the following way. In Section 2, we review the main
ingredients of Krasnoselskii fixed point Theorem. Section 3 and 4 develop the
proofs of the main results. The paper is finished with Section 5, where we
present the conclusions as well as further remarks.



2 Terminology and statement of Krasnoselskii fixed point Theorem

Krasnoselskii theorem is a famous result in Fixed Point Theory introduced
by Krasnoselskii in 1960 [20,21] that has been extensively used in the study
of boundary value problems. In an abstract formulation, a boundary value
problem (BVP) is written as L(u) = F(u), where L is an invertible linear
operator. Then, to solve the BVP is equivalent to find a fix point of the
operator H = L' o F on a given Banach space X. The following notion is
crucial.

Definition 1 A non-empty subset K of X is a cone if it satisfies the following
properties: (1) K is closed (i) If v € K and —v € K, then v = 0 (ui) If
x, y € K, thenx+y € K (w)If v € K, then \x € K for all real number
A > 0.

A map H : K — K is completely continuous (or compact) if it is continuous
and the image of a bounded set is relatively compact. Thereafter, we state a
version of the well known Krasnoselskii fixed point Theorem.

Theorem 3 Let X be a Banach space, and K C X be a cone in X. Assume
0y, Qy are open subsets of X with 0 € Q1,Q; C Qg and let H : K N(2\y) —
K be a completely continuous operator such that one of the following conditions
holds:

1. [|Hul| < Jull, if w € KNy, and ||Hul|| > ||u||, if u € KN 0Ns.
2. ||Hul| > ||lull|, if w € KNOQ, and ||Hul| < ||ul|, if v € KN 0Qs.

Then, H has at least one fized point in K N(Q2\21).

This is the basis for the extensive work in analyzing the existence of the
solutions of nonlinear boundary value problems with separated or periodic
boundary conditions in the literature. In the next sections we will apply this
theorem to prove the existence of the solution for the nonlinear Schrodinger
equation with nonlocal integral term.

3 Existence of Periodic Solutions

Let us denote by X7 the Banach space of bounded and periodic solutions
with minimal period 7" endowed with the uniform norm |ju| . Following the
methodology described in Section 2, the first task is to invert the linear part.
Consider the equation

—u"(z) + a(z)u(r) = w(z) ()



subjected to periodic boundary conditions. Given w € Xr, eq. (5) admits a
unique T-periodic solution by Fredholm’s alternative, and it can be expressed
as

u(e) = [ Gl puty)dy )

where G(x,y) is the associated Green’s function. For a detailed exposition of
the theory of Green’s functions, we recommend the monograph [22].

Recall that a(z) = § — V(z). When V(z) = 0, the Green’s function has an
explicit expression (see for instance [15]). In the more general case under con-
sideration, such explicit expression is not available anymore, but the condition
§ > ||V, implies that G(x,y) > 0 for all (z,y) € [0,T] x [0,T] (see [16]). Let
us define

m=minG(r,y), M =maxG(zy)

Now, we can define the operator H : X7 — W?2>(0,T) C X7 by

“+o00

o) = [ Gl ) [ W - uPas| . @)

—0o0

A function u € W**(0,T) is a T-periodic solution of eq. (4) if and only if
it is a fixed point of H. The compactness of H is a direct consequence of
Ascoli-Arzela Theorem.

Thereafter, we define a cone of the form,
K={ueXp iminu> - ull}
={u riminu 2 e}

As a first step of the proof of Theorem 1, in the next Lemma we prove that
H leaves invariant the cone K.

Lemma 1 H(K) C K.

Proof: Take v € X and fix xy such that u(zy) = mingejo ) Hu(x). Then,

+00

Hutao) = [ Glaow) [rtwyuty) [ Wiy = syuts)ds] dy
> [ SO gty [ - sputs)ds] dy
= 2 [P Gl [t [ W = s)u(s)?ds] dy
= 3 ..

therefore the cone is invariant by H. O



Now we are ready to prove the main result for periodic solutions.

Proof of Theorem 1. Define Oy = {u € X¢ : |jul|, < r}. Given u €
K N0y, it is evident that |ju|| . = r. Then,

fM@)zéTmﬁyﬂﬂwwm/*”ww—smwf%twg
<Ml [ [ Wiy~ s)dsdy = M Iyl T W), <

if r is small enough. Therefore |Hul| < |Ju|,, for any u € K N0Q;.

On the other hand, define 2y = {u € Xp : |ul|,, < R}. Assume that u €
K N0y, then by the own definition of the cone min, u > ; R. Hence,

“+o00

wa—fhuwbwww/ W@—®<W4@>

> (MR) W, [ Gty = (SRY Wim [

Note that v is not identically zero, so fOT ~v(y)dy > 0 and the latter inequality
holds for any z. In consequence, taking R big enough we get

[Hullo > R = |lull

Therefore, the assumptions of Theorem 1 are fulfilled, in consequence H has a
fixed point in K (N(Q22\Q4), which is equivalent to a positive T-periodic solution
ofeq. (4). O

4 Existence of solitary waves

Along this section, we assume that v € L*®(R) is a non-negative function
with non-trivial compact support D. The objective is to prove the existence
of solutions of (4) with boundary conditions u(—o0) = 0 = u(400). The fact
that the BVP is defined on the whole real line will lead to some technical
difficulties, specially concerning the compactness of the operator.

Let us denote by Cy(R) the Banach space of the bounded and continuous
functions in R with the uniform norm. The following result is well-known.

Lemma 2 Assume that there ezists a,. such thath a(z) > a, > 0 for a.e. x.
If w € L*(R), then the linear equation

—u’(x) + a(z)u(z) = w(r)



admits a unique bounded solution and it can be expressed as

u(e) = [ Gl gwl)dy.

Besides, if w € L'(R), then u € W*>(R).

When V(z) = 0 then a(z) = ¢ and the Green’s function has the simple
expression

| Y
G(x,y):me Vol

However, as remarked in the periodic case, the Green’s function for the general
case of a variable a(x) does not have such an explicit formula and requires a
more careful study of its properties. Following [17,18], the Green’s function
G(z,y) can be written as

Cla.y) = uy (z)usz(y), ife<s ®)
’ uy (y)us(x), ifs<uz

where wuy, uy are solutions such that u; (—oc0) = 0, ug(+00) = 0 and u} (0)uz(0)—
u1(0)ub(0) = 1. Such uy, uy are monotone and intersect in a unique point .
Let us define

1 if ¢ <
—_ i T
'LLQ(ZE)’ T = Zo,
p(z) = 9)
1 )
if x> xg.

u(z)’

The main properties of G(z,y) are recorded in the following result.

Proposition 1 ([18]) The following properties for the Green’s function de-
fined by (8) hold

(P1) G(z,y) > 0 for every (z,s) € R%
(P2) G(z,y) < G(y,y) for every (z,y) € R®.
(P3) Given a non-empty compact subset P C R, we define
my(P) = min{u, (inf P), us(sup P)}. (10)
Then,
G(z,y) = mi(P)p(y)Gly, y) for all (z,y) € P x R,

(P4) G(y,y)ply) = G(z,y)p(y) for every (z,y) € R*.

By Lemma 2, to find a solitary wave of eq. (4) is equivalent to find a fixed



point of the operator H : Cy(R) — W?><(R) C Cy(R) defined by

Hu() = [~ 6wy wut) [ Wl - spusras| dy. (1)

—0o0 —00

The compactness of H is a consequence of the following lemma.

Lemma 3 ([18]) Let Q C Cy(R). Let us assume that the functions u €  are
equicontinuous in each compact interval of R and that for all u € € we have

lu(z)| < &(z), Ve e R (12)
where £ € Cp(R) satisfies
Jim €(5)=0 13

Then, €2 is relatively compact.
Proposition 2 The operator H defined by (11) is compact.

Proof. The continuity of H is trivial so that we focus on the compactness
property. We will use Lemma 3. Let (u,), C Cy(R) be a bounded sequence,
say by M. Define the sequence v,(z) = Hu,(z). We just need to prove that,
up to a subsequence, v,, converges uniformly in R. Therefore, we compute

o ()] = | ]2 Gla,y) [Y()uly) [ Wy — s)u(s)?ds| dy| <
< MP W, J22 Gz, y)v(y)dy.
Now,since y(z) has compact support, Lemma 2 implies that the function
Jg G(z,y)v(y)dy goes to zero at +o0o. Moveover, the equicontinuity of the

v, sequence is clear as it follows directly from the continuity of the Green
function. Hence, we are able to apply the previous result. O

The next step is to define a suitable cone of the form

K ={ue€ CyR): u(x) >0 forall z, m[%nu(w) > mapo ||ul|}-

Recall that D is the (compact) support of . In this definition, py = infp p(z),
p(z) being defined by (9), and the constant m; = my (D) is defined by (10).
Note that the compactness of D implies that py > 0. Also, it is easy to see,
by definition, that mipy < 1, hence u = 1 € K and this cone is non-empty.

Lemma 4 H(K) C K.

Proof. Assume that the Hu(xo) = min,cp Hu(z). Using the properties (P3)



and (P2) of the Green’s function, we obtain

Au(wo) = Jp <xo, >[ (y >u<y>f+°° (y — s)u(s)?ds| dy >

> my [p G(s,s)p(s) [’Y y) [T Wy — S)U(S)st} dy >
> my Jp G(, s)po ['Y(y f+oo (y — )U(S)st} dy
= mlPOHU( )

for every x € R. This implies the invariance of the cone K. O

Proof of Theorem 2. Define Oy = {u € Cy(R) : |ju| < r}. Given u €
K NoQy,

—+00

[Hull, = max [ Gle,) rout) [ Wiy = su(s)*ds| dy <

+60
<7 — =
<r mgx/D G(z,s)v(s) LOO Wy — s)dsdy
= [[Wll, 7 max, [, G(x, y)v(y)dy.

Note that by Lemma 2, [, G(x,y)y(y)dy is the unique solution belonging
to W2°(R) of the linear problem —u” + a(z)u = ~(z). Of course, such a
solution is bounded and the maximum in the previous inequality makes sense.
In conclusion, if 7 is small enough,

|l < W], 7 max [ Glay)r(y)dy < = Jull.

for every u € K 0€,.

On the other hand, define Qs = {u € Cy(R) : ||ul|,, < R}. Assume that
u € K (N 0€)s, then by definition of the cone min,ecp u > mipyR. Hence,

+00
[Hul, = max, [ Gla.y) [yw)uly) [ Wy s)u(s)ds] dy >
> (mlpoR)?’/DG(I,y) [W(y) /_;OO Wiy - S)dS} dy
> (mapoR)” W] max, [ G, )(y)dy.

Note that v is not identically zero, so max, [, G(x,y)y(y)dy > 0. In conse-
quence, taking R big enough we get

[1Hull > R = |lull

Therefore, the assumptions of Theorem 1 are fulfilled, and H has a fixed point
in K N(Q\24), which is equivalent to a non-trivial non-negative solution u of
eq. (4) belonging to W (R). O



5 Conclusions and further remarks

In this paper we have considered solutions of a nonlinear Schrodinger equation
with a non-local term of convolution type with the ansantz u(x,t) = e®tu(z).
Hence, the time dependence is periodic. For the spatial dependence, we have
studied the periodic problem and the convergence to zero at +oo (solitary
waves) separately. In both cases, the introduction of the ansantz into the
Schrodinger equation leads to an integro-differential equation that can be
analyzed via a fixed point formulation and a suitable fixed point theorem for
operators defined on conical sections of a Banach space. It is interesting to re-
mark that J is not a parameter of the equation, hence the condition § > ||[V||
is not a real restriction for the equation and provides a whole uniparametric

family of solutions.

An interesting open problem is to know wheter the non-negative solutions
obtained in Theorem 2 are in fact positive. This is true in the local case
K(z,s) = y(x)d(z — s). In this case, eq. (4) is a simple ODE and since u is
non-negative, if u(z¢) = 0 then by force u/(zy) = 0, then v = 0 by uniqueness
of the initial value problem. This simple argument can not be applied in the
general case. Finally, a possible line of future research is the extension of the
presented results to coupled systems, in the line of the study developed in [19].
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