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Abstract

In this paper we prove the existence of bounded solutions in the real line for the equation
ü+sign(u) = p(t), where p is a function with average. Some useful density results for the
space of functions with zero average are also obtained.
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To Professor George Sell, in memoriam

1 Introduction

Consider the differential equation

ü+ cu̇+ g(u) = p(t) (1)

where c ≥ 0 is a parameter, the function g(u) models saturation and the forcing term p(t) is
bounded, continuous and has an average p̄ ∈ R. The notion of average is classical for almost
periodic functions but, as noticed in [1], it can be extended to the class of functions such that
the limit

p̄ = lim
T→+∞

1

T

∫ t+T

t

p(s) ds
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exists and it is uniform with respect to t ∈ R. Note that p has to be independent of t. We
are interested in conditions on the average implying the existence of bounded solutions of the
equation (1), that is, solutions u(t) satisfying

sup
t∈R
{u(t)2 + u̇(t)2} <∞.

Motivated by the periodic case and the so-called Landesman-Lazer conditions, Ahmad consid-
ered this question in [1] when c > 0 and the function g : R → R is continuous and has finite
limits g(±∞) = limξ→±∞ g(ξ) with g(−∞) ≤ g(ξ) ≤ g(+∞) for each ξ ∈ R. He proved that
the condition

g(−∞) < p̄ < g(+∞) (2)

is sufficient for the existence of a bounded solution. This is a sharp result because the condition
with non-strict inequality is necessary. Extensions to other classes of equations appeared after
[1]. See in particular the references [6, 7, 5, 2] where different methods based on guiding
functions and upper and lower solutions were developed. Going back to the equation (1) we
observe that these techniques do not seem to apply to the non-friction case c = 0. The recent
paper by Soave and Verzini [9] employs a variational technique to prove that Ahmad’s result
can be extended to the non-friction case if the function g satisfies some additional conditions.
Namely, g is of class C2, increasing and has a unique inflection point. In these assumptions the
condition (2) implies the existence of infinitely many bounded solutions. This is a remarkable
result inspired by the model example g(u) = arctanu, but the problem remains open for a
general nonlinearity. The purpose of the present paper is to introduce an alternative approach
that is also useful in the case c = 0. To illustrate our method we consider the equation

ü+ sign(u) = p(t)

where sign denotes the discontinuous function sign(u) =

{
1 if u > 0

−1 if u < 0.

The value of this function at u = 0 will be irrelevant. In agreement with the condition (2) it
will be proved that this equation has infinitely many bounded solutions if −1 < p < 1. The
nonlinearity sign has been chosen because it is one of the accepted models for saturation but
also because it does not satisfy the technical conditions imposed in [9]. The extension of our
methodology to more general classes of nonlinearities is a topic for future work.

In [9] Soave and Verzini considered the action functional associated to the equation (1)
with c = 0 and applied the so-called Dual Nehari method. In contrast our approach will be
based on the use of generating functions and the results on twist maps developped in [4]. A
key ingredient in the proof will be a property of the average of a function that is perhaps of
independent interest and we describe now. Given an integer N ≥ 1 and periodic function f(t)
it is well known that the linear differential equation

y(N) = f(t) (3)

has a bounded solution if and only if f = 0. For non-periodic functions this equivalence is
no longer true but we will prove that it is close to be true. More precisely, if we consider the
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spaces A0 = {f : f = 0} and BPN = {f : (3) has a bounded solution}, then BPN is a dense
subspace of A0. Here the topology is induced by uniform convergence.

The rest of the paper is divided in three sections. Section 2 is devoted to the properties
of the average. These properties are employed in Section 3 for the study of a simple linear
equation. Finally the main result is proved in Section 4, the results of the previous section
are useful to prove that our problem is in the framework of the theory of twist maps with
non-periodic angles.

2 Average and bounded primitives

Let BC denote the class of bounded and continuous functions f : R→ R. It becomes a Banach
space with the norm

‖f‖∞ = sup
t∈R
|f(t)| .

Following [1] we say that a function f ∈ BC has average if the limit below exists

f̄ = lim
T→+∞

1

T

∫ t+T

t

f(s) ds

uniformly in t ∈ R.
Almost periodic functions are basic examples of functions with this property (see [3], page

44). Another example is the function f(t) = sin t + 1
1+t2

, in this case f = 0. The class of
all functions having average will be denoted by A. It is not hard to prove that A is a closed
subspace of BC and the linear form f ∈ A 7→ f ∈ R is continuous. In particular, the space of
functions with zero average,

A0 =
{
f ∈ A : f̄ = 0

}
is a Banach space.

Given N ≥ 1 we consider the space BPN composed by those functions f ∈ BC such that
the equation

y(N) = f(t) (4)

has a bounded solution y ∈ BC.
When f ∈ BP 1 we observe that∣∣∣∣ 1

T

∫ t+T

t

f(s) ds

∣∣∣∣ =

∣∣∣∣F (t+ T )− F (t)

T

∣∣∣∣ ≤ 2

T
‖F‖∞

where F (t) is a bounded primitive of f(t). This implies that f̄ = 0 and so BP 1 ⊂ A0. Using
the mean value theorem, it is not hard to prove that if f ∈ BC and y ∈ BC is a solution of
(4), then all the intermediate derivatives y(k), 1 ≤ k ≤ N − 1, are also in BC. This fact leads
to the chain

· · · ⊂ BPN ⊂ · · · ⊂ BP 2 ⊂ BP 1 ⊂ A0
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and we claim that all the inclusions are proper even when they are restricted to the class of
almost periodic functions. Indeed the function

ϕ(t) =
∞∑
n=0

1

2n
sin

(
t

3n

)
is almost periodic and has zero average, in particular ϕ ∈ A0. The primitive

Φ(t) =

∫ t

0

ϕ(t)dt = 2
∞∑
n=0

(
3

2

)n
sin2

(
t

2 · 3n

)
satisfies an estimate of the type ct1−σ ≤ Φ(t) ≤ Ct1−σ if t ≥ 1 for some positive constants
c, C and σ = log 2

log 3
. See the appendix in [8]. In consequence Φ is unbounded and so ϕ is not

in BP 1. For each N ≥ 1 we can construct an almost periodic function fN in BPN but not in
BPN+1. The succesive derivatives of ϕ are also almost periodic and we define fN = ϕ(N). By
construction fN is in BPN and the solutions of y(N+1) = fN are of the type y = Φ + pN where
pN is a polynomial of degree at most N . Clearly all these solutions are unbounded.

Proposition 2.1. For each N ≥ 1, the space BPN is dense in A0.

For N = 1, this result is exactly Lemma 2.1 in [6]. To extend it to an arbitrary N we recall
some facts coming from Finite Differences Calculus.

Given a function f : R→ R and a number T > 0, we define

∆Tf(t) = f(t+ T )− f(t).

The higher order difference operator is defined by composition, ∆2
T = ∆T ◦∆T , ∆k

T = ∆T ◦∆k−1
T .

If the function f is of class CN then

1

TN
∆N
T f(t) = f [t, t+ T, ..., T +NT ] = f (N)(ξ) (5)

for some ξ lying between t and t+NT . Here f [t0, t1, ..., tN ] is the divided difference.
The translation operator is defined by the formula

TTf(t) = f(t+ T ).

From T kT = TkT and ∆T = TT − Id we deduce that

∆N
T =

N∑
k=0

(
N

k

)
(−1)N−kTkT . (6)

Finally we introduce the operators associated to primitives and derivatives

I f(t) =

∫ t

0

f(s) ds, D f(t) = f ′(t)
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whenever they are defined. Given a continuous function f we observe that DI f = f . Also,(
IN∆N

T

)
f =

(
∆N
T IN

)
f + pN−1 (7)

where pN−1 is some polynomial of degree at most N − 1. To prove this identity we note that

DN
(
∆N
T IN

)
f = ∆N

T

(
DNIN

)
f = ∆N

T f

because D and ∆T commute. Also,

DN
(
IN∆N

T

)
f =

(
DNIN

)
∆N
T f = ∆N

T f

and so
(
∆N
T IN

)
f and

(
IN∆N

T

)
f are both solutions of the equation y(N)(t) = ∆N

T f(t).

Proof of Proposition 2.1. As mentioned above, the density of BP 1 in A0 is proved in [6]. It will
be sufficient to prove that for each N ≥ 2 and ε > 0, given f ∈ BPN−1 there exist functions f ∗

and f ∗∗ satisfying f = f ∗ + f ∗∗, f ∗ ∈ BPN , ‖f ∗∗‖∞ < ε.
To prove this claim we start with the function f ∈ BPN−1 and denote by F (t) a bounded

solution of y(N−1) = f(t). Define

f ∗∗ =
1

TN
∆N
T I(F ).

From the identity (6) we deduce that

f ∗∗ =
1

TN

N∑
k=0

(
N

k

)
(−1)N−k

∫ t+kT

0

F (s) ds .

After splitting the integral in the form
∫ t+kT

0
=
∫ t

0
+
∫ t+kT
t

and observing that

N∑
k=0

(
N

k

)
(−1)N−k = 0

we obtain the formula

f ∗∗ =
1

TN

N∑
k=0

(
N

k

)
(−1)N−k

∫ t+kT

t

F (s) ds .

Then

‖f ∗∗‖∞ ≤
1

TN−1

[
N∑
k=0

(
N

k

)
k

]
‖F‖∞

and we obtain ‖f ∗∗‖∞ < ε by letting T →∞.
Next we define f ∗ = f − f ∗∗. It remains to prove that f ∗ ∈ BPN . The functions IN(f) and

I(F ) are solutions of y(N) = f(t) and so they must differ in a polynomial of degree at most
N − 1, say

IN(f)− I(F ) = qN−1.
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From the definitions of f ∗ and f ∗∗,

IN(f ∗) = IN(f)− IN(f ∗∗) = I(F )− 1

TN
IN∆N

T I(F ) + qN−1.

The identity (7) leads to

IN(f ∗) = I(F )− 1

TN
∆N
T IN+1(F ) + pN−1 + qN−1.

Define Ψ = IN+1(F ). The function y(t) = I(F ) − 1
TN ∆N

T IN+1(F ) differs from IN(f ∗) in a
polynomial of degree at most N − 1. Hence y(t) is a solution of y(N) = f ∗(t) and we are going
to prove that y ∈ BC. This will complete the proof. From (5) we deduce that

1

TN
∆N
T Ψ(t) = Ψ(N)(ξ) = I(F )(ξ)

for some ξ ∈ [t, t+NT ]. Finally we apply the mean value theorem to the function I(F ),

|y(t)| = |IF (t)− IF (ξ)| = |F (η)| |t− ξ|

where η lies between t and ξ. Then y ∈ BC with

‖y‖∞ ≤ ‖F‖∞NT.

3 The linear equation

Consider the equation
ÿ = f(t) (8)

under the assumption f ∈ A, f̄ < 0.
In this section we obtain some properties of the solutions of the Cauchy and the Dirichlet

problems. Let us start with the initial value problem and let y(t; t0, v) be the solution of (8)
with initial conditions

y(t0) = 0, ẏ(t0) = v.

Lemma 3.1. There exists v∗ > 0 such that for v > v∗ the solution y(t; t0, v) has exactly one zero
to the right of t0, say τ > t0. Moreover the function τ = τ(t0, v) belongs to C1(R×]v∗,+∞[)
and

lim
v→+∞

τ(t0, v)− t0
v

= − 2

f̄
(9)

uniformly in t0 ∈ R.
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Proof. Throughout the proof, ε will be a fixed but arbitrary number satisfying 0 < 3ε <
∣∣f̄ ∣∣.

The notation cε will be employed for different constants depending only on ε. We apply the
results of the previous section to split f in the form

f = F̈ + f ∗∗ + f̄

where F is a C2 function with F, Ḟ , F̈ ∈ BC and ‖f ∗∗‖∞ < ε. The solution of the initial value
problem can be expressed as

y(t; t0, v) = F (t)− F (t0) +
(
v − Ḟ (t0)

)
(t− t0) +

f̄

2
(t− t0)2 +

∫ t

t0

(t− s)f ∗∗(s) ds. (10)

After applying the mean value theorem to F , this identity leads to the estimates[
−2
∥∥∥Ḟ∥∥∥

∞
+ v +

f̄ − ε
2

(t− t0)

]
(t− t0) ≤ y(t; t0, v) ≤

[
2
∥∥∥Ḟ∥∥∥

∞
+ v +

f̄ + ε

2
(t− t0)

]
(t− t0).

Here we are assuming that v > 0 and t ≥ t0 and it is easy to deduce that any zero to the right
of t0 must lie on the interval Iε defined by the inequalities

2v∣∣f̄ ∣∣+ ε
− cε ≤ t− t0 ≤

2v∣∣f̄ ∣∣− ε + cε (11)

with cε =
4‖Ḟ‖∞
|f̄|−ε .

Since y(t; t0, v)→ −∞ as t→ +∞, at least one zero must be contained in Iε. Next we shall
prove that this zero is unique. To this end we shall find vε > 0 such that

ẏ(t; t0, v) < 0 if t ∈ Iε and v > vε.

To prove this, we differentiate the formula (10) with respect to t and derive a formula for
ẏ(t; t0, v). From there we obtain

ẏ(t; t0, v) ≤ 2
∥∥∥Ḟ∥∥∥

∞
+ v + (f̄ + ε)(t− t0) if t ≥ t0.

The number vε is obtained by combining this inequality with (11).
At this point it is convenient to sum up our conclusions. The function τ = τ(t0, v) is well

defined for v > vε and satisfies

2v∣∣f̄ ∣∣+ ε
− cε ≤ τ(t0, v)− t0 ≤

2v∣∣f̄ ∣∣− ε + cε. (12)

Then
2∣∣f̄ ∣∣+ ε

≤ lim inf
v→+∞

τ(t0, v)− t0
v

≤ lim sup
v→+∞

τ(t0, v)− t0
v

≤ 2∣∣f̄ ∣∣− ε
uniformly in t0 ∈ R.
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Since ε is arbitrarily small, we conclude that the limit (9) exists.
To complete the proof of the Lemma, we must show that τ is C1 on R×]ṽε,+∞[, for some

ṽε > vε. To do this, we go back to the formula (10) and consider the C1 function

Φ(τ, t0, v) =
y(τ ; t0, v)

τ − t0
= F [τ, t0]− Ḟ (t0) + v +

f̄

2
(τ − t0) +

1

τ − t0

∫ τ

t0

(τ − s)f ∗∗(s) ds,

defined on
Gε =

{
(τ, t0, v) ∈ R3 : τ > t0, v > vε

}
.

From the previous discussions we know that τ(t0, v) is the unique solution of the implicit
function problem

Φ(τ, t0, v) = 0.

We will now show that the implicit function theorem can be applied, because ∂Φ
∂τ

(τ(t0, v), t0, v) <
0 if v is large enough. To prove that this condition holds, we differentiate Φ with respect to τ
and observe that ∣∣∣∣∂Φ

∂τ
(τ, t0, v)− f̄

2

∣∣∣∣ ≤ 2‖Ḟ‖∞
τ − t0

+
ε

2
. (13)

Then we can invoke (9) to conclude that

−∂Φ

∂τ
(τ(t0, v), t0, v) ≥

∣∣f̄ ∣∣
4

if v > ṽε.

Next we consider the Dirichlet problem on the interval [l, r] with l < r. The solution of (8)
satisfying

y(l) = y(r) = 0

will be denoted by yD(t; l, r). This solution can be expressed in terms of the Green function,
and this explicit formula shows that the function

(t, l, r) ∈ D ⊂ R3 7→ (yD(t; l, r), ẏD(t; l, r)) ∈ R2

is C1. The domain D is defined by

D =
{

(t, l, r) ∈ R3 : l < r, t ∈ [l, r]
}
.

Lemma 3.2. In the previous notations the statements below hold,

(a) There exists T > 0 such that
yD(t; l, r) > 0

if t ∈]l, r[ and r − l > T .

(b)

lim
r−l→+∞

1

r − l

[
ẏD(t; l, r) + f̄

(
r + l

2
− t
)]

= 0
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(c)

lim
r−l→+∞

∂

∂l
ẏD(t; l, r) = lim

r−l→+∞

∂

∂r
ẏD(t; l, r) = − f̄

2
.

The limits in (b) and (c) are uniform in t ∈ [l, r], r, l ∈ R, l < r.

Proof. (a) We go back to the proof of the previous Lemma and consider the function τ(t0, v).
If we fix some v̂ > v∗, then (12) implies that τ(t0, v̂)− t0 has an upper bound independent
of t0 ∈ R, say M . On the other hand, τ(t0, v) − t0 → +∞ as v → +∞, so the function
τ(t0, ·) − t0 maps the interval [v̂,+∞[ onto another interval containing [M,+∞[. By
implicit differentiation of Φ(τ(t0, v), t0, v) = 0, we obtain

∂Φ

∂τ
(τ(t0, v), t0, v)

∂τ

∂v
(t0, v) + 1 = 0.

The definition of v∗ was adjusted so that ∂Φ
∂τ

(τ(t0, v), t0, v) < 0 if v > v∗ and so ∂τ
∂v

(t0, v) >
0. This implies that τ(t0, ·) has a smooth inverse v = v(t0, τ), defined on an interval
containing [M,+∞[. The uniqueness for the Dirichlet problem leads to the identity

yD(t; l, r) = y (t; l, v (l, r))

if r − l ≥M . Then (a) is a consequence of the definition of the function v(l, r).

(b) Once again we employ the formula (10) to deduce the new formula

ẏD(t; l, r) = Ḟ (t)− Ḟ (l) + v(l, r) + f̄(t− l) +

∫ t

l

f ∗∗(s) ds. (14)

On the other hand, the limit (9) implies that

v(l, r)

r − l
→ − f̄

2
as r − l→ +∞

in a uniform fashion. The conclusion follows from these two facts.

(c) From the original equation (8) we deduce that

ẏD(t; l, r) = v(l, r) +

∫ t

l

f(s)ds.

Then
∂ẏD
∂l

(t; l, r) =
∂v

∂l
(l, r)− f(l),

∂ẏD
∂r

(t; l, r) =
∂v

∂r
(l, r).

To estimate the partial derivatives of v we differentiate the equation Φ(r, l, v(l, r)) = 0 to
obtain

∂Φ

∂τ
(r, l, v(l, r)) +

∂v

∂r
(l, r) = 0,

∂Φ

∂t0
(r, l, v(l, r)) +

∂v

∂l
(l, r) = 0.

9



From the estimate (13) it is easy to conclude that the second limit holds. To prove the
validity of the first limit we go back to the definition of Φ to find the estimate

|∂Φ

∂t0
(τ, t0, v) + F̈ (t0) +

f

2
| ≤ 2‖Ḟ‖∞

τ − t0
+

3ε

2
.

In consequence

|∂ẏD
∂l

(t; l, r)− F̈ (l)− f

2
+ f(l)| ≤ 2‖Ḟ‖∞

r − l
+

3ε

2
.

Finally we observe that

−F̈ (l)− f

2
+ f(l) = f ∗∗(l) +

f

2
.

4 A discontinuous equation

Consider the equation
ü+ sign(u) = p(t) (15)

with p ∈ BC.
Given an interval I ⊂ R, a function u ∈ C1(I) is a solution of (15) if it satisfies the two

conditions below,

(i) u(t)2 + u̇(t)2 > 0 for each t ∈ I;

(ii) Let Z = {t ∈ I : u(t) = 0} be the set of zeros of u. Then, for each interval J ⊂ I \Z, the
function u|J belongs to C2(J) and satisfies (15) on this interval.

A bounded solution is a solution defined on I = R such that

sup
t∈R

[
u(t)2 + u̇(t)2

]
<∞.

Theorem 4.1. Assume that p ∈ A and |p̄| < 1. Then there exists a sequence (un) of bounded
solutions satisfying

inf
t∈R

[
un(t)2 + u̇n(t)2

]
→∞ as n→∞.

The first step of the proof will be the construction of solutions defined on [t0, t1] and having
exactly one change of sign in ]t0, t1[. With this goal, we apply Lemma 3.2 on the interval
[l, r] = [t0, τ ] with f+ = −1 + p and on the interval [l, r] = [τ, t1] with f− = −1 − p. We find
associated numbers T+ and T− such that if τ − t0 > T+ then yD+(t; t0, τ) is positive on ]t0, τ [
and a similar statement holds for yD−(t; τ, t1).

A first attempt to construct solutions of (15) could be to juxtapose the two solutions of
Dirichlet problems,

U(t; t0, t1, τ) =

{
yD+(t; t0, τ), t ∈ [t0, τ ]

−yD−(t; τ, t1), t ∈ [τ, t1]

10



where t0 + T+ < τ < t1 − T−. In general U(·, t0, t1, τ) will not be a solution, because the
derivatives at τ will not match. Then we must adjust τ so that the equation below holds,

F (t0, t1, τ) := ẏD+(τ ; t0, τ) + ẏD−(τ ; τ, t1) = 0.

In order to analyse this equation, we first compute the derivative with respect to τ ,

∂F

∂τ
(t0, t1, τ) = ÿD+(τ ; t0, τ) + ÿD−(τ ; τ, t1) +

∂ẏD+

∂τ
(t; t0, τ)

∣∣∣∣
t=τ

+
∂ẏD−
∂τ

(t; τ, t1)

∣∣∣∣
t=τ

.

From the equations ÿ = f± we deduce that the first two terms in the sum are precisely −1+p(τ)
and −1− p(τ). To deal with the last two terms we employ Lemma 3.2 (c). After fixing ε > 0
small enough, we find T1 = T1(ε) ≥ max (T+, T−) such that, if τ − t0 > T1 and t1− τ > T1, then∣∣∣∣∂F∂τ (t0, t1, τ) + 2 +

f̄+

2
+
f̄−
2

∣∣∣∣ < ε

or equivalently, ∣∣∣∣∂F∂τ (t0, t1, τ) + 1

∣∣∣∣ < ε

and so ∂F
∂τ

(t0, t1, τ) is negative when the two intervals are large enough. Next we are going to
find T2 > T1 such that if t1 − t0 > T2 then F (t0, t1, ·) has a change of sign at τ̂ = τ̂(t0, t1), with
τ̂ − t0 > T1 and t1 − τ̂ > T1. To prove that this is possible, we apply Lemma 3.2 (b) and find
T2 > T1 such that if τ − t0 > T2 then∣∣∣∣ẏD+(t; t0, τ) + f̄+

(
t0 + τ

2
− t
)∣∣∣∣ < ε(τ − t0), (16)

and similarly for ẏD− .
Evaluating these expressions at t = τ we observe that ẏD+(τ ; t0, τ) remains bounded if

τ = t0 + T2 with arbitrary t0 ∈ R. However, ẏD+(τ ; t0, τ) → −∞ if τ − t0 → ∞. The solution
yD− has an analogous behavior excepting that ẏD−(τ ; t0, τ) → +∞ if t1 − τ → ∞. Hence
F (τ ; t0, t1) is positive when t1− τ is large compared to τ − t0 and negative in the opposite case.
Let τ̂ be a zero of F (·; t0, t1). From the definition of T1 and T2 we know that

∂F

∂τ
(τ̂ ; t0, t1) < 0.

Thus τ̂ is unique and the function τ̂ = τ̂(t0, t1) is well defined and C1 when t1 − t0 is large
enough.

We are ready to construct solutions of (15). Define

u(t; t0, t1) = U (t; t0, t1, τ̂(t0, t1)) .

It is not hard to show that u(·; t0, t1) satisfies all the conditions for a solution of (15) defined
on I = [t0, t1]. In particular Z = {t0, τ̂(t0, t1), t1} and the condition (i) is verified via Lemma
3.2 (b).
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Associated to (15) we consider the Lagrangian function

L(t, u, u̇) =
1

2
u̇2 − |u|+ p(t)u

and define the function

h(t0, t1) =

∫ t1

t0

L (t, u(t; t0, t1), u̇(t; t0, t1)) dt.

In the next proposition we summarize the properties of this function.

Proposition 4.2. Given δ > 0 there exists Tδ > 0 such that the function h belongs to C1(Ωδ),
where

Ωδ =
{

(t0, t1) ∈ R2 : t1 − t0 > Tδ
}
.

Moreover

∂t0h(t0, t1) =
1

2
u̇(t0; t0, t1)2, ∂t1h(t0, t1) = −1

2
u̇(t1; t0, t1)2 (17)

and
−(µ+ δ)(t1 − t0)3 ≤ h(t0, t1) ≤ −(µ− δ)(t1 − t0)3, (18)

with µ = 1
96

(1− p2)2.

Proof. For some T > 0 the function h is well defined on t1 − t0 > T . We shall check first the
identities (17) and later we shall check the estimate (18) when t1− t0 > Tδ for some appropriate
Tδ > T . The computation of the derivatives of h follows along the lines of Section 7.2 of [4]
but some additional care is needed. In our case L is not C1 but we can split the integral in the
form

h(t0, t1) =

∫ τ̂

t0

L +

∫ t1

τ̂

L

and deduce easily that h is C1. Moreover,

∂t0h(t0, t1) =
1

2
u̇ (τ̂)2 ∂τ̂

∂t0
− 1

2
u̇(t0)2 +

∫ τ̂

t0

d

d t0
Ldt− 1

2
u̇ (τ̂)2 ∂τ̂

∂t0
+

∫ t1

τ̂

d

d t0
Ldt

where u(t) is an abreviation for u(t; t0, t1). Before computing the two integrals it is useful to
observe that the function

Ω̂δ → R, (t; t0, t1) 7→ u(t; t0, t1)

is C1. The domain of this map is defined by

Ω̂δ = {(t; t0, t1) : (t0, t1) ∈ Ωδ, t0 ≤ t ≤ t1}

and, in principle, it is clear that this function is C1 in each of the subsets

Ω̂−δ = {(t; t0, t1) ∈ Ω̂δ : t0 ≤ t ≤ τ̂(t0, t1)}, Ω̂+
δ = {(t; t0, t1) ∈ Ω̂δ : τ̂(t0, t1) ≤ t ≤ t1}
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but the derivatives of u with respect to t0 and t1 could have a jump discontinuity along the
common boundary t = τ̂(t0, t1). To show that this is not the case we differentiate the identity
u(τ̂(t0, t1); t0, t1) = 0 on Ω±δ to obtain

u̇(τ̂ ; t0, t1)
∂τ̂

∂t0
+
∂u

∂t0
(τ̂ ± 0; t0, t1) = 0

and so the left and right derivatives coincide. An integration by parts shows that∫ τ̂

t0

d

d t0
Ldt =

∫ τ̂

t0

{∂L
∂u

∂u

∂t0
+
∂L

∂u̇

∂u̇

∂t0
}dt = [

∂L

∂u̇

∂u

∂t0
]t=τ̂t=t0

+

∫ τ̂

t0

{∂L
∂u
− d

dt
(
∂L

∂u̇
)} ∂u̇
∂t0

dt.

The equation (15) together with the definition of L lead to∫ τ̂

t0

d

d t0
Ldt = u̇(τ̂)

∂u

∂t0
(τ̂)− u̇(t0)

∂u

∂t0
(t0).

Finally we differentiate u(t0; t0, t1) = 0 with respect to t0 to deduce that u̇(t0) + ∂u
∂t0

(t0) = 0.
Similarly ∫ t1

τ̂

d

d t0
Ldt = −u̇(τ̂)

∂u

∂t0
(τ̂)

and we obtain the first identity in (17). The second is obtained in the same way.
To prove the estimate for h it is convenient to simplify its expression. Multiplying the

equation (15) by u = u(t; t0, t1) and integrating by parts,

−
∫ t1

t0

u̇2 +

∫ t1

t0

|u| =
∫ t1

t0

p u

and so

h(t0, t1) = −1

2

∫ t1

t0

u̇2 = −1

2

∫ τ̂

t0

ẏ 2
D+
− 1

2

∫ t1

τ̂

ẏ 2
D− .

From (16), ∫ τ̂

t0

ẏ 2
D+

= f̄+
2
∫ τ̂

t0

(
t0 + τ̂

2
− t
)2

dt+ γε(τ̂ − t0)3

with γε → 0 as ε→ 0. Hence∫ τ̂

t0

ẏ 2
D+

= f̄+
2 (τ̂ − t0)3

12
+ γε(τ̂ − t0)3

and similarly ∫ t1

τ̂

ẏ 2
D− = f̄−

2 (t1 − τ̂)3

12
+ Γε(t1 − τ̂)3

with Γε → 0 as ε→ 0.
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To complete the proof we must estimate the lengths τ̂ − t0 and t1 − τ̂ in terms of t1 − t0.
Working as in the proof of Lemma 3.1 we obtain the estimate

2v∣∣f̄+

∣∣+ ε
− cε ≤ τ̂ − t0 ≤

2v∣∣f̄+

∣∣− ε + cε,

where v = −ẏD+(τ̂ ; t0, τ̂) = ẏD−(τ̂ ; τ̂ , t1). A similar estimate holds for t1 − τ̂ . Then

aεv − cε ≤ t1 − t0 ≤ Aεv + cε (19)

with Aε, aε → 4
1−p̄2 as ε→ 0. From here,

bε(t1 − t0)− cε ≤ τ̂ − t0 ≤ Bε(t1 − t0) + cε (20)

with Bε, bε → 1+p̄
2

as ε→ 0 and

dε(t1 − t0)− cε ≤ t1 − τ̂ ≤ Dε(t1 − t0) + cε (21)

with Dε, dε → 1−p̄
2

as ε→ 0. Finally

−2h(t0, t1) ≤ (1− p̄)2

12
Bε

3(t1 − t0)3 + γ∗ε (t1 − t0)3+

+
(1 + p̄)2

12
Dε

3(t1 − t0)3 + Γ∗ε(t1 − t0)3 + Eε(t1 − t0)2

with B3
ε + γ∗ε →

(1+p̄)3

8
, D3

ε + Γ∗ε →
(1−p̄)3

8
and Eε bounded independently of ε.

Similar lower estimates also hold. The proof is completed by adjusting ε with δ and Tδ so
that (18) holds.

We are ready to prove Theorem 4.1. According to the previous Proposition the function
h satisfies the same conditions as the generating function in Section 7.3 of [4]. We can repeat
the arguments there to find numbers σ > 1 and d∗ > 0 such that if d > d∗ then there exists a
sequence (tdk)k∈Z satisfying

∂1h(tdk, t
d
k+1) + ∂2h(tdk−1, t

d
k) = 0 (22)

and
d ≤ tdk+1 − tdk ≤ σd (23)

for each k ∈ Z. In view of (22) and (17) we deduce that the function

ud : R→ R, ud(t) = u(t; tdk, t
d
k+1) if t ∈ [tdk, t

d
k+1]

is a solution of (4.1). To verify the condition (i) in the definition of solution we can employ
(16). We are going to prove that this solution is bounded, more precisely

‖ud‖∞ = O(d2), ‖u̇d‖∞ = O(d) as d→∞,
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To prove this estimate we first observe that |üd(t)| ≤ 1 + ‖p‖∞ for almost every t ∈]tdk, t
d
k+1[.

Then we define the sequence vdk = |u̇d(tdk)| and combine the inequality (19) with the condition
(23) to deduce that vdk ≤ σ1d+ c1 where σ1 and c1 are positive constants independent of k ∈ Z
and d > d∗. Then, if t ∈ [tdk, t

d
k+1],

|u̇d(t)| ≤ vdk +

∫ t

tdk

|üd(s)|ds ≤ vdk + (1 + ‖p‖∞)(tdk+1 − tdk).

Using again (23) we conclude that

‖u̇d‖∞ ≤ (σ1 + (1 + ‖p‖∞)σ)d+ c1.

The estimate for ud is a consequence of

|ud(t)| = |ud(t)− ud(tdk)| ≤ ‖u̇d‖∞(t− tdk) if t ∈ [tdk, t
d
k+1].

The proof of Theorem 4.1 is almost complete. It remains to prove that if we take a sequence
dn →∞ then

inf
t∈R

[udn(t)2 + u̇dn(t)2]→∞.

This can be easily proved by combining Lemma 3.2 (b) and the inequalities (20) and (21).
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