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Abstract

We provide a simple proof for a higher-dimensional version of the Poincaré–Birkhoff
theorem which applies to Poincaré time maps of Hamiltonian systems. These maps are
neither required to be close to the identity nor to have a monotone twist.

Résumé

Nous fournissons une preuve simple d’une version en plusieurs dimensions du théo-
rème de Poincaré–Birkhoff qui s’applique aux applications de Poincaré des systèmes
hamiltoniens. Ces applications ne sont ni tenues d’être proches de l’identité, ni d’avoir
une torsion monotone.

1 Statement of the result

The aim of this short note is to give a simple proof, following the ideas developed in [2, 3],
of a higher dimensional version of the Poincaré–Birkhoff theorem which applies to Poincaré
time maps of a Hamiltonian system, say

(HS) ż = J∇H(t, z) .

Here, J =
( 0 IN
−IN 0

)
denotes the standard 2N × 2N symplectic matrix and ∇ stands for

the gradient with respect to the z variables. The Hamiltonian function H : R×R2N → R is
assumed to be T -periodic in its first variable t and C∞-smooth with respect to all variables.

Consequently, for every initial position ζ ∈ R2N , i.e., ζ = (ξ, η) ∈ RN × RN , there is a
unique solution Z(·, ζ) = Z(·, ξ, η) of (HS) satisfying Z(0, ζ) = ζ. Let us further assume
that, for η in some closed ball B ⊂ RN centered at the origin, these solutions can be continued
to the whole time interval [0, T ]. We can then consider the so-called Poincaré time map: this
is the function P : RN ×B → RN × RN , defined by

P(ζ) = Z(T, ζ) ,

whose fixed points give rise to T -periodic solutions of (HS).
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We use the notation z = (x, y), with x = (x1, . . . , xN) ∈ RN and y = (y1, . . . , yN) ∈ RN ,
and assume that H(t, x, y) is 2π-periodic in each of the variables x1, . . . , xN . Then, once a
T -periodic solution z(t) = (x(t), y(t)) has been found, many others appear by just adding
an integer multiple of 2π to some of the components xi(t); for this reason, we will call
geometrically distinct two T -periodic solutions of (HS) (or two fixed points of P) which can
not be obtained from each other in this way.

The result we want to prove is the following.

Theorem 1.1. Writing

P(x, y) = (x+ ϑ(x, y), ρ(x, y)) , (x, y) ∈ RN ×B ,

assume that, either

ϑ(x, y) /∈ {αy : α ≥ 0} , for every (x, y) ∈ RN × ∂B , (1)

or
ϑ(x, y) /∈ {−αy : α ≥ 0} , for every (x, y) ∈ RN × ∂B . (2)

Then, P has at least N + 1 geometrically distinct fixed points in RN × B. Moreover, if they
are non degenerate, then there are at least 2N of them.

This is a special case of [3, Theorem 2.1], where a much more general situation was
considered. However, we believe that the simple proof proposed below will clarify the main
ideas and help the interested reader towards possible further generalizations.

2 The proof

In order to fix ideas, we assume that B is the open unit ball in RN and that (1) holds. As
before, for ζ = (ξ, η) ∈ RN × RN , we denote by Z(t, ζ) the value at time t of the solution
z of (HS) with z(0) = ζ. The Hamiltonian H(t, x, y) being 2π-periodic in the variables
xi, the continuous image by Z of [0, T ] × (RN/2πZN) × B will be bounded in the cylinder
(RN/2πZN)×RN and, after multiplying H by a smooth cutoff function of y, there is no loss
of generality in assuming that:

(•) there is some R ≥ 2 such that H(t, x, y) = 0, if |y| ≥ R .

In particular, the C∞-smooth map Z : R× R2N → R2N is now globally defined. For any
t, we write Zt := Z(t, ·) : R2N → R2N , and denote by Xt,Yt : R2N → RN the corresponding
components, i.e., Zt = (Xt,Yt) . The following assertions are standard consequences from our
assumptions.

(i) Z0 is the identity map in R2N ;

(ii) Zt(ζ + p) = Zt(ζ) + p, if p ∈ 2πZN × {0};
(iii) each Zt is a canonical C∞-diffeomorphism of R2N on itself;

(iv) Z(t, ξ, η) = (ξ, η), if |η| ≥ R;

(v) there is some constant ε ∈ ]0, 1[ such that

XT (ξ, η)− ξ 6∈ {αη : α ≥ 0} , if 1 ≤ |η| ≤ 1 + ε .

Choose now a C∞-function γ : [0,+∞[→ R, with
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[h]

{
γ(s) = 0 on [0, 1] , γ′(s) ≥ 0 on ]1, 1 + ε[ ,

γ′(s) ≥ 1 on [1 + ε, 2] , γ(s) = s2 on [2,+∞[ ,

and let λ > 0 be a parameter, to be fixed later. We define the function Rλ : R2N → R as

Rλ(ξ, η) := −λγ(|η|) ,

and the function Rλ : R× R2N → R by

Rλ(t, ·) := Rλ ◦ Z−1t , if 0 ≤ t < T ,

extended by T -periodicity in t. Now, set

H̃λ(t, z) := H(t, z) +Rλ(t, z) .

This function H̃λ : R× R2N → R will be referred to as ‘the modified Hamiltonian’, and one
easily checks that:

(vi) H̃λ(t, z) = H̃λ(t+ T, z) = H̃λ(t, z + p), if p ∈ 2πZN × {0};
(vii) H̃λ(t, x, y) = −λ|y|2, if |y| ≥ R;

(viii) H̃λ and H coincide on the open set
{

(t,Z(t, ξ, η)) : 0 < t < T, η ∈ B
}
.

At this point we would like to apply either [1, Theorem 3], [4, Theorem 4.2], or [5,
Theorem 8.1]; the main assumptions of these results are ensured by (vi) and (vii) above.
They would provide the existence of at least N+1 geometrically distinct T -periodic solutions
of the Hamiltonian system (H̃S)λ associated to the modified Hamiltonian, and 2N of them
if nondegenerate.

There is, however, a difficulty: these three theorems also assume that the Hamiltonian
function is continuous in all variables, but our modified Hamiltonian H̃λ will probably be dis-
continuous when t is an integer multiple of T . Nevertheless, one observes that the restriction
of H̃λ to ]0, T [×R2N can be continuously extended to [0, T ]×R2N (just by the same formula
(t, z) 7→ H(t, z) + Rλ ◦ Z−1t ), and this extension is now C∞-smooth on [0, T ]× R2N . Under
this condition, the proofs of the three results just mentioned keep their validity; hence, we
obtain indeed the existence of N + 1 geometrically distinct T -periodic solutions of (H̃S)λ.
Moreover, if they are nondegenerate, then there are at least 2N of them.

As a consequence of (viii), the Hamiltonian systems (HS) and (H̃S)λ have the same T -
periodic solutions z(t) = (x(t), y(t)) departing with y(0) ∈ B. Thus, in order to complete
the proof of Theorem 1.1, it will suffice to check the following

Proposition. If λ > 0 is large enough, then (H̃S)λ does not have T -periodic solutions
z(t) = (x(t), y(t)) departing with y(0) 6∈ B.

Proof. In view of (•), we may choose some constant c > 0 such that∣∣∣∣∂H∂y (t, x, y)

∣∣∣∣ ≤ c , for every (t, x, y) ∈ R× RN × RN ,

3



and observe that, consequently,

|XT (ξ, η)− ξ| ≤ cT , for any ξ, η ∈ RN . (3)

It will be shown that, if
λ > c , (4)

then the conclusion holds. We prove this result by a contradiction argument and assume
instead that z = (x, y) : [0, T ] → RN × RN is a solution of (H̃S)λ for such a value of λ,
with z(0) = z(T ), departing with |y(0)| ≥ 1. We consider the C∞-function ζ : [0, T ]→ R2N ,
defined by

ζ(t) := Z−1t (z(t)) .

Claim. ζ̇ = J∇Rλ(ζ).

Proof of the Claim. Differentiating in the equality z(t) = Z(t, ζ(t)), we find

ż =
∂Z
∂t

(t, ζ) +
∂Z
∂ζ

(t, ζ)ζ̇ ,

so that
∂Z
∂ζ

(t, ζ)ζ̇ = J∇H̃λ(t, z)− J∇H(t, z) = J∇Rλ(t, z) . (5)

By (iii) above, Zt is canonical, so that

∂Z
∂ζ

(t, ζ(t))∗J
∂Z
∂ζ

(t, ζ(t)) = J , for every t ∈ [0, T ] .

Hence, if we multiply both sides of (5) by −J(∂Z/∂ζ)∗J , we get

ζ̇ = J
∂Z
∂ζ

(t, ζ)∗∇Rλ(t, z) = J∇Rλ(ζ) ,

the last equality coming from the fact that Rλ(t,Z(t, ζ)) = Rλ(ζ). This finishes the proof of
the Claim.

Let us now complete the proof of our Proposition. We write ζ(t) = (ξ(t), η(t)); combining
the Claim and the definition of Rλ, we have

ξ̇ = −λγ′(|η|) η
|η|

, η̇ = 0 ,

and consequently, recalling (i),

η(t) = η(0) = y(0) , ξ(t) = x(0)− tλγ′(|y(0)|) y(0)

|y(0)|
,

for every t ∈ [0, T ]. In particular,

x(T ) = XT
(
ξ(T ), η(T )

)
= XT

(
x(0)− Tλγ′(|y(0)|) y(0)

|y(0)|
, y(0)

)
. (6)

In order to obtain the desired contradiction, we shall show that x(T ) 6= x(0). We distinguish
three cases:
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Case I: 1 ≤ |y(0)| < 1 + ε. Since γ′(|y(0)|) ≥ 0, by [h], the combination of (6) and (v) gives

x(T )− x(0) + Tλγ′(|y(0)|) y(0)

|y(0)|
6∈ {αy(0) : α ≥ 0} ,

implying that x(T ) 6= x(0).

Case II: 1 + ε ≤ |y(0)| ≤ R. By the triangle inequality,

|x(T )− x(0)| ≥ Tλγ′(|y(0)|)−
∣∣∣∣x(T )− x(0) + Tλγ′(|y(0)|) y(0)

|y(0)|

∣∣∣∣ ,
and remembering that γ′(|y(0)|) ≥ 1, by [h], the joint action of (3), (4) and (6) gives

|x(T )− x(0)| ≥ Tλ− Tc > 0 ,

implying again that x(T ) 6= x(0).

Case III: |y(0)| > R. Now γ′(|y(0)|) = 2|y(0)|, by [h]; combining (6) and (iv) we have that
x(T ) = x(0)− 2Tλy(0). In particular, x(T ) 6= x(0) also in this case.

The proof is complete.

Remark. Even though we have always assumed, for the sake of simplicity, that H is C∞-
smooth with respect to all variables, everything in the proof works just the same by assuming
that this dependence is merely of class C3 with respect to the state variable z.
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