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Abstract

For each spacetime of a family of static spacetimes, we prove the existence of en-
tire spherically symmetric spacelike graphs with prescribed mean curvature function. In
particular, classical Schwarzschild and Reissner-Nordstrom spacetimes are considered. In
both cases, the entire spacelike graph asymptotically approaches the event horizon. Space-
like graphs of constant mean curvature remain as a particular situation in the existence
results, obtaining explicit expressions for the solutions. The proof of the results is based
on the analysis of the associated homogeneous Dirichlet problem on an Euclidean ball to-
gether with the obtention of a suitable bound for the lenght of the gradient of a solution
which permits the prolongability to the whole space.
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1 Introduction

In this paper we investigate the existence of solutions of the following prescribed mean cur-
vature spacelike graph equation

}div< = )+ Vu, V) = L H(z,u), xeM,

VI=PIVuP ) 1= PIVap - f?
(1)
1
Vu| < —,
Vul <
where the Riemannian manifold M is either R™ or R\ By(a), a > 0, endowed with a radial
metric

(,)= Ez(r)dr2 +r2de?,

being E(r) > 0, d®? the usual metric of the sphere S*~!. Finally, f € C*®(a,+o0) is a
positive function and H : M x R — R is a given smooth radially symmetric function.

The approach to this PDE is motivated by Lorentzian Geometry, specifically by the pro-
blem of the mean curvature prescription. Explicitly, every solution of (1) defines a spacelike
graph in a standard static spacetime, M := M x ; I, and the function H prescribes the mean
curvature.

In this paper we deal with graphs in static spacetimes with respect to a family of observers
(see Section 2), to which spatial universe always looks the same. There are many relevant
examples of this kind of spacetimes. Of special importance are (in addition to Lorentz-
Minkowski spacetime) Schwarzschild and Reissner-Nordstrém spacetimes. Both models de-
scribe a universe where there is only a spherically symmetric non-rotating mass, as a star
or a black hole. In the first model, the mass has not electric charge, while in the second it
is uniformly charged (in fact, Reissner-Nordstrém spacetime may be seen as an extension of
Schwarzschild one). They have one or two event horizons and an inevitable singularity at the
center of the mass (see [7, Chap. 3| and [7, Chap. 5] for details and physical interpretations).

In general, a spacelike hypersurface has associated a family of instantaneous observers, the
future and unit normal vectors. They induce a family of normal observers near the spacelike
hypersurface. The mean curvature function intuitively measures how normal observers get
away with respect to a given one, when it is averaged in all spatial directions. Here, we are
interested in prescribing how these normal observers get away (see [16], [17]).

In the latter years, many researchers have worked on the prescribed mean curvature pro-
blem on spacelike hypersurfaces in Lorentzian manifolds, especially in the Lorentz-Minkowski
spacetime L"T!. In this context, it is remarkable the celebrated paper of Bartnik and Simon
[2], where a kind of “universal existence result” is proved for the Dirichlet problem. More
recently, the interest is focused on the existence of positive solutions, by using a combination
of variational techniques, critical point theory, sub-supersolutions and topological degree (see
for instance [3, 4, 5, 11, 12, 13] and the references therein). The Dirichlet problem in a more
general spacetime was solved by Gerhardt [14].

In contrast, the number of references devoted to the study of entire spacelike graphs in
the Lorentz-Minkowski spacetime with constant or prescribed mean curvature is considerably
lower. In this setting, the study of entire constant mean curvature spacelike graphs developed



in [19] is motivated by the remarkable Calabi-Bernstein property in the maximal case, i.e.,
when mean curvature identically vanishes. Namely, Calabi [9] has shown for n < 4 and
latter Cheng and Yau [10] for all n, that a entire maximal graph in L"™! must be a spacelike
hyperplane. Treibergs proved the existence of entire graphs of constant mean curvature with
certain asymptotic conditions in L"*! [19]. Later, Bartnik and Simon [2, Th. 4.4] extended
this result to a more general mean curvature function, but related references concerning
the prescribed curvature problem for entire graphs are rare. Up to our knowledge, in the
latter years only [1],[6] treat this problem by using a variational approach for very concrete
prescribed curvatures.

From the analysis of the related bibliography, it seems that the problem of the existence
of prescribed mean curvature entire graphs with radial symmetry for static spacetimes has
not been considered before.

The main findings of this paper can be summarized as follows.

Theorem 1.1 Let R"™ xy R be a standard static spacetime, endowed with the spherically
symmetric metric
E%(r)dr? + r2d0? — f2(r)dt?,

and let H : R® Xx R — R be a radially symmetric continuous function. Then, there exists a
spherically symmetric entire spacelike graph with mean curvature function H. Moreover, for
each R > 0, the graph may be chosen such that its intersection with t = 0 is a ball of radius
R.

Theorem 1.2 Let M be either the Schwarzschild exterior spacetime or the Reissner-Nordstrom
exterior spacetime with exterior radius a > 0, and let H : M — R be a spherically sym-
metric and bounded continuous function. Then, there exists a spherically symmetric entire
spacelike graph with mean curvature function H that approaches the event horizon as r — a.

Moreover, for each R > a, the graph may be chosen such that its intersection with t =0 is a
ball of radius R.

The proofs of the previous theorems are based on the following existence results for the
associated Dirichlet problems on a ball, which are interesting by themselves.

Theorem 1.3 Let R" xy R be a standard static spacetime, endowed with the spherically
symmetric metric

E%(r)dr* + r2d0? — f2(r)dt*.
Let B = By(R) be the Euclidean ball with radius R centered at 0 € R, and let H: BxR — R

be a spherically symmetric continuous function. Then, there exists a spherically symmetric
spacelike graph with mean curvature function H defined on B and supported on the slice t = 0.

Theorem 1.4 Let M be either the Schwarzschild exterior spacetime or the Reissner-Nordstrom
exterior spacetime (with radius a), and let H : A(a, R) x R — R be a spherically symmetric
and bounded smooth function, where A(a, R) is the closed annulus a < |x| < R. Then, there
exists a spherically symmetric spacelike graph with mean curvature function H, which touches
the slice t =0 on the boundary |z| = R, and approaches the event horizon as |x| — a. More-
over, the graph is radially decreasing on the annulus A(a, R) and it intersects the slice t = 0
only at the boundary |z| = R.



Remark 1.5 In Theorem 1.4, we have chosen the presented formulation for simplicity. An
inspection of the proof will provide more details about the geometry of the solutions. One
of the main features is that the hyperbolic angle of the graph with the slice £ = 0 can be
prescribed. More precisely, there exists xo such that for every x < xo, the graph given by
Theorem 1.4 can be chosen so that the hyperbolic angle with the slice t = 0 is . The value
of xo can be explicitly calculated (see the inequality (25)).

The content of the paper is organized as follows. In Section 2 we deal with geometrical
preliminaries and notation. Section 3 is devoted to the construction of the elliptic differen-
tial equation to be studied in the paper. Section 4 is devoted to prove Theorems 1.3 and
1.4 by using classical arguments from Fixed Point Theory. Once the problem is written as
fixed point problem for a suitable operator, the proof of Theorem 1.3 follows from a basic
application of Schauder Fixed Point Theorem. Meanwhile, the proof of Theorem 1.4 is more
involved because the metric associated to the Schwarzschild or Reissner-Nordstrom exterior
spacetime presents a singularity. Such a singularity implies that the coefficients in the cor-
responding differential equation are singular. This technical problem is solved by a suitable
transformation and an approximation argument. Finally, Section 5 is devoted to the proofs
of Theorems 1.1 and 1.2, consisting on a simple prolongability argument on the solutions of
the Dirichlet problem.

2 Preliminaries

In a spacetime M, a vector field () which is unit timelike and future pointing is called a
reference frame [17, Def.2.31]. Each integral curve of ) represents an observer in M. So,
the choice of a reference frame in a spacetime gives a distinguished family of observers in
M. A spacetime is said to be static relative to a reference frame @ if @ is irrotational (i.e.,
curl(Q)(X,Y) = 0 for any X,Y € Q1) and there is f € C*°(M) such that the vector field fQ
is Killing. Observe that @ is irrotational if and only if the distribution Q* is integrable [16,
Prop. 12.30]. Therefore, given an event p € M there exists a unique (inextensible) spacelike
hypersurface S of M such that p € S and T,S = Q(JI-, for all ¢ € S (in fact, S is an inextensible
leaf of the foliation @ through p € M). The spacelike hypersurface S may be interpreted as
the spatial universe of each observer in ) which intersects S at an instant of its proper time.

On the other hand, any (local) flow {¢;} of the Killing vector field f@Q consists of (local)
isometries of M which preserve restspaces of observers in ¢, i.e., if S is an integral leaf of the
foliation Q@ through p € M, then ¢;(S) is an integral leaf of Q- through ¢;(p). Therefore, the
spatial universe always looks the same for the observers in @) at least locally. Geometrically,
for each p € M there exists an open neighbourhood U of p such that ¢ : S x I — U,
(q,t) = ¢¢(q) is a diffeomorphism, where S is a leaf of Q*. Using now that fQ is Killing we
have that f (qb(q, t)) is independent of ¢. Moreover, if g denotes the Lorentzian metric of M,
then on S x I we can write

¢*g = mhgs — hs(ms) midt?,
where mg, 7wy are the projections onto .S and I respectively, gg denotes the Riemannian metric
on S obtained by restriction of g and hg € C*°(S) satisfies hg(q) = f(¢(g,t)) > 0 for all
q € S. Note that in the spacetime (S x I, ¢*g) the role of the Killing vector field f@Q is played
by the coordinate vector field 9, in fact ¢.(9;) = fQ.



Motivated by the last observation, a spacetime M is said to be a standard static spacetime
if it is a warped product M x ¢ I where (M, g) is a Riemannian manifold, I is an open interval
of R endowed with the metric —dt?, and f : M — R* is a smooth function. In other words,
M = M x I with the metric

g:=myg + fAma)ri(—dt?) = g — f2(a)dt?. (2)

Observe that the vector field 9 is timelike which determines the time-orientation on M.
Thus, if ¢ : S — M is a (connected) spacelike hypersurface in M, the time-orientability of
M allows us to construct a globally defined, unit, timelike vector field, /N, normal to S in the
same time-orientation of 9;.

There is a remarkable family of spacelike hypersurfaces in the standard static spacetime
M. Namely, the so called spacelike slices {t = t,}, which are totally geodesic and, therefore,
its mean curvature function vanishes.

Among the spacelike hypersurfaces, the spacelike graphs on domains of the base M appear
in a natural way. We will denote by ¥,,(U) the graph of u € C°°(U) such that u(U) C I, i.e.,

Yu(U) ={(z,u(x)) : x€U}.

From (2) the induced metric on %, (U) is given on U by g— f2(z)du?. Therefore, it is spacelike
whenever the following inequality holds

|Vu| < Jlt on U. 3)

3 The mean curvature function

In this section we construct the equation which satisfies a smooth function v : U C M — R
defining a spacelike graph ¥, (U) in M with mean curvature function H.

From now on, we denote by
1
9= 529~ at?,
and we will point with a superscript ' the geometric quantities related with metric ¢’ (V’,
H’, etc). Note that the Lorentzian metric (2) may be now written as g = f2¢’. Denote by V
the Levi-Civita connection and the gradient operator associated to g.

The extrinsic geometry of ¥, (U) in M is completely codified by the shape operator A,
which is defined by - o
A(X)=-VxN,

forall X ¢ X (Eu), where N is the unit normal vector field on ¥, (U) in the time orientation
of M.

Observe that if N’ is the unit normal vector field on ¥, (U) on (M x I,¢’), then N’ = fN.

Our strategy now is to use the well-known relation between the Levi-Civita connections
of two conformal metrics to get the following equation which gives the shape operator A from
the shape operator A" of ¥,(U) in (M x I,g"). Making use of the cited formulae,

AX) = fAX) =g (VfN)X =20 (V£ X)N' + g/ (X, N)V'f.



Taking traces in both members we obtain
nH =nfH + (n+1)g'(V'f,N).
It is not difficult to compute that the unit future pointing vector field N’ is

Nl (pvuea)

V= PIVaP

where V and |- | are the gradient operator and the modulus associated to the metric g on M.

Therefore, we obtain the relation

n+1 f9(Vu, Vf)

Now, we have to compute H’. In order to do that, consider the Riemannian metric

H=fH + (4)

gt = P g on M. Tt is well-known that the mean curvature function H' may be expressed by

G T (B
n 1— ]V*u|*2

where V*u means the g*-gradient of u, |V*u|*? = ¢*(V*u, V*u) and div* represents the
divergence operator corresponding to g*.

On the other hand, taking into account the formulae which relates the divergence operators
associated to two conformal metrics, we have

y . *Vu nf
nH' = div (W) - WQ(VU,V]‘). (5)

From the last equality and equation (4) we conclude

f V1= f2Vul? Vi=fvulz 27

Note that (1) is obtained as a particular case of (6). In fact, we will consider from now on
that M is either R™ or R™\ By(a), where By(a) is the euclidean ball centered at 0 with radius
a > 0. As it is shown later, this choice cover the most important explamples from a physical
point of view.

xeU. (6)

We will consider in M a spherically symmetric metric, with the following form
g={(,)=E*(r)dr® + r°d®©". (7)

According to [16, Chap. 13], the spacetime M is spherically symmetric in the sense that for
any ¢ € O(3), the map (t,z) — (t,w(:v)) is an isometry of g. Thus, endowed with g, M
becomes a spherically symmetric static spacetime (see [16, pag. 365] for more details).

In this setting, it is natural to consider a spacelike graph which inherits the symmetry
assumption of M, so we will assume u(x) = u(r) and f(x) = f(r). In this case, we clearly have



Vu = (v'/E?) 0, and Vf = (f'/E?) 0, and equation (1) may be rewritten as the following
ODE

1 (BB 1 FEid |
r"1E(r) ( 1— (f/E)u? ) +ﬁ 1— (f/E)u? a fH(r,u) in (a,+00),

(8)
lW| < E/f in (a,+00).

4 Existence results of the associated Dirichlet problem

Our ultimate objective is to prove the existence of entire radial spacelike graphs. To this
aim, we will first study a Dirichlet problem that may be interesting by itself. Thus, in this
section, we deal with the Dirichlet problem on U = By(R), in the case of M = R", or
U = By(R)\ Bo(a), with 0 < a < R, if we consider M = R™\ By(a). In both cases, we impose
the condition u(R) = 0.

Before of distinguishing the two cases, the following considerations are pertinent. Let us
define the functional spaces

C'la,R] := {u € C'[a,R] : w(R) =0},

and
C'(a,R] := {ueCa,R] : u(R) =0},

and the linear operator
T :C'a, R] —>Cl(a R]

/ (9)
7

This operator is inyective but, in general, is not onto on C! (a, R]. From now on, we consider
solutions which belong to the image of T'. Calling W to this image, the restriction T :
Clla, R] — W C C(a, R] is invertible and the inverse is given by

R
_ fon
T u](r) = —/T E(s)u (s)ds.

equation (8) is rewritten as

(1) + 2L () (o)) = T S (H(r TI]) i (a,R),

V] <1 in (a,R),




In the following, we distinguish two cases according to the behaviour of the limits of f(r)
and E(r) when r — a*. In the first case (regular case below), lim+ f(r) and 1im+E(r)
r—a r—a

are finite and positive, and the problem for M = R" will be essentially the same that for
M =TR"\ By(0). In the second case (singular case), lim f(r) =0 and lim+E(r) = 400.
r—a r—a

4.1 The regular case. Proof of Theorem 1.3.
In the first situation under study, we assume that a > 0 and the following hypotheses
(A1) f, E:la,+00) — R are continuous functions.

(A2) H(r,u) is continuous in [a, R] x R.
Theorem 1.3 is a direct consequence of the following result.

Theorem 4.1 Assume (Al) and (A2). Then, the problem (11) has at least one radially
symmetric solution v such that v'(a) = 0, v(R) = 0.

The proof uses a fixed point argument. Taking

w(r) := r”_lqb(v'(r)),

equation (11) is transformed into

w'(r) + 2 —I(r)w(r) = nr"‘lg(r)H(r,T[v]) in (a,R),

f (12)

Observe that condition |[v'| < 1 is necessary to have w well-defined. Recall that, from the
variation of constants formula, the linear equation

w'(r) + h(r)wg()o)::tpg:) in (a, R), (13)

with h, o € C'[a, R], has a unique solution given by
w(r) = / p(t)e i 1s)ds gy
In the case of (12),

e Ji h(s)ds _ f2(t)
f2(r)’

hence,
n—1 AN " f2(t)
o) = [ o) s

After some easy computations, it turns out that a solution of problem (12) must verify

dt.

v = Alv], (14)



where A : Clla, R] — C[a, R] is defined as

Alv](r) == —/TR ¢! [Tnll]% /aT nt" LE(t)H(t, T[v])dt| dr.
This operator can be written as
A=Ko¢p 'oSoNy,
where

S :Cla, R] — Cla, R]

SPl(r) = rnl_l [T E(e(dt (r € (a,R)),  S[ol(a) =0, (15)

K : Cla,R] — C'[a, R]

16
K)(r) = — [Fo(t)dt. (16)

and Ny is the Nemytskii operator associated to H,
Ng : C'a, R] — Cla,R], Nglv] = H(-,T[v]). (17)

From assumptions (A1), (A2), S and Ny are continuous and, from the compactness of K, we
deduce that A is a continuous and compact operator in the Banach space C''[a, R] (endowed
with its usual norm [|v|| = ||v]|co + ||t']|co)- In conclusion, we can state the following lemma.

Lemma 4.2 A function v € C'[a, R] is a solution of equation (12) if and only if v is a fived
point of the nonlinear compact continuous operator A.

Remark 4.3 Note that the image of the operator A is contained in C?[a, R], so the fixed
points (solutions of (12)) will be of class C2. Moreover, using the regularity theorem for
elliptic nonlinear operators, (see [15, Chap. 4]) we conclude that, if the prescription function
H is of class C*°, then the solutions will also be infinitely derivable.

Observe that fixed points of A always verify the boundary conditions v'(a) = 0 and
v(R) = 0. Define the set

B:={veCa,R] : |[v]|lec <R—a, |V« < 1}.
By using that ¢~ '(R) = (—1,1), one gets
JA®)[loo < R—a and [(A®)) e <1  forall veB.

These inequalities implies that A(B) C B. Since B is contractible to a point, and A is a
continuous and compact operator, the Schauder Fixed Point Theorem applies, finishing the
proof of Theorem 4.1.

Remark 4.4 The proof of Theorem 1.3 follows immediately by taking a = 0. With the
same arguments, we could impose a different constraint in the derivative of v, for instance, to
prescribe a fixed value of v'(a) or v'(R). By simplicity, we have just considered the condition
v'(a) = 0, which is the most important example.

Remark 4.5 If H < 0, from the fixed point formulation (14), we easily deduce that v is
decreasing and positive in [a, R]. The same conclusion is reached for u. Since the slices
{t = to} are totally geodesic, the hypothesis H < 0 is interpreted by saying that the mean
curvature prescription function is less than the mean curvature of the slices.



4.2 The singular case. Proof of Theorem 1.4.

The main motivation of this paper is to study the Schwarzschild and Reissner-Nordstréom
spacetimes, which play a central role in General Relativity (see for instance [7], [16], [17]).
The Schwarzschild exterior spacetime models the exterior region of a spacetime where there
is only a spherically symmetric non-rotating star without charge. Such a spacetime is defined
by the metric

E*(r)dr® 4+ r2d© — f*(r)dt?

f(r):\/1—27m and E(T):12m.

122
r

where

Here, m is interpreted as the mass of a star (or black hole) in certain unit system. The value
of the radius r = 2m is known as Schwarzschild radius. When this radius is bigger than the
radius of the star, we are in presence of a Schwarzschild black hole.

A generalization of the latter example is the Reissner-Nordstrém exterior spacetime, in
which the mass has non-zero electric charge. In this case, we have

2
2 r 1
fr)= 1—Tm+7§ and  E(r) = ,
2 T
L
T T

where g > 0 is a characteristic length relative to the charge @) of the mass. Our interest
lies in the region where r > m + ,/m?2 — r%, i.e., outside of the exterior event horizon (recall
that, in this spacetime, there are two horizons, in the physical and realistic case m > rq).

Our idea is to treat both spacetimes in the same way. To this aim, let us consider a > 0
and continuous functions f, F : (a,+00) — R*, H : [a, R] x R — R such that

(B1) lim+f(r) =0 and lim+E(7“) = 400, but E(r) is integrable in [a, R].
r—a r—a

(B2) H is bounded in [a, R] X R, i.e., there exists a constant C' > 0 such that |H(r,t)| < C
for any r € [a, R] and t € R.

In this context, the most geometrically natural and physically relevant condition on wu is
lim u(r) = +oo (and, therefore, lim u/(r) = —c0). Physically, it may be interpreted as our
r—at r—a*t

spacelike graph tends to the event horizon (see again [7], [16], [17]). From the mathematical
standpoint, we are looking for blow-up solutions of equation (8). Let us see how such condition
can be guaranteed.

Lemma 4.6 Let us assume the condition
(B3) E/f is not integrable on [a, R).

Then,
lim o'(r) = —1, (18)

r—at
implies

lim u(r) = +o0.
r—at

10



Proof. From the transformation (10),we obtain

_ [T B,
u(r) = /T (s) v'(s)ds,

and the result is trivial in view of (B3).

O
As a first step in the proof of Theorem 1.4, we are going to fix the hyperbolic angle between
our graph and the observers in the reference frame — 0, (called Schwarzschild observers).

Analytically, this is equivalent to fix the value of u/(R). Therefore, we are interested in
proving the existence of solutions of the following problem,

(T"_lqb(v’)), +2 ‘;/(T) (r~lo()) = nr”_ljg(r)ﬂ(r, Tv) in (a,R),
v(R) =0, vV(R)=k, (19)
lim+v’(r) =1,

where k£ is a constant, |k| < 1.

Theorem 1.4 is a direct consequence of the following result.
Theorem 4.7 Let us assume (B1), (B2) and (B3). Then, there ezists ko < 0 such that, for
any —1 < k < ko, problem (19) has at least one solution.

In order to prove this theorem, we consider an intermediate proposition by adding a
technical assumption to be deleted later.
Proposition 4.8 Let us assume (B1) — (B3) and the additional condition
(B4) H has compact support contained in [a, R| X [—7, j]|, for some natural j.

Then, there exists kg < 0 such that, for any —1 < k < ko, problem (19) has at least one
solution.

Proof. By defining w(r) := r"1¢(v/(r)), problem (19) is transformed into
!

w'(r)+2=(r)w(r) = m’"‘lg(r)H(r, Tv) in (a,R),

f f?
[V <1 in (a,R), (20)

w(R) = —A/f*(R),

lim+w(7“) = —00,

where A = —R" " 1¢(k) f2(R).
Let us consider the linear problem

W)+ 2 L) =) (@ R) (21)
w(R) = —A/f*(R), (22)
lim w(r) = —oo, (23)

r—a®t

11



where ¢ is an arbitrary continuous function defined on (a,R). Applying the variation of
constants formula, the unique solution of the initial value problem (21)-(22) is

A1
f2(r)  f3(r)
by using (B1) and (B2), the limit condition (23) is satisfied if A is chosen such that

R
w(r) = / ©(s)f2(s)ds.

R
A> nC/ " E(r)dr. (24)

The relation between k and the hyperbolic angle x € R between the Schwarzschild ob-
servers and the normal vector field N (see Section 3) is given by

sinh(x) = ¢(k).
Since by definition A = —R"1¢(k)f?(R), condition (24) holds if and only if

nC 1

R
¢(k) = sinh(x) < _fQ(R)R”_l/a " LE(r)dr, (25)

or equivalently, k < kg where

R
ko = ¢! (—fg((;)Rj_l/ r"_lE(r)dr>.

In this way, we define the nonlinear operator N : X — X,

NT)(r) = / R¢—1 {T“lf%) <A+ / Rnt”_lE(t)H(t,T[v])dtﬂ dr, (26)

where

X ={veC'a,R] : v(R)=0,v'(a) = —1}.

A function v € Cla, R] is a solution of problem (19) if and only if v is a fixed point of
the nonlinear operator A/. In the next lemma, we are going to prove that such operator is
continuus and compact.

Lemma 4.9 Assume (B1)—(B4). Then, N is a compact and continuous nonlinear operator.

Proof. Let us write
N =KoSo NH,

where the operators K and Ny are defined in the previous subsection by (16) and (17)
respectively, and the operator S : Ct[a, R] — C'[a, R] has the expression

S[ol(r) = ¢~ [rn_llj% (A + / " nt"—lE(t)v(t)dt)] | (27)

The operator K is continuous and compact, so we only have to verify the continuity of
the operator N.

12



The first step is to prove that S is continuous. By (B2), the image of Ny is bounded,
then it is sufficient to prove that S is continuous on a certain closed ball B, of C1[a, R], with
arbitrary radius p. So, let {vi} be a sequence converging to v uniformly in B,,. The objective
is to see that S[vg] converges uniformly to S[v)].

Denote by gx(r) := fR nt" L E(t)vg(t)dt. Since

T

R
196() — 9i()] < [k — villoc / nt™ E(t)dt,

from the uniform convergence of {vy} and Cauchy criterion, we deduce that {gx} is also
uniformly convergent. The Dominated Convergence Theorem ensures that the limit is

g:= /R nt" L E(t)v(t)dt.

Let us denote o = pfaR nt" ' E(t)dt and zx(r) := (r, gi(r)). With this notation, we can write

Slug)(r) = F(zx(r)),

where F' : [a,R] X [—0,0] — R is a continuous function. From the uniform convergence
of v and gx, we deduce the uniform convergence of {x} to (id,g) (for any fixed norm in
R3). Hence, since F is uniformly continuous, because of compactness of [a, R] x [—p, o], we
conclude that S[vg] converges uniformly to S[v].

It remains to prove the continuity of Nemytskii operator Ng;. At this point, the hypothesis
(B4) is crucial. Note that the boundedness of H is not enough (for instance, H(r, s) = sin(s)).

Let {v;} C X be a sequence which converges to v € X (in the usual C'-norm). We have
to prove that H(r, T[vg](r)) — H(r,T[v](r)) uniformly on [a, R]. The uniform convergence
on any compact set in (a, R| follows from applying Ascoli-Arzela Theorem, once it is observed

that the derivative of ¢~ 1(s) = \/11? is a bounded function. On the other hand, v'(a) =

v}.(a) = —1 and condition (B3) implies that

lim T[vg](r) = lim T'[v](r) = 4o0.

r—at r—at

By condition (B4), this means that

lim H(r,Tvg)(r)) = lim H(r,T[v](r)) = 0.

r—a™t r—at

Therefore, the pointwise convergence at r = a is ensured.
From (B1) and using that v'(a) = —1, we may take ¥ € (a, R) such that, for any r € [a,7],
| —1—7'(r)| < 1/3 and the following inequality holds

—/R?um%mﬁ>j+1. (28)

Taking 0 < e < min{s,—1/ f?R %(t)dt} there exists kg such that, for all k > ko, v}, —'[|cc <
€, hence we have

Rg | . RE
—K f@WAWﬁ>J+1—5[ ?@Mt
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Since v}, < 0 on [a,T], we obtain

- / * ?(t)v;(t)dt >
As a consequence of (B4), from the latter inequality and (28) we conclude that
H(r,Tvgy) =H(r,Tv)=0 on [a,T].
Thus, the uniform convergence is trivial on the compact set [a, 7| and the proof is finished.
O

Now, fixed an hyperbolic angle x satisfying (25) (so, fixed the corresponding k), one gets
that the image of A/ is contained in the closed and convex set D}, defined by

D={veX :V(R) =k |[v]o < (R—a), |V < 1}.

Then, a basic application of the Schauder fixed point theorem finishes the proof of Proposition
4.8.

0

Now, as a final step for the proof of Theorem 4.7, we are going to remove assumption
(B4) by means of a truncation argument. Let h; : R — [0,1] be a smooth function such
that is equal to 1 on [—j + 1, j — 1] and vanishes outside of the interval (—j,7), 7 > 1. Then,
we construct the sequence of functions

Hj:a,R] xR — R, Hj(r,s) := H(r,s) hj(s),

which converges pointwise to the function H. Note that each H, satisfies the assumption
(B4). Therefore, by using Proposition 4.8, we have a sequence {v; };’;1 of fixed points of the
nonlinear operators

N;[v](r) = /TR o1 [Tnfo(T) (A + /TR nt" ' B(t)H;(t, Tv)dt)] dr, (29)

ie.,
vj = Njlvs]. (30)
It is immediate that [|vj]lec < R —a and [[v}|[oc < 1. Thus, from Ascoli-Arzela Theorem,
there exists a subsequence and a function v € Cla, R] such that

{v;} —wv uniformly on [a, R].

Choose an arbitrary closed interval [¢,d] C (a, R]. Performing into (29)-(30) and using
again that the derivative of ¢~!(s) is a bounded function, it is easy to check that there exists
a constant L, depending only on the interval [c, d], such that Hv}’ |loo < L. Hence, the family
{v7}%2, is equicontinuous on [c,d]. Since |[v}| < 1 we can apply the Ascoli-Arzela Theorem
and conclude that there exists a continuous v € C''[c, d] such that

{vi} — in C'lc,d].

14



In order to prove Theorem 4.7, we only have to see that v is a fixed point of the nonlinear
operator defined by (26). Taking limits in (30) and using the C'-convergence of {v;}32, on
compacts in (a, R] we get

v(r) = N|(r) r € (a, R].

Moreover, v(a) = N[v](a) holds because the function 7 — nr" 1E(r)H (r,Tv(r)) is inte-
grable on [a, R] (although it is not assured the existence of limit of this function when r — a).
Therefore, v is a fixed point of N/, or equivalently, v is a solution of problem (19).

To conclude the proof of Theorem 4.7, we only have to observe that any choice of x
satisfying (25) implies that the solution as a fixed point of the non linear operator N is a
decreasing and non-negative function in (a, R].

Remark 4.10 In the particular case of a constant mean curvature H, the operator N pro-
vides an explicit integral expression of a radially symmetric spacelike graph with constant
mean curvature tending to the event horizon. In particular, we obtain maximal graphs dif-
ferent from the slices.

Remark 4.11 Imposing lim+v’ (r) = 41, instead of (18), we obtain the existence of non-
r—a

positive and increasing solutions in (a, R) which approach the event horizon in the past of
the Schwarzschild observers. The arguments of the proof remain unchaged.

5 Proof of the main result

Finally, we will prove that any graph on a ball obtained in the previous section can be extended
on R™ or R™ \ By(a), depending on the case. For this, we need the following lemma.

Lemma 5.1 Let v € C?[a,b] be a solution of (11). Then |[v'| < 1 on (a,b].

Proof. On (a,b) the solutions verify [v/| < 1. We only have to prove the inequality at r = b.
Suppose that
lim [v'(r)] =1  and lim |¢(v'(r))] = oo.

r—b— r—b—

For r sufficiently close to b it is easy to see

@) L B L T)
()] 25 () +n5 () o)

Let 7 € (a,b) be such that [v/(7)| > 0 for any 7 € (T,b). Integrating the last equality, we have

g0 /(1)) | — ol 0 (') = [ (21}/(7) - nme) dr.

Taking limits, » — b, we check that the left member tends to infinity while the right one is
finite. Therefore, we deduce that |¢(v')| is bounded and, consequently, ||v’||o must be strictly
lower than 1. O
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To prove Theorem 1.1, once R is fixed, Theorems 1.3 and 1.4 provide a solution v of
problem (11). Then, it suffices to guarantee that v can be continued until +o00 as a solution.
First, we rewrite equation (11), as a system of two ordinary differential equations of first order

d= (1-22) <—(n - 1)% - 2‘;/(1")2 + nﬁ(r)mH(r, Tv)> ,

which we can abbreviate as

where F: Rt x R x (=1,1) — R2.

Let (a,b) be the maximal interval of definition of v. Suppose that b < +o00. By the
standard prolongability theorem of ordinary differential equations (see for instance [18, Section
2.5]), we have that the graph {(r,v(r),v'(r)) : r € [a+(R—a)/2,b)} goes out of any compact
subset of RT x R x (—1,1). However |v(r)| < b then we know that v(r) € [—b, R]. Moreover,
by Lemma 5.1, [v'(r)| < p < 1. Therefore, the graph can not go out of the compact subset
[a+ (R —a)/2,b] x [-b, R] X [—p, p] contained in the domain of F. This is a contradiction
and then b = +o0.
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