Linearization of planar involutions in C!
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Abstract. The celebrated Kerékjarté Theorem asserts that planar continuous periodic maps
can be continuously linearized. We prove that C'-planar involutions can be C!-linearized.
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1 Introduction and statement of the main result

A map F : R" — R" is called m-periodic if F™ = Id, where F'™™ = F o F™~1 and m is the smallest
positive natural number with this property. When m = 2 then it is said that F' is an involution.

When there exists a CF-diffeomorphism 1 : R® — R”, such that ¢ o F o ¢~ ! is a linear map
then it is said that F is C*-linearizable. In this case, the map 1 is called a linearization of F.
This property is very important because it is not difficult to describe the dynamics of the discrete
dynamical system generated by linearizable maps. For instance, planar m-periodic linearizable
maps behave as planar m-periodic linear maps: they are either symmetries with respect to a
“line” or “rotations”.

There is a strong relationship between periodic maps and linearizable maps. For instance, it
is well-known that when n = 1 every C* periodic map is either the identity, or it is 2-periodic and
C*-conjugated to the involution — Id, see for instance [8]. When n = 2 the following result holds,
see [4] for a simple and nice proof.

Theorem 1.1. (Kerékjdrté Theorem) Let F : R? — R? be a continuous m-periodic map. Then F
is CV-linearizable.

The situation changes for n > 3. In [1, 2|, Bing shows that for any m > 2 there are continuous
m-periodic maps in R? which are not linearizable. Nevertheless, Montgomery and Bochner give a
positive local result proving that for C*,k > 1, m-periodic maps having a fixed point are always
locally C*-linearizable in a neighborhood of this point, see [9] or Theorem 3.1 below. In any case,
in [3, 5, 7] it is shown that for n > 7 there are continuous and also differentiable periodic maps on
R"™ without fixed points.



The aim of this paper is to prove the following improvement for planar involutions of the result
of Kerékjarto.

Theorem A. Let F : R? — R? be a C'-differentiable involution. Then F is C'-linearizable.

As we will see, our proof uses classical ideas of differential topology together with some ad hoc
tricks for extending and gluing non-global diffeomorphisms. The authors thank Professor Sanchez
Gabites for suggesting the use of the classification theorem of surfaces for the proof of Lemma 2.5.

2 Preliminary results on differential topology

In this paper, unless it is explicitly stated, a differentiable map will mean a map of class C'. Also
a diffeomorphism will be a C!- diffeomorphism.

2.1 Results in dimension n

We state two results that we will use afterwards when n = 2. The first one asserts that any local
diffeomorphism can be extended to be a global diffeomorphism, see [10].

Theorem 2.1. Let M be a differentiable manifold and let g : V' — g(V') C M be a diffeomorphism
defined on a neighborhood V of a point p € M. Then there exists a diffeomorphism f: M — M
such that flw = glw for some neighborhood W C V' of p.

The second one is given in [6] for C*°- manifolds. Here we state a slightly modified version of
the theorem for C!'-manifolds. We leave the details of this generalization to the reader. Notice that
it allows to glue diffeomorphisms that match as a global homeomorphism, only changing them in
a neighborhood of the gluing set, but not on the gluing set itself.

Theorem 2.2. For each i = 0,1, let W; be an n-dimensional C'-manifold without boundary which
is the union of two closed n-dimensional submanifolds M;, N; such that

M; N N; = 0M; = ON; = V.

Let f: Wo — Wi be a homeomorphism which maps My and Ny diffeomorphically onto My and Ny
respectively. Then there is a diffeomorphism f : Wo — Wy such that f(Mo) = My, f(No) = N1 and
flve = flvy- Moreover f can be chosen such that it coincides with f outside a given neighborhood

Q of Vo.

2.2 Results in the plane

The aim of this subsection is to prove the following local result, that will play a key role in our
proof of Theorem A.

Lemma 2.3. Let D C R? be an open and simply connected set such that {0} x R C D. Then
there exist a open set V such that {0} x R C V C D and a diffeomorphism v : D — R? such that

Yy =1d.



To prove Lemma 2.3 we introduce two more results. The first one is a direct corollary of the
natural generalization for non-compact C'-surfaces of the theorem of classification of C>-compact
surfaces given in [6].

Theorem 2.4. Let M be a simply connected and non-compact C- surface such that OM is con-
nected and non-empty. Then M is diffeomorphic to H = {(z,y) € R?: 2 > 1}.

The second result is a lemma that allows to transform by a diffeomorphism any C!-curve “going
from infinity to infinity” into a straight line.

Lemma 2.5. Let C be a closed, connected and non-compact C*-submanifold of R%. Then there
exists a diffeomorphism ¢ : R? — R? such that p(C) = {0} x R.

Proof. First of all note that R? \ C has two connected components that we will denote by C*
and C'~. Denote also by C7 and C5 the simply connected and non compact differentiable sur-
faces obtained by adding C' to C*t and C~. Applying Theorem 2.4 to C; and Co we obtain
diffeomorphisms ¢1 : C; — Hj and ¢3 : Co — Hy where H; = {(x,y) € R? : = > 0} and
Hy = {(z,y) € R? : x < 0}. Clearly the map ¢9 o ¢ ' is a diffecomorphism of {0} x R into it-
self. Thus (¢2 o ¢71)(0,9) = (0,A(y)) for a certain diffeomorphism \ : R — R. Consider the
diffeomorphism h : R? — R? given by h(z,y) = (z, A\(y)) and define G : R? — R? as

G(z,y) :{ (ho1)(z,y), if (z,y) € Cy;

¢2($7y)> if (:E,y) € CQ.
Thus applying Theorem 2.2 with Wy = W; = R2, My = Ci, Ng = Co, My = Hy,N; = Hy and
f = G we obtain the desired diffeomorphism ¢ : R? — R2. 0

We are ready to prove the main result of this subsection.

Proof of Lemma 2.3. We consider first the case when there exists € > 0 such that [—e,¢] x R C D.
In this particular case denote by

Dy ={(z,y) e D:x >0} and D.={(z,y) € D:x >¢€}.

Since D is an open and simply connected set, by the Riemann Theorem there exists a diffeomor-
phism G : D — R2. Set
Cy = G({e} x R).

Clearly we have that C, is a closed, connected and non-compact submanifold of R?. Thus by
Lemma 2.5 there exists a diffeomorphism

®, :R*> » R* such that @, (Cy) = {e} xR.

Composing @ with an appropriate involution, if necessary, we can assume that (¢4 o G)(D.) =
{(z,y) €R? : 2 > €} = H.. Set
Yy =P 0G.

Thus we have that ¢4 (D) = H. and ¢4 ({e} xR) = {e} xR. Therefore ¥4 (¢,y) = (¢, h(y)) for some
diffeomorphism h of R. Let H : R? — R? be the diffeomorphism defined by H(z,y) = (z,h~(y)).



Lastly if we denote by Y. = H o 94 we get that T is a diffeomorphism between D, and H.
such that T [rqxr = Id. As before, denote by R2 = {(z,y) € R? : z > 0} and consider the map
Ty : Dy — R% defined by

z otherwise

T (2) = { Yi(z) ifxze D,

Applying Theorem 2.2 with W, = Dy, Wy =R2, My = M; = (0,€] x R, Ng = D, N1 = H, and
f =T, we obtain a diffeomorphism g; : D1 — R? such that gl(0,e/2)xr = 1d..

In a similar way if we denote by D_ = {(z,y) € D;x < 0}, and R?2 = {(z,y) € R? : < 0}
we can construct a diffeomorphism g_ : D_ — R? such that 9+l(=e/2,0xr = 1d. Clearly the map
g : D — R? defined by

g4(z) ifxe Dy,
g(z)={ g (z) ifwzeD .
z otherwise.
is a diffeomorphism and g[(_¢/2¢/2)xr = Id. This ends the proof in this particular case.

Next we will see how to reduce the general case to one that we have already solved.

Consider a differentiable map o : R — (0,1) such that D, = {(z,y) € R? |z| < o(y)} C D.
Denote by D, /5 = {(z,y) € R?;|z| < o(y)/3}. We want to transform with a diffeomorphism the set
D, into the vertical strip (—1, 1) xR. Moreover, we want that this diffeomorphism is the identity on
D, /3. To this end we construct a diffeomorphism h : R? — R? of the type h(z,y) = (hy(z),y) where
hy : R — R is an odd diffeomorphism satisfying hy(z) =z if 0 <z < @ and hy(o(y)) = 1. Then
h maps diffeomorphically D onto h(D). Moreover, h|p, , = Id and h(D) D h(D,) = (-1,1) x R.
Using the first part of the proof with any € < 1 we can assert that there exist a diffeomorphism
g : h(D) — R? and a neighborhood V of {0} x R such that g|yy = Id. We obtain the desired result
by considering the diffeomorphism g o h and the neighborhood V' N Dy 3. O

The last preliminary result is given in next lemma.

Lemma 2.6. Let a, f : R — R be continuous maps, such that a(y) # 0 for all y € R. Then, there
exists a diffeomorphism F : R? — R? such that Flioyxr = 1d and

s (50 ?)

for all y € R.

Proof. Set R(z,y) = 1+ B(z+y) — B(y) and S(z, ) = a(z+y) - 2e0EEHI=00) W pave that

R(0,y) =1 and S(0,y) = a(y) # 0 for all y € R. By continuity, there exists an open neighborhood
V of {0} x R such that R(x,y) # 0 and S(x,y) # 0 for all (z,y) € V. Moreover we can choose
V simply connected and satisfying the following property: If (z,y;) and (x,y2) belong to V' then
(z,y) € V for all y € (y1,92). Now consider H : V — R? defined as

H(z,y) = (Hy(z,y), Ha(z,y)) = ( / " a(s)ds,y / " ) ds) .

Clearly H is C! and H(0,%) = (0,y) for all y € R.



We claim that H restricted to an appropriate open subset of V' is an embedding. To prove
this fact, note first that det((dH)(yy)) = R(z,y)S(z,y) # 0 for all (x,y) € V. Then H is a local

diffeomorphism. Moreover, by the Implicit Function Theorem, since 681;2 (0,b) # 0 it follows that
for any b € R there exist an open interval I, containing 0 and a differentiable map ¢ : I, — R
satisfying the following property: For all x € I, (x,¢p(x)) € V and Ha(z, ¢p(z)) = b. We can
choose I, maximal with respect this property. Since 8521/2 (x,y) # 0 for all (z,y) € V it follows that
I, and ¢, are uniquely determined and the graph of ¢,(z) tends to the boundary of V' when z
tends to the boundary of I;.

For any b € R denote by J, the graph of ¢, and set W = UperJp- Now we claim that H
restricted to W is globally one-to-one. To do this note that the equation H(z,y) = (a,b) with
(z,y) € W implies that (z,y) € Jp. Then calling Ly(s) = H (s, ¢p(s)) we need to solve the equation
Ly(s) = a. Since

Lh(s) = 20 s, gu(s)) + 6H1<s,¢b<s>>¢z<s>
6H2
= 2 s, 0n(s)) - a;; 22 (s, 90(5)) = (s, 4(s)) # 0

dy

it follows that L is monotone and consequently H (z,y) = (a,b) has at most one solution in W.
Lastly, we claim that there exists an open neighborhood W of {0} xR contained in W.Forb € R,

let W, be an open neighborhood of (0,b) in V such that H |y, is a diffeomorphism onto H (Wy)

and let € > 0 be such that (—¢,€) x (b—¢€,b+¢) C H(Wp). Then Wy, = H 1((—¢,€) x (b—¢€,b+¢))

is open. Note that
= |J H x{shc |J Jcw.
s€(—€€) s€(—ee)

Therefore the claim is proved by selecting W C Uper W3, with the following properties: W is open,
connected, simply connected and contains {0} x R. Thus we will have that H |y is a diffeomorphism
onto H(W). Therefore H(W) is also connected and simply connected. By Lemma 2.3 there exist
open sets V1 C W, Vo C H(W) and diffeomorphisms ¢ : W — R? and s : H(W) — R? such
that 1]y, = Id and o]y, = Id. Then F = g0 Ho ¢! : R? — R? is a diffeomorphism and for
any (z,y) € Vi N H1(V5) we have

d(F)(x,y) = d(QOQ)Hogo*l(:c,y) © d(H)go*l(w,y) © d(@_l)(x,y) =1Ido d<H)(x,y) old.

In particular, we obtain that

for all y € R, as we wanted to prove. ]

3 Proof of Theorem A

We will use the classical Kerékjarté Theorem and the Montgomery-Bochner Theorem, see [9]. We
also include the proof of the second result because it is very simple and explains what is understood
by a locally linearizable map.



Theorem 3.1. (Montgomery-Bochner Theorem, see [9]). Let U C R™ be an open set and let
F:U— U be a class C",r > 1, m-periodic map, having a fized point p € U . Then, there is a a
neighborhood of p, where F is C"-linearizable and conjugated to the linear map L(x) := d(F')px.

Proof. Consider the map from I/ into R", ¢ = Z?;ol L~"o F". Since both, F and L, are m-periodic
it holds that Loty = 1o F. Moreover, since d(1), = m1d, by applying the Inverse Function Theorem
we get that ¢ is locally invertible and has the same regularity as F. O

Proof of Theorem A. By the Kerékjarté Theorem the map F is C° conjugated to a linear invo-
lution. Hence it is conjugated either to S(x,y) = (—z,y) or to —Id. First we consider the case
when F is C%conjugated to S. Let g : R? — R? be the homeomorphism such that F og = go S.
Then, since g is a homeomorphism, we know that L := g({0} x R) is a non-compact, closed and
connected topological submanifold of R? which is fixed by F. We claim that L is a differentiable
submanifold of R%. To do this we will show that L is locally the graph of a C' function.

Let (a,b) € L. Then (a,b) is a fixed point of F' and by the Montgomery-Bochner theorem
d(F)(a) is conjugated to S. Then d(F)qp) — Id # 0. If we write F' = (Fy, F») this implies that at
least one of the functions Fi(x,y) —x and Fy(z,y) — y has non-zero gradient at (a,b). Assume for
instance that W(a, b) # 0. By the Implicit Function Theorem there exist neighborhoods
V of (a,b) and W of b and a C!- map ¢ : W — R such that LNW = {(¢(¢),t) : t € W}. This
proves the claim.

By Lemma 2.5 there exists a diffeomorphism ¢ : R? — R? such that ¢(L) = {0} x R. Therefore
F = o Fop!isaC'- involution that has {0} x R as a line of fixed points. Then F(0,) = (0, ).

Thus d(ﬁ’)(oyy) = < égg (1) > for some A, B : R — R continuous. Moreover since d(F)(O,y) must

be conjugated to S it follows that A(y) = —1 for all y € R.
Now using Lemma 2.6 we choose ¢ : R> — R? a diffeomorphism such that ¢ (oyxrz = Id and

d()0) = < —B(ly)/2 : )

®(z,y) —{ F(¢(S(az,y)) otherwise.

Lastly define

which is C! because
1 0
lim d(® =
i d @)= (o 1)

(oo 1) (e ) (0 1) =iy a@r

Since det(d(¢)(o,)) = 1 it follows that ¢ preserves orientation. In addition we know that all
points on the line z = 0 are fixed and then ¢({z,y) € R? : x > 0}) = {(x,y) € R? : 2 > 0}. Thus
we obtain that ® is a diffeomorphism. Computing directly ®~! we have

_ o ¢71($7y) if x>0,
¢ 1($7?J) = { S(¢_1(F(m,y)) otherwise.
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Finally, again a direct computation gives that ® ' o Fo® = S. Since F = po F o ! the
map ®~! o ¢ is the desired C'-conjugation. This ends the proof for this case.

Now we consider the case when F is C-conjugated to —Id. Then F has a unique fixed point
p. By the proof of Theorem 3.1 the map Id —F conjugates F' to — Id in a neighborhood W of p. By
Theorem 2.1 the embedding (Id —F)|y can be extended to be a global diffeomorphism 7 : R? — R?
such that 7|y, = (Id —F)|y for some neighborhood V' C W of p. Since F is topologically conjugated
to — Id we can select V' so that F(V') C V. Consider now F = roFor~!. The map F has 0 as a fixed
point and F lx(v) = —1d. Let v : R? — R? be the homeomorphism such that v~1o Fovy = —Id and
consider L = 7({0} X R). Then L is a connected, closed and non-compact topological submanifold
of R? invariant by F. Our next objective will be to modify L for obtaining a C' submanifold with
the same properties.

Let 7 > 0 be such that B, = {x € R?: |z| < r} C 7(V) and set tg = max{t € R : |y(0,t)| = r}.
Then L; = v({0} x (tg,00)) does not intersect B,. Since F|p, = —Id it follows that F(L;) =
v({0} x (—tp, —00)) neither cuts B,. Set Lo = {ty(0,tp);t € [-1,1]} and

L=1L,ULyUF(Ly).

Clearly L is also a connected closed and non-compact topological submanifold of R? invariant by
F. Hence it divides R? in two connected and open regions A and B that are permuted by F.
Consider now a differentiable map f : (0, 00) — R? satisfying the following properties:

1. f(t) = ty(0,t0) if ¢ < 1/2,
2. f(t)e Aforallt >1/2,

3. limy o0 | f(E)] = 00

4. f is one to one.

Denote by Mo = f((0,00)). By construction, My is a connected and differentiable submanifold
of R? and My N F(Mg) = . Thus M = My U F(My) U {(0,0)} is a connected, closed and non-
compact differentiable submanifold of R? which is invariant by F. By Lemma 2.5 there exists a

diffeomorphism ¢ : R? — R? such that ¢(M) = {0} x R. Therefore the map
F=gpoFop™!

is a differentiable involution that has {0} x R as an invariant line. Thus F(0,y) = (0, g(y)) for a
certain one dimensional differentiable involution g : R — R. In this case the map h(y) =y — g(y)
is a global diffeomorphism that conjugates g with —Id. Therefore the map ¢ : R? — R? defined
by @(z,y) = (x,h(y)) is a diffeomorphism that conjugates F with an involution F that satisfies

that F|{0}XR = —Id. Therefore
- Aly) 0
d(F)(O,y) = < B(y) 1 > )

for some continuous functions A and B with A(0) = —1 and B(0) = 0. Note that since A(0) = —1
and F is a diffeomorphism, it follows that A(y) < 0 for all y € R. On the other hand since F? = Id
we will have

A(F)(0,-y) © d(F)0,y) = 1d,
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which implies that

1 B(y)
A(—y) = —— and B(-y)=-——=
V= 4w Ty
for all y € R.
Consider now the continuous maps a,b : R — R defined as:
1 if y >0, 0 if y >0,
a(y)Z{_1 horwi and b(y):{_B(y) herwi
Ay Otherwise, A(yy Ootherwise.

Direct computations show that

for all y € R.
Since a(y) # 0 for all y € R, by Lemma 2.6 we can choose a diffeomorphism ¢ : R? — R?
satisfying that ¢|;yxr = Id and

d($)(0y) = < ZE;/)) (1) ) :

As in the previous case we define the map

[ (z,y) itz >0,
®(z,y) = { F(¢(—z,—y)) otherwise,

satisfying

Jmawien = (500 1) = (o aty V)
G OER () -

The same considerations as in the previous case show that ® is a C!-diffeomorphism that
conjugates F' and —Id. Since F and F are C'-conjugated this fact ends the proof of the theorem.
O
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