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Abstract We perform an analytical study of the dynamics of a multi-solute
model for water transport across a cell membrane under periodic fluctuations
of the extracellular solute molalities. Under the presence of non-permeating
intracellular solute, water volume experiences periodic oscillations if and only
if the extracellular non-permeating solute molality is positive in the average.
On the other hand, in the absence of non-permeating intracellular solute, a
sufficient condition for the existence of an infinite number of periodic solutions
of the model is provided. Such sufficient condition holds automatically in the
case of only one permeating solute. The proofs are based on classical tools
from the qualitative theory of differential equations, namely Brouwer degree,
upper and lower solutions and comparison arguments.

Keywords Cell volume · membrane transport · periodic oscillation ·
stability · Brouwer degree
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1 Introduction

Cells may experience volume changes as a result of water transport across the
cell membrane by osmosis. Living organisms count on homeostatic processes
for regulation of cell volume, but this equilibrium can be altered by changing
extracellular conditions. A good understanding of the dynamics of cell volume
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is critical in the study of the physiology of biological tissues, in particular in
evolving areas like pharmacokinetics or cryobiology.

In a realistic situation, there are a large number of chemical species that
can permeate across the cell membrane. Benson et al. (2011) propose a general
model capable to describe the basic aspects of the dynamics of cell volume
produced by active and passive transport of water and an arbitrary number of
solute species across the cell membrane. The proposed model is the following
system of ordinary differential equations

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

ẇk = bk

(
Mk(t)− wk

w1

)
, k = 2, . . . , n.

(1)

Here, w1(t) is the water volume and wk(t), k = 2, . . . , n are the amount of non-
negative solute species inside the cell. The parameter xnp ≥ 0 represents the
amount of non-permeating intracellular solute species (salts) and bk > 0 are
the relative decrease rates of permeating solutes. Finally, M1 : R → [0,+∞)
models the extracellular concentration of non–permeating solute and Mk :
R → [0,+∞) k = 2, . . . , n represent variations of the extracellular concentra-
tions of permeating solute species.

System (1) is the natural extension of a previous model by Hernández
(2007) that considered only the interplay between water volume and one per-
meating solute. As discussed by Hernández in the cited paper, the model
unifies a variety of relevant examples of solute–solvent transmembrane flux
models presented in the literature, see for instance (Kleinhans 1998; Katkov
2000; Katkov 2002; Benson et al. 2005) and the references therein.

As pointed out by Benson et al. (2011), for the case of constant molalities
Mk, k = 1, . . . , n, system (1) is autonomous and its study can be reduced
to an equivalent linear system, just multiplying by w1 all the components of
the vector field. This operation is equivalent to a time rescalling and does not
modify the geometry of the orbits. By using this reduction, Section 2 of Benson
et al. (2011) prove that system (1) has a unique equilibrium which is globally
asymptotically stable. The reparametrization to a linear system is also useful
when the functions Mk(t) are piece–wise constant and was used in Section 3
of the same paper to implement an optimal control scheme. Nevertheless, this
argument is not valid for more general cases on variable functions Mk(t).

In spite of the variety of homeostatic processes in living organisms, biolog-
ical parameters are not static. As a matter of fact, there is extensive evidence
of the existence of a circadian rhythm in plasma ion concentration in animals
(Kanabrocki et al. 1973; Bernardi et al. 1985; Sothern et al. 1996; Sennels et al.
2012; Fijorek et al. 2013). Periodic water intake or pharmacological treatments
may influence on such periodic fluctuations as well. On the other hand, the
interaction of circadian clocks and solute concentration plays an important
role in the physiology of plants (Haydon et al. 2011). In this paper, we are
interested in the case when the extracellular environment experiences periodic
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fluctuations. From now on, we assume that Mk : R→ [0,+∞) are continuous
and T -periodic functions, that is, there exists T > 0 such that

Mk(t+ T ) = Mk(t), k = 2, . . . , n

for every T . In this context, it is natural to look for T -periodic solutions and
their properties.

We distinguish two situations depending if non-permeating solute is present
(xnp > 0) or not (xnp = 0) in the cell. The first case is studied in Section 2,
whereas Section 3 is devoted to the second case. Finally, Section 4 presents
some conclusions and further remarks.

In the rest of the paper, CT is the space of continuous and T -periodic
functions. For a given h ∈ CT , we denote ‖h‖∞ = max

[0,T ]
h(t). The mean value

of a given h ∈ CT is denoted by

h =
1

T

∫ T

0

h(t)dt.

Throughout the paper, T -periodic solutions of (1) are understood in the clas-
sical sense, that is, a set w1, . . . , wn of T -periodic functions with continuous
derivatives satisfying (1) for all t. We only consider T -periodic solutions in
the range of physically consistent values, that is, w1(t) > 0 and wk(t) ≥ 0
k = 2, . . . , n for all t.

2 The case xnp > 0 .

In the model under consideration, xnp > 0 accounts for the presence of non–
permeating solute species in the cell. Our main result is as follows.

Theorem 1 Assume that xnp > 0. Then, system (1) has a T -periodic solution
if and only if M1 > 0.

The following lemma, which has interest by itself, plays a key role in the
proof of Theorem 1. For simplicity, let us define the function

γ(t) =
n∑
i=1

Mi(t).

Lemma 1 Assume that xnp > 0 and M1 > 0. Any eventual T -periodic solu-
tion w = (w1, . . . , wn) of system (1) satisfies the following bounds

xnp
‖γ‖∞

≤ w1(t) <
xnp

M1
+ Tγ,

xnp
‖γ‖∞

min
[0,T ]

Mk(t) ≤ wk(t) <
(
xnp

M1
+ Tγ

)
‖Mk‖∞ , k = 2, . . . , n

for every t ∈ [0, T ].
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Proof. Let w = (w1, . . . , wn) be a T -periodic solution of system (1). We divide
the proof into several steps

Step 1: w1(t) > 0 for every t. Write the system as

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

1

bk
ẇk = Mk(t)− wk

w1
, k = 2, . . . , n.

Adding all the equations, we get

ϕ̇ =
xnp
w1
−M1(t)

where ϕ = w1 +
∑n
k=2

wk

bk
is T -periodic. Therefore, integrating over [0, T ],

xnp

∫ T

0

1

w1(t)
dt = M1T > 0. (2)

By the integral mean value theorem, there exists t0 such that w1(t0) > 0.
Besides, due to the singular term

xnp

w1
, a solution w1 must have a constant

sign. In conclusion, w1(t) is always positive.
Step 2 wk(t) > 0 for all t, k = 2, . . . , n. For a given k, let t0 ∈ [0, T ] be such that

wk(t0) = min
[0,T ]

wk(t). Obviously, ẇk(t0) = 0. Hence, the k-th equation reads

0 = Mk(t0)− wk(t0)

w1(t0)
,

that is,

wk(t0) = Mk(t0)w1(t0) ≥ 0. (3)

Step 3 w1(t) ≥ xnp
‖γ‖∞

for every t. Take t0 ∈ [0, T ] such that w1(t0) = min
[0,T ]

w1(t).

Evaluating in the first equation

0 =
xnp
w1(t0)

+

n∑
j=2

wj(t0)

w1(t0)
− γ(t0).

Then, by using Step 2,

xnp
w1(t0)

= γ(t0)−
n∑
j=2

wj(t0)

w1(t0)
≤ ‖γ‖∞ ,

and the conclusion follows.
Step 4 wk(t) ≥ xnp

‖γ‖∞
min
[0,T ]

Mk(t) for all t, k = 2, . . . , n. Trivial from (2) and Step

3.
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Step 5 min
[0,T ]

w1(t) ≤ xnp

M1

. Coming back to (2), by the integral mean value theorem,

there exists t0 such that
xnp
w1(t0)

= M1.

Then, min
[0,T ]

w1(t) ≤ w1(t0) =
xnp

M1

.

Step 6 w1(t) <
xnp

M1

+Tγ for every t. By periodicity, we can take t1 < t2 < t1 +T

such that w1(t1) = max
[0,T ]

w1(t), w1(t2) = min
[0,T ]

w1(t). From the first equation

of the system,
ẇ1(t) > −γ(t).

Integrating on [t1, t2] we get

w(t2)− w(t1) >

∫ t2

t1

γ(t)dt > −Tγ.

Therefore,
max
[0,T ]

w1(t) = w1(t1) < w1(t2) + Tγ,

and the conclusion follows directly from Step 5.

Step 7 wk(t) <
(
xnp

M1
+ Tγ

)
‖Mk‖∞ for all t, k = 2, . . . , n. For a given k, take

t1 ∈ [0, T ] such that wk(t1) = max
[0,T ]

wk(t). Evaluating on the kth equation,

0 = Mk(t1)− wk(t1)

w1(t1)
.

Thus,
wk(t1) = w1(t1)Mk(t1) ≤ w1(t1) ‖Mk‖∞ ,

and the proof is finished by Step 6.
ut

To prove Theorem 1, we use a well-known continuation theorem by Capietto-
Mawhin-Zanolin, which is stated below for the reader’s convenience.

Proposition 1 (Capietto et al. 1992) Let Ω be a domain contained in Rn.
Let us consider a continuous homotopy f = f(t, x;λ) : [0, T ]×Ω× [0, 1]→ Rn
such that F (t, x) = f(t, x; 1) and f0(x) = f(t, x; 0), where f0 : Ω → Rn
is a given continuous function. Assume that there is a compact set K ⊂ Ω
containing all the T -periodic solutions of the homotopic system

x′ = f(t, x;λ)

and suppose that {z ∈ Rn : f0(z) = 0} ⊂ K. Assume that

dB(f0, G, 0) 6= 0

where G ⊂ Rn is an open subset containing K. Then, system x′ = F (t, x) has
at least one T -periodic solution with values in K.
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Here, dB(f0, G, 0) is the Brouwer topological degree of the vector field f0
(one can consult for instance the books by Deimling (1985) or Krasnoselskii
and Zabreiko (1984) for the formal definition and main properties). To apply
Proposition 1, first we have to embed system (1) into a suitable homotopic
system. To this aim, we define the functions

Mk,λ(t) = λMk(t) + (1− λ)Mk, k = 1, . . . , n

with λ ∈ [0, 1]. Then, the homotopic system

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

Mi,λ(t),

ẇk = bk

(
Mk,λ(t)− wk

w1

)
, k = 2, . . . , n.

(4)

defines a continuous deformation from the original system (1) for λ = 1 into
the autonomous system

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

M i,

ẇk = bk

(
Mk −

wk
w1

)
, k = 2, . . . , n

(5)

for λ = 0. Moreover, note that

Mk,λ = Mk,

min
[0,T ]

Mk(t) ≤ min
[0,T ]

Mk,λ(t) ≤ ‖Mk,λ‖∞ ≤ ‖Mk‖∞

for all λ ∈ [0, T ], k = 1, . . . , n. This fact implies that the uniform bounds given
by Lemma 1 remain valid for the T -periodic solutions of the whole homotopic
system (4). Therefore, to conclude the proof it remains to check that the
Brouwer degree of the vector field f0(w) given by system (5) is different from
zero.

In our case, Ω = R+ × Rn−1 and K is the closed box in Ω defined by the
lower and upper bounds given in Lemma 1. The vector field f0 : Ω → Rn is
defined by

f0(w) =

xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

M i, b2

(
M2 −

w2

w1

)
, . . . , bn

(
Mn −

wn
w1

) .

For regular vector fields, the simplest way to compute the degree is the follow-
ing linearization principle: if f is of class C1 and has a finite number of zeroes
in G, say f−1(0) = {ξ1, . . . , ξm}, then the Brouwer degree is explicitly given
by the formula

dB(f,G, 0) =

m∑
i=1

sgn (det Jf(ξi)) , (6)
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where Jf is the Jacobian matrix of f . In our case, f0 ∈ C1(Ω) and the unique
point such that f0(ξ) = 0 is

ξ =
xnp

M1

(
1,M2, . . . ,Mn

)
.

Computing the Jacobian matrix of f0 and evaluating in ξ, after simple row
manipulation on the determinant, we get

det Jf0(ξ) =
(
M1

xnp

)n
b2 · · · bn det


−
∑n
k=1Mk 1 1 · · · · · · 1
M2 −1 0 · · · · · · 0
M3 0 −1 0 · · · 0

... 0
Mn 0 0 · · · 0 −1



=
(
M1

xnp

)n
b2 · · · bn det


−M1 0 0 · · · · · · 0
M2 −1 0 · · · · · · 0
M3 0 −1 0 · · · 0

... 0
Mn 0 0 · · · 0 −1


= (−1)nM1

(
M1

xnp

)n
b2 · · · bn.

In consequence, dB(f0, G, 0) = (−1)n 6= 0, where G is an open and bounded
set such that K ⊂ G ⊂ G ⊂ Ω. Thus, the sufficient part of Theorem 1 is
proved.

To complete the proof of Theorem 1, it remains the “only if” part, that
is, if system (1) has a T -periodic solution then M1 > 0. To prove it, we write
system (1) as

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

1

bk
ẇk = Mk(t)− wk

w1
, k = 2, . . . , n.

Then, if there exists a T -periodic solution, adding all the equations and inte-
grating over a period, we get

M1 =
1

T

∫ T

0

xnp
w1(t)

dt > 0,

and the proof is done.

3 The case xnp = 0.

In this section, we analyze the dynamics of system (1) when xnp = 0, that is,
when the cell does not contain non-permeating solute species. In this case, the
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system can be written as

ẇ1 =

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

1

bk
ẇk = Mk(t)− wk

w1
, k = 2, . . . , n.

Adding all the equations,

ϕ̇ = −M1(t),

where ϕ = w1+

n∑
k=2

wk
bk

. Remember that M1 : R→ [0,+∞) is the extracellular

concentration of non–permeating solute. Therefore,

ϕ(t) = ϕ(0)−
∫ t

0

M1(s)ds.

In consequence, if M1 > 0 then

w1(t) ≤ ϕ(t) = ϕ(0)−
∫ t

0

M1(s)ds→ −∞ as t→ +∞.

But remember that w1(t) is the water volume inside the cell, so physically
if M1 > 0 the water volume is zero at a finite time, regardless the initial
conditions. Therefore, a necessary condition for the existence of periodic states
is M1(t) ≡ 0. The next result considers a particular case where such condition
is also sufficient.

Theorem 2 Assume that xnp = 0, M1(t) ≡ 0 and

(H1) there exists b > 0 such that b = bk for every k = 2, . . . , n.

Then, system (1) has infinitely many T -periodic solutions.

In the proof, we will need the following basic result for a first order scalar
equation with a singular nonlinearity.

Lemma 2 For any h ∈ CT with hm := min
[0,T ]

h(t) > 0 and a > 0, the first order

equation

ẇ1 =
a

w1
− h(t) (7)

has a unique T -periodic solution w1(t). Moreover, w1 satisfies the explicit
bounds

a

‖h‖∞
≤ w1(t) ≤ a

hm
for all t. (8)
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Proof. To prove the existence, we make use of the classical method of upper
and lower solutions. Among the many variants of this method, we focus our
attention on the exposition by Nkashama (1989). According to the definition
therein, α = a

‖h‖∞
is an upper solution and β = a

hm
is a lower solution for eq.

(7). By Theorem 2.2 of (Nkashama1989), (7) has a T -periodic solution with
values between α and β.

To prove the uniqueness, let us assume by contradiction that there exist
two different solutions w1, ŵ1 of eq. (7). For a first order equation with regular
nonlinearity on its domain of definition, the flux is ordered, that is, two solu-
tions do not cross each other, as a consequence of the uniqueness of solution
for the initial value problem. Hence, we can assume w1(t) > ŵ1(t) for all t. If
d(t) = w1(t)− ŵ1(t), by subtracting the respective equations,

ḋ =
a

w1
− a

ŵ1
< 0, for all t.

Now, an integration on [0, T ] leads to contradiction. ut

Proof of Theorem 2. By repeating the argument at the beginning of this

section, we have that ϕ̇ = 0, where ϕ(t) = w1(t)+
1

b

n∑
k=2

wk(t). In consequence,

ϕ(t) is a conserved quantity of the system, that is, there exists C > 0 such
that ϕ(t) = C for all t.

Now, we will use the conserved quantity to decouple the first equation.
From ϕ(t) = C we get

n∑
k=2

wk(t) = b(C − w1(t)) for all t. (9)

Inserting this summation into the first equation of system (1), one gets the
decoupled equation

ẇ1 =
bC

w1
− b−

n∑
i=2

Mi(t). (10)

Now, we apply Lemma 2 with a = bC and h(t) = b +
∑n
i=2Mi(t). For any

C > 0, there exists a unique T -periodic solution w1,C of (10), such that

bC

b+ ‖
∑n
i=2Mi(t)‖∞

≤ w1,C(t) ≤ bC

b+ min
[0,T ]

n∑
i=2

Mi(t)

for all t. (11)

Once w1,C is fixed, the rest of equations of the system are written as

ẇk +
b

w1,C(t)
wk = bMk(t), k = 2, . . . , n, (12)

and can be solved as linear equations. In effect, By Fredholm’s alternative, eq.
(12) has a unique T -periodic solution wk,C , k = 2, . . . , n.
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In conclusion, we have demonstrated the existence of a uniparametric fam-
ily wC = (w1,C , . . . , wn,C) of T -periodic solutions with C > 0. ut

In the previous result, the first component w1,C(t) of the uniparametric
family T -periodic solutions of system (1) represents periodic oscillations of
the water volume. In the final result of this section, it is proved that the
water volume determined by arbitrary initial conditions of the system tends
asymptotically to one of these periodic oscillations.

Theorem 3 Assume the conditions of Theorem 2. Let us denote by w(t, w0) =
(w1(t, w0), . . . , wn(t, w0)) the unique solution of system (1) with initial condi-
tion w(0) = w0 = (w0

1, . . . , w
0
n). Then,

lim
t→+∞

|w1(t, w0)− w1,C0
(t)| = 0,

where C0 = w0
1 +

1

b

n∑
k=2

w0
k.

For the proof, repeating the arguments at the beginning of the proof of
Theorem 3, it is shown that w1(t, w0) verifies eq. (10) with C = C0. On the
other hand, w1,C0(t) is the unique T -periodic solution of (10) with C = C0,
by Lemma 2. Then the proof is finished once the following lemma is proved.

Lemma 3 Let be h ∈ CT with hm := min
[0,T ]

h(t) > 0 and a > 0. Then, the

unique T -periodic solution of eq. (7) given by Lemma 2 is globally asymptoti-
cally stable.

Proof. The argument is similar to that used to prove the uniqueness. Let w1

be the unique T -periodic solution and ŵ1 any other solution of eq. (7). We
have to prove that d(t) = w1(t)− ŵ1(t) tends to zero as t→ +∞.

Again by the order of the flux, we can assume w1(t) > ŵ1(t) for all t (the
reciprocate inequality is handled analogously). By subtracting the respective
equations,

ḋ =
a

w1
− a

ŵ1
< 0, for all t. (13)

Therefore, d(t) is a positive and strictly decreasing function, so in consequence
it tends to a constant and ḋ(t)→ 0 as t→ +∞. For (13), we can write

d(t) = −1

a
w1(t)ŵ1(t)ḋ(t),

and passing to the limit, the proof is concluded. ut
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4 Conclusions and final remarks.

We have studied the dynamical behavior of a general model recently proposed
in the literature for the evolution of water transport across a cell membrane
under the influence of an arbitrary number of permeating solutes, when the
extracellular solute molalities change periodically as an expression of circa-
dian rhythms. We have shown that the situation is different depending if the
cell contains non-permeating solute species (salts) or not. In the first case
(xnp > 0), the system has at least one periodic solution if and only if the
extracellular molality of non-permeant solute (M1) is positive (Theorem 1).
Moreover, we have provided explicit bounds of the oscillations of water vol-
ume and solute concentrations (see Lemma 1). From a biological point of
view, our main result suggests that if solute species are added and removed
periodically in the extracellular medium, the water cell volume experiences
periodic oscillations, excluding resonant responses that may destroy the cell.
For constant extracellular molalities, such periodic solution corresponds to the
unique asymptotically stable equilibrium found by Benson et al. (2011). Our
result only guarantees the existence of periodic solution, thus the question of
uniqueness and stability (even in the case n = 2) remains as an interesting
open problem.

On the other hand, in the absence of non-permeating solute (xnp = 0,
M1(t) ≡ 0), we have proved the existence of an infinite number of T -periodic
solutions when the rate constants bk are the same for all the permeating solutes
(hypothesis (H1)). Furthermore, for any initial condition the water volume
variation is asymptotically periodic (Theorem 3), and we have explicit bounds
on the asymptotic periodic profile depending on the initial conditions, see
(11). Note that by means of (11), w1,C(t) tends uniformly to +∞ (resp. 0)
if C → +∞ (resp. 0). Therefore, we the asymptotic periodic profile of water
volume is modulated attending to the initial conditions. Of course, (H1) is
always valid for the case n = 2 (that is, only one permeating solute). In the
general case, it is undeniable that hypothesis (H1) is a degenerate condition of
limited practical use, since in general different solute species will have different
relative decrease rates. However, this result is interesting in the sense that it
raises the question if results analogous to those of Section 3 can be proved
for an arbitrary number of solutes with different rates bk. This is a nice open
problem to be considered in the future.

As a final remark, we have chosen the extracellular concentrations Mk(t)
as continuous functions for simplicity, but exactly the same arguments can be
developed with minor modifications for piece–wise continuous functions (like
those considered in the example from Cryobiology discussed by Benson et al.
(2011)), by considering the solutions of (1) in the Carathéodory sense (that
is, in the space W 1,1

loc ).

Acknowledgements I wish to thank two anonymous reviewers for their valuable com-
ments and suggestions.
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