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1 Introduction

Let X : U ⊂ Rd → Rd be a Lipschitz continuous vector field defined on an open and bounded
neighborhood of the origin. Assume that the origin is the only zero of X, that is

X(0) = 0 and X(x) 6= 0 if x ∈ U \ {0}.

Associated to this vector field is the autonomous system

ẋ = X(x), (1)

having x = 0 as the unique equilibrium. Next we consider the perturbed system

ẋ = X(x) + p(t, x, ε) (2)

where p : R× U × [0, 1] → Rd is continuous, T -periodic in its first variable and such that

p(t, x, 0) ≡ 0.

We say that the equilibrium x = 0 persists as a T -periodic solution if, given any p in the
above conditions, there exists a T -periodic solution ϕε(t) of (2) for small ε > 0 and

lim
ε↘0

||ϕε(t)|| = 0 uniformly in t ∈ R. (3)

There are classical results on persistence based on the use of the Implicit Function The-
orem or in Degree Theory (see [5, 2, 6]). In this paper we are interested in finding sharp
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conditions on X for persistence. In the search of these conditions we will find connections
with several topological notions.

Let us discuss first the link with topological degree. Very simple examples show that
there are non-persistent equilibria such the degree deg(X, U, 0) takes any integer value. The
notation deg will be employed for Brouwer degree in Rd. One of these examples is the
vector field X(z, w) = (zn, iw) where (z, w) ∈ C × C ≡ R4 and n = 1, 2, . . . In this case
deg(X, U, 0) = n and the system (2) has no T -periodic solutions if T = 2π and p(t, z, w, ε) =
(0, εeit). To obtain examples with negative degree it is sufficient to replace zn by zn. However
the condition

deg(X, U, 0) 6= 0

implies persistence as soon as one imposes a separation condition to the origin. This means
that x = 0 is not immersed in a continuum of T -periodic solutions of (1).

A diffeotopy is a path of diffeomorphisms. This notion is usually employed in Differential
Topology but it is also very natural in the context of non-autonomous differential equations.
Actually the general solution of one of these equations can be interpreted as a diffeotopy. We
will use this concept to obtain a negative result. It will be shown that x = 0 is not persistent
(period T ) if the time T -map associated to (1) can be deformed (via a diffeotopy) to a map
without fixed points. In particular this result can be applied to T -isochronous systems. The
system (1) is T -isochronous around the origin if there exists a neighborhood V of x = 0 such
that every solution of (1) passing through V is T -periodic.

Hopf’s classification theorem in the sphere Sd says that two continuous maps f1, f2 :
Sd → Sd are homotopic if and only if degSd(f1) = degSd(f2). Here degSd denotes the degree
on the compact manifold Sd. We will employ this classical result to prove that x = 0 does
not persist if deg(X, U, 0) = 0. Collecting all these results it seems that we are close to a
characterization of persistence. This is indeed the case in dimension d = 2, as shown by the
following result.

Theorem 1. Assume d = 2. In the previous setting the following statements are equivalent.

(i) x = 0 persists as a T -periodic solution.

(ii) The system (1) is not T -isochronous around the origin and deg(X, U, 0) 6= 0.

The above characterization is no longer valid for d ≥ 3. This is shown by the system

ẋ1 = x2, ẋ2 = −x1, ẋ3 = −x3.

In this case (ii) holds with deg(X, U, 0) = −1 but x = 0 does not persist, as it is easily
shown using the perturbation p(t, x, ε) = (0, ε sin t, 0). Notice that in this example the plane
x3 = 0 is T -isochronous. Later we will construct another example of non-persistence where
the ”isochronous set” is a cone instead of a plane. It seems that an appropriate notion
of partial isochronicity would be required in order to extend the above theorem to higher
dimensions. We refer to the end of the paper for more comments in this direction.
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2 A sufficient condition for persistence

In this section we work in arbitrary dimension. We will introduce the notion of separated
equilibrium (period T ) but first we need to present some notation. It will be assumed that the
vector field is Lipschitz-continuous and so there is uniqueness for the initial value problem
associated to (1). The solution of (1) satisfying x(0) = p will be denoted by φt(p). By
continuous dependence we know that φt(p) is well defined on [0, T ] when p is sufficiently
close to the origin. Let us consider the set of T -periodic points

PerT = {p ∈ U / φT (p) = p}.

Definition 2. The equilibrium x = 0 is separated (period T ) if {0} is the connected
component of PerT containing the origin.

To illustrate this notion let us consider the 2-dimensional center

ẋ = ω
(
||x||2

)
Jx

where J =

(
0 1

−1 0

)
and ω : [0, δ[→ R is a smooth function with ω > 0 everywhere. The

quantity ||x||2 is a first integral and the set PerT is composed by the union of the origin and
all circumferences having radius ρ <

√
δ and such that

ω(ρ2) ∈ 2π

T
Z.

Thus, x = 0 is separated unless ω is constant in a neighborhood of the origin with ω ≡
2π
T

N, N = 1, 2, ... .
Notice that x = 0 can be separated even if it is not isolated as a T -periodic solution.

This is the case if ω is a C∞-function having sequences ρn ↘ 0 and rn ↘ 0 such that

ω(ρ2
n) =

2π

T
and ω(r2

n) 6= 2π

T
for each n.

Next result shows that this notion is useful for persistence.

Proposition 3. Assume that deg(X, U, 0) 6= 0 and x = 0 is separated (period T ). Then
x = 0 persists as a T -periodic solution.

For the proof we need a preliminary result.

Lemma 4. Assume that A is a compact subset of Rd containing the origin and satisfying
the following property. There exists U neighborhood of the origin such that for any V ⊂ U
an open set with 0 ∈ V , we have A ∩ ∂V 6= ∅. Then A contains a non-trivial continuum K
with 0 ∈ K.

Proof. Assume by contradiction that the connected component of A containing the origin is
a singleton. Then there exist closed and non-void sets F1 and F2 with

F1 ∩ F2 = ∅, F1 ∪ F2 = A, 0 ∈ F1 ⊂ U.
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This can be justified using Corollary 1, page 83 of [7]. The two sets F1, F2 are compact and
so there exists δ > 0 such that

||x− y|| ≥ δ for each x ∈ F1 and y ∈ F2.

Let F ε
1 =

{
x ∈ Rd | dist(x, F1) < ε

}
be the ε-neighborhood of F1. We select ε < δ so that

F ε
1 ⊂ U and

F ε
1 ∩ F2 = ∅.

Since F ε
1 is an open neighborhood of the origin contained in U , we know by assumption that

A ∩ ∂F ε
1 6= ∅.

Points in this intersection satisfy dist(x, F1) = ε and so they cannot lie in F1 or F2. This is
a contradiction since their union covers A.

Proof of Proposition 3. We claim that the following property holds

(D) there exists a sequence Un ⊂ Rd of open neighborhoods of the origin with diam Un → 0
as n →∞ and such that PerT ∩∂Un = ∅ for each n.

To prove this claim we are going to employ Lemma 4. Let W be a compact neighborhood
of x = 0 with W ⊂ U and such that φt(p) is well-defined on [0, T ] if p ∈ W . Define
A = PerT ∩W and assume, by a contradiction argument, that (D) does not hold. Then
Lemma 4 implies that PerT contains a non-trivial continuum emanating from the origin.
This is not possible since we are assuming that x = 0 is separated.

In order to prove that x = 0 persists as T -periodic solution we employ Corollary 7 from
[1] for each bounded and open set Un given by property (D). Since Un ⊂ U and 0 is the only
zero of X in U, the hypothesis deg(X, U, 0) 6= 0 assures that deg(X, Un, 0) 6= 0. It is easy
to see, based on (D) and deg(X, Un, 0) 6= 0, that the hypotheses of Corollary 7 from [1] are
fulfilled. Then there is εn > 0 such that for 0 < ε < εn system (2) has at least one T -periodic
solution ϕε(t) such that ϕε(t) ∈ Un for all t ∈ [0, T ]. Since diam Un → 0 as n → ∞, there
exists ϕε(t) that satisfies (3).

3 Diffeotopies and non-persistence

A diffeotopy of class Ck is a Ck-map

h : Rd × [0, 1] → Rd, (x, λ) 7→ h(x, λ)

such that, for each λ, hλ = h(·, λ) is a diffeomorphism of Rd.

Theorem 5. Assume that there exists a neighborhood W of 0 ∈ Rd and a C2-diffeotopy h
such that h0 = id and hλ ◦φT has no fixed points on W when λ ∈]0, 1]. Then x = 0 does not
persist as a T -periodic solution.
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Before the proof we present two examples where the theorem applies.

Example 1. Isochronous systems.

When the system (1) is isochronous the diffeotopy

h(x, λ) = x + λv,

can be used. Here v ∈ Rd \ {0} is a fixed vector. Since φT is the identity on a neighborhood
of the origin,

hλ(φT (x)) = hλ(x) = x + λv 6= x if λ ∈]0, 1].

From the theorem we conclude that isochronicity implies non-persistence. We stress that in
the previous discussion the vector field was only Lipschitz-continuous. For vector fields of
class C1 we can give a more direct proof of non-persistence. Fix v ∈ Rd \ {0} and define
y(t, q, ε) = φ(t, q + εvt). Here we are using the notation φ(t, p) = φt(p) for the flow. The
functions y(t, q, ε) are the solutions of

ẏ = X(y) + ε
∂φ

∂p
(t, φ−t(y)) v.

The perturbation p(t, y, ε) = ε∂φ
∂p

(t, φ−t(y)) v is T -periodic in the region where φT (y) = y
and the solutions are not T -periodic. This shows that y = 0 is not persistent.

Example 2. An ”isochronous cone”.

Consider the polynomial

q(x1, x2, x3) = (x2
3 − x2

1 − x2
2)

2

and the vector field

X(x) = (x2 − q(x)x1,−x1 − q(x)x2,−q(x))t.

Let C be the double cone defined by the equation q = 0. This set is invariant under the flow
φt. The 2π-periodic solutions x1(t) = α sin t, x2(t) = α cos t, x3(t) = α, (α ∈ R) produce
closed orbits foliating C. Outside C the system satisfies

d

dt
(x3(t)) < 0 (4)

and so the remaining orbits are not closed. The diffeotopy h(x, λ) = x + λe1, e1 = (1, 0, 0)t

is such that hλ ◦ φ2π has no fixed points if λ > 0. To prove this we notice that π3 ◦ hλ = π3,
where π3 is the projection defined by π3(x) = x3. If p ∈ R3 \ C we use (4) and obtain

π3(hλ ◦ φ2π(p)) = π3(φ2π(p)) < π3(p).

This implies that hλ ◦ φ2π(p) 6= p if p 6∈ C. If p ∈ C we notice that φ2π(p) = p and so
hλ(φ2π(p)) = p + λe1 6= p. It is easy to prove that x = 0 is the only critical point of X.

Remark. In the previous examples the diffeotopy was just a translation. The use of a
general h gives more flexibility to the previous result. As a simple instance assume that
y = ϕ(x) is a diffeomorphism of R3 with ϕ(0) = 0. If we change variables in the above
example the diffeotopy h(y, λ) = ϕ(ϕ−1(y) + λe1) would be admissible.
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Proof. Step 1. Construction of a Carathéodory perturbation.
Define Φ(t, x, ε) = h

(
x, εt

T

)
, t ∈ [0, T ]. Then Φ : [0, T ]× Rd × [0, 1] → Rd is of class C2 and

satisfies

Φ(0, x, ε) = x, Φ(t, x, 0) = x

Φ(T, φT (x), ε) 6= x if x ∈ W, ε ∈]0, 1]

Φ(t, ·, ε) is a diffeomorphism of Rd with inverse Ψ(t, ·, ε) = h−1
εt/T .

From the Implicit Function Theorem we deduce that also Ψ is C2.
Next we transform ẋ = X(x) by means of the change of variables y = Φ(t, x, ε). Notice

that it is not T -periodic in t and we only work on [0, T ]. The new system is

ẏ =
∂Φ

∂t
(t, Ψ(t, y, ε), ε) +

∂Φ

∂x
(t, Ψ(t, y, ε), ε) X (Ψ(t, y, ε))

=: F∗(t, y, ε)

Since Ψ(t, y, 0) = y for all (t, y) ∈ [0, T ] × Rd we can find ε∗ > 0 and V an open
neighborhood of the origin, such that if (t, y, ε) ∈ [0, T ] × V × [0, ε∗] then Ψ(t, y, ε) ∈ U .
Therefore F∗ : [0, T ]× V × [0, ε∗] → Rd is continuous and Lipschitz-continuous with respect
to y. We notice that F∗(0, y, ε) and F∗(T, y, ε) probably do not coincide but nevertheless
consider the T -periodic extension

F : R× V × [0, ε∗] → Rd, F (t + T, y, ε) = F (t, y, ε), F (t, y, ε) = F∗(t, y, ε) if t ∈ [0, T [.

This function is not continuous but satisfies Carathéodory conditions. The solution of the
initial value problem (for each q ∈ V )

ẏ = F (t, y, ε), y(0) = q

on the interval [0, T ] is
y(t, q, ε) = Φ (t, φt(q), ε) (5)

where φt is the flow associated to ẋ = X(x).
Let K0 ⊂ K ⊂ V ∩W be compact neighborhoods of the origin such that if q ∈ K0 then

y(t, q, ε) ∈ int(K) (the interior of K) if t ∈ [0, T ]. Again in this step it may be necessary to
decrease ε. We notice that

ẏ = F (t, y, ε) (6)

has no T -periodic solutions starting at K0 if ε > 0. Finally we observe that

p(t, y, ε) := F (t, y, ε)−X(y)

satisfies
lim
ε→0

p(t, y, ε) = 0 uniformly in t ∈ [0, T ], y ∈ K. (7)

To justify this, notice that Ψ(t, y, 0) = y,
∂Φ

∂t
(t, x, 0) = 0,

∂Φ

∂x
(t, x, 0) = Id. Once we know

that the system (6) can be seen as a perturbation of ẋ = X(x) it could seem that the result
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is already proven. This is not the case since the perturbation p is not continuous, but only
satisfies Carathéodory conditions.

Step 2. Regularization

Given δ > 0 define

Fδ(t, y, ε) =
1

2δ

t+δ∫
t−δ

F (τ, y, ε)dτ.

Then Fδ : R× V × [0, ε∗] → Rd is T -periodic and continuous.
Assume now that ∆ : [0, ε∗] → R is a given continuous function with ∆(0) = 0 and

∆(ε) > 0 if ε > 0. The function

G(t, y, ε) =

{
F∆(ε)(t, y, ε), ε ∈]0, ε∗]

X(y) , ε = 0

is T -periodic in t and continuous on R×K× [0, ε∗]. The continuity can be proved using (7).
We will prove that, for an appropriate choice of ∆, the equation

ẏ = G(t, y, ε) =: X(y) + p̂(t, y, ε) (8)

has no T -periodic solutions starting at K0 when ε is positive and small. This will prove that
the origin does not persist as T -periodic solution.

To construct ∆ we define

ρ(ε) = min
q∈K0

||h (φT (q), ε)− q||

and

ω(δ, ε) = sup
y∈K

∫ T

0

||F (t, y, ε)− Fδ(t, y, ε)||dt.

Notice that ρ is continuous with ρ(0) = 0, ρ(ε) > 0 if ε > 0 and

lim
δ↘0

ω(δ, ε) = 0 uniformly in ε ∈ [0, ε∗]. (9)

Finally, let L > 0 be a Lipschitz constant for F in K with respect to y. It is easily checked
that the same Lipschitz constant can be employed for Fδ, that is

||Fδ(t, y1, ε)− Fδ(t, y2, ε)|| ≤ L||y1 − y2|| if y1, y2 ∈ K.

In particular this property will also hold for G. Using (9) we can find a continuous ∆ :
[0, ε∗] → R with ∆(0) = 0, ∆(ε) > 0 if ε > 0 and

eLT ω (∆(ε), ε) ≤ ρ(ε)

2
for each ε.

Next we compare the initial value problems associated to (6) and (8).
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The corresponding solutions are denoted by y(t, q, ε) and ŷ(t, q, ε). The size of ε is
restricted so that if q ∈ K0 then ŷ(t, q, ε) ∈ int(K) on [0, T ]. The associated Volterra
integral equations lead to the inequalities for t ∈ [0, T ],

||y(t, q, ε)− ŷ(t, q, ε)|| ≤
∫ t

0

||F (s, y(s, q, ε), ε)−G (s, ŷ(s, q, ε), ε) ||ds

≤
∫ t

0

||F (s, y(s, q, ε), ε)− F∆(ε) (s, y(s, q, ε), ε) ||ds

+

∫ t

0

||G (s, y(s, q, ε), ε)−G (s, ŷ(s, q, ε), ε) ||ds

≤ ω (∆(ε), ε) + L

∫ t

0

||y(s, q, ε)− ŷ(s, q, ε)| |ds.

From Gronwall’s Lemma,

||ŷ(T, q, ε)− q|| ≥ ||y(T, q, ε)− q|| − ||y(T, q, ε)− ŷ(T, q, ε)|| ≥ ρ(ε)− eLT ω (∆(ε), ε) > 0,

where we have used (5).

4 Vector fields with zero degree

This section deals with general continuous vector fields X : U ⊂ Rd → Rd satisfying

X(0) = 0 and X(x) 6= 0 if x ∈ U \ {0}.

The assumption of Lipschitz-continuity will play no role. The main result of this section is
the following.

Theorem 6. In the previous setting assume that

deg(X, U, 0) = 0.

Then x = 0 does not persists as a T -periodic solution.

The proof of this theorem will require two preliminary results which can be of independent
interest. We employ the notations Br =

{
x ∈ Rd : ||x|| < r

}
and Sd−1 =

{
x ∈ Rd : ||x|| = 1

}
.

Proposition 7. Let Y : Br ⊂ Rd → Rd be a continuous vector field defined on the closure
of the ball Br and assume that it satisfies

Y (0) = 0 and Y (x) 6= 0 if x ∈ Br \ {0}, deg(Y,Br, 0) = 0.

Then for each ε ∈]0, r[ there exists a continuous vector field Yε : Br ⊂ Rd → Rd such that

Yε(x) = Y (x) if ε ≤ ||x|| ≤ r,
Yε(x) 6= 0 for all x ∈ Br and
lim
ε↓0

Yε(x) = Y (x) uniformly in x ∈ Br.
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Proof. It is inspired by the proof of Theorem 5.2 of Chapter 1 in the book [5]. First we
consider the map on the sphere

ϕε : Sd−1 → Sd−1, x 7→ Y (εx)

||Y (εx)||
.

There is a well known connection between the degree in balls of Rd and the degree in Sd−1.
See in particular [3]. It implies that degSd−1(ϕ) = deg(Y,Br, 0) = 0. Hopf’s theorem says
that homotopy classes in the sphere are classified by degree (see [5] or [4]). This implies
that ϕε must be homotopic to constant maps. Let us fix a point y∗ in Sd−1 and consider a
continuous map

Φε : Sd−1 × [0, 1] → Sd−1, (x, λ) 7→ Φε(x, λ) = Φε
λ(x)

with Φε
1 = ϕε and Φε

0(x) = y∗ for each x ∈ Sd−1. Once the homotopy Φε has been constructed,
we define the modified vector field

Yε(x) =


ε y∗ if x = 0(
||x||
ε
||Y (x)||+ ε− ||x||

)
Φε

(
x
||x|| ,

||x||
ε

)
if 0 < ||x|| ≤ ε

Y (x) if ε < x ≤ r.

The claimed properties of Yε are easily checked. Perhaps the most delicate point is the
uniform convergence of Yε to Y . This follows from the estimate

||Y (x)− Yε(x)|| ≤ ε + 2 max
||x||≤ε

||Y (x)||, x ∈ Br.

Proposition 8. Let us fix T > 0, ρ < r and a vector field Z : Br ⊂ Rd → Rd of class C1

and such that
Z(x) 6= 0 for all x ∈ Br.

Then there exists a sequence of vector fields (Zn) of class C1
(
Br, Rd

)
such that Zn → Z

uniformly in Br and, for each n, the system

ẋ = Zn(x)

has no T -periodic solutions in Bρ.

Proof. Let us first recall some results on vector fields defined on compact manifolds which are
obtained in the proof of Kupka-Smale Theorem. We follow [8] for the proof of this theorem
and the notations.

Let M be a compact manifold and let X1(M) be the Banach space of C1 vector fields
endowed with the C1 norm. It is known that the class of vector fields having a finite number
of periodic orbits with period ≤ T is dense in X1(M). We shall employ this fact for the case
M = Sd. Notice that it was also employed in the paper [1].

Let us place the sphere Sd so that it is tangent to Rd at the south pole S and consider
the stereographic projection from the north pole N , π : Sd−1 \ {N} → Rd. We can transport
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locally the vector field Z to the sphere. This means that we consider a vector field Ẑ ∈
X1

(
Sd

)
such that on the ball of radius ρ < r,

Z(x) = dπy

(
Ẑ(y)

)
if x ∈ Bρ and π(y) = x.

Notice that, by construction, the flows induced by Z and Ẑ are equivalent in small neigh-
borhoods of x = 0 and y = S. Let µ > 0 be such that

||Z(x)|| ≥ µ if x ∈ Bρ.

This is possible because we know that Z does not vanish on Br.

The vector field Ẑ can be approximated by a sequence
(
Ẑn

)
in X1

(
Sd

)
such that the

associated flows have only a finite number of closed orbits with period ≤ T . We transport
these vector fields to Bρ by means of the formula

Z̃n(x) := dπy

(
Ẑn(y)

)
if x ∈ Bρ, π(y) = x.

Then Z̃n converges to Z in C1
(
Bρ, Rd

)
. In particular, for large n,

||Z̃n(x)|| ≥ µ

2
if x ∈ Bρ

and so Z̃n has no equilibria in Bρ.
Let us fix n and denote by τ1, . . . , τk the minimal periods of the closed orbits of the

system
ẋ = Z̃n(x), x ∈ Bρ.

Notice that these periods as well as the number k may depend upon n. Let us fix a number
γn lying in ]1, 1 + 1/n] and such that

τi 6= γn
T

N
for each 1 ≤ i ≤ k and N = 1, 2, . . . .

This is always possible because the set {Nτi/T : i = 1, . . . , k, N = 1, 2, . . . } is countable
and so cannot cover the whole interval ]1, 1 + 1/n]. Finally we consider the modified vector
fields

Zn = γnZ̃n.

It is clear that Zn converges to Z in C1
(
Bρ, Rd

)
. Moreover Zn has no equilibria on Bρ and

the admissible periods for a closed orbit of ẋ = Zn(x) are the numbers Nτi/γn. Neither of
them can coincide with T and so this system has no T -periodic solutions.

Proof of Theorem 6. Let us fix positive numbers ρ < r such that Br ⊂ U . We claim that
there exists a sequence of vector fields Wn ∈ C1

(
Bρ, Rd

)
such that

||Wn −X||L∞(Bρ) → 0
ẋ = Wn(x) has no T -periodic solutions lying in Bρ.
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Assuming for the moment that the claim holds it is easy to prove that x = 0 cannot persist.
Let us consider the perturbation

p(t, x, ε) =
∑

n

ηn(ε) (Wn(x)−X(x))

where ηn : [0, ρ] → R are continuous functions satisfying

0 ≤ ηn ≤ 1, ηn(1/n) = 1 and ηn · ηm = 0 if n 6= m.

Notice that p is well-defined because the sum can only contain one non-zero term. The
convergence of Wn to X implies the continuity of p with p(t, x, 0) ≡ 0. For ε = 1/n the
system (2) is precisely ẋ = Wn(x) and so the perturbed system does not have T -periodic
solutions close to x = 0.

To prove the claim we consider the restriction of X to Br and find a sequence Yn ∈
C

(
Br, Rd

)
such that

||X − Yn||L∞(Br) ≤
1

n
and Yn(x) 6= 0 if x ∈ Br.

Here we have used Proposition 7.
Next we approximate Yn by smooth vector fields Zn ∈ C1

(
Br, Rd

)
. They can be chosen

so that

||Yn − Zn||L∞(Br) ≤
1

n
and Zn(x) 6= 0 if x ∈ Br.

Finally we apply Proposition 8 and find, for each Zn, a vector field Wn ∈ C1
(
Br, Rd

)
such

that ||Zn −Wn||L∞(Br) ≤ 1
n

and ẋ = Wn(x) has no T -periodic solutions on Bρ.

5 Dimension two

The theorem stated in the introduction for d = 2 can be derived from the previous results.
To prove (i) ⇒ (ii) we use Theorems 5 and 6. To prove (ii) ⇒ (i) we can use Proposition 3
together with the following result.

Proposition 9. Assume that d = 2. Then the autonomous system (1) is T -isochronous
around the origin if and only if x = 0 is not separated (period T ).

Proof. If the system is isochronous then PerT contains a neighborhood of the origin so {0}
cannot be a component. This argument is valid in any dimension.

To prove the converse we will use some tools from planar topology, in particular Jordan
Curve Theorem and the index of a point with respect to a circuit. Let us start by finding
two closed disks D and ∆, centered at the origin, and such that

φt(D) ⊂ ∆ ⊂ U, for each t ∈ [0, T ].

This is possible because φt(0) = 0 for each t. Given p ∈ D ∩ PerT , p 6= 0, the orbit of
(1) passing through p is denoted by γp. This orbit is closed and the bounded connected
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component of R2 \γp is denoted by Ri(γp). The unbounded component is denoted as Re(γp).
We notice that γp ∪ Ri(γp) is contained in ∆, and hence in U . Since the origin is the only
equilibrium of X, the region Ri(γp) is a neighborhood of x = 0. After these preliminaries
we are ready to prove the converse. We proceed by contradiction and assume that x = 0 is
neither separated nor isochronous. Let C be the connected component of PerT containing
the origin. We know that it is not a singleton and so we can find a point p∗ 6= 0 lying in
C ∩D. Since x = 0 is not isochronous, the region Ri(γp∗) must contain some point q outside
PerT . Let us define the function

η : C → R, η(p) =
1

2πi

∫
γp

dz

z − q
if p 6= 0, η(0) = 0.

This is just the index of q with respect to the loop γp and so η can only take the values 0
and 1. Notice that it really takes both values since η(0) = 0 and η(p∗) = 1. Next we prove
that η is continuous. Given a sequence (pn) in C converging to p ∈ C, we observe that

φt(pn) → φt(p), uniformly in t ∈ [0, T ].

Moreover, from the equation (1),

φ̇t(pn) → φ̇t(p), uniformly in t ∈ [0, T ].

If p 6= 0 then, for large n,

η(pn) =
1

2πi

∫ T

0

φ̇t(pn)dt

φt(pn)− q
→ 1

2πi

∫ T

0

φ̇t(p)dt

φt(p)− q
= η(p).

If p = 0 the orbits γpn will collapse at the origin and so q∗ ∈ Re(γpn) for large n. Thus
η(pn) = 0. Summing up the previous discussions, we have constructed a continuous function
η : C → R taking exactly two values. This is impossible if C is connected and therefore we
have reached a contradiction.

We do not know if the converse of Proposition 3 is valid for d ≥ 3. Such a result would
be a satisfactory extension of Theorem 1 to higher dimensions.
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