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SECOND ORDER SINGULAR DIFFERENTIAL EQUATION
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Abstract. We study the existence of positive solutions for the model scalar
second order boundary value problem

lim wu(z) =0,
|z|— o0

{ —u"" + c(z)u’ + a(z)u = ub((;ﬂ))p, z € IR,

where a, b, ¢ are locally bounded coefficients and p > 0.

1. INTRODUCTION

This note is devoted to the study of the existence of a decaying nontrivial positive
solution for the model equation

b(x)

u(zx)P

(1) —u" + c(z)u’ + a(z)u = ,
where a, b, c € C(IR; IR), that is, the existence of a positive function u that solves
(1) for every x € IR as well as the boundary conditions

(2) lim wu(z) =0.

|z|—o0
When such a solution satisfies in addition

lim u/(z) =0,
|z]—o00
then it is usually called a homoclinic solution or a pulse though here, 0 is not a
stationary solution of equation (1).
Equation (1) is a particular case of a more general class of Sturm equations of
the type

(3) —(P(x)u') + Q(z)u = R(x) f(u),

where P is a strictly positive absolutely continuous function.

Such equations, even in the case P = 1 where they are referred as of Schrodinger
or Klein-Gordon type, appear in many scientific areas including quantum field the-
ory, gas dynamics, fluid mechanics and chemistry. For instance, the study of pulse
propagation is of primary importance in nonlinear optics and plasma physics, where
homoclinic solutions of the corresponding model equations are sometimes referred
as bound states or bright solitons. A typical example is the study of the ability of
layered media to support the propagation of electromagnetic guided waves.
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Observe that equation (1) with constant ¢ arises also when studying traveling
wave fronts for parabolic reaction-diffusion equations with a singular local reaction
term.

One can study (1) with ¢ = 0 via a variational procedure, see e.g. the surveys
[3, 4, 13]. Actually, one could also treat the case where ¢ € L'(IR) in the same
way with only minor changes. Indeed, in this case the self-adjoint form of the
equation is non-degenerate. In the case where c¢ is non- integrable, we prefer to
tackle the problem via a topological approach as the variational formulation of the
problem would require working with weighted Sobolev spaces with unbounded or
vanishing weight functions. Without being insurmountable, see for instance [7] for
related problems, this difficulty makes the variational approach more delicate than
the topological one.

Our method of proof combines the method of upper and lower solutions [12, 14]
with some fixed point theorems in cones, which are well known consequences of fixed
point index theory [9]. This is not the first time that such type or results, extensively
used in equations on compact intervals, have been employed for problems defined
on the whole real line. However, the point of view of the few recent relevant papers
is quite different to the one we employ here. In [2, 8], generalizations to Fréchet
spaces of fixed point theorems of cone-compressing and cone-condensing type are
proved and then employed. On the other hand, [17] needs to use a weighted norm
in BC(0, +00).

Our main result is as follows.

Theorem 1. Let us assume that

(A) a € C(IR; R) and there exists a > 0 such that a(x) > a for all x ;
(B) b€ C(R; IR) is a nonzero nonnegative function such that b/a € L>®(IR) ;
(C) ce C(R; R) is such that ¢/a € L*(IR).
Then, there exists a unique positive solution u € BC(IR) of eq. (1). Moreover, if b
satisfies
lim b(z)/a(xz) =0,

|| — o0
then u satisfies lim ;| o u(x) = 0.
For further references, we fix the following assumption
(Bo) b e C(IR; IR) is a nonzero nonnegative function such that

| l‘im b(z)/a(x) = 0.
2. THE LINEAR EQUATION.
Let us consider the linear equation
(4) Lu := —u" + c(z)u' + a(z)u = 0.

We first observe that under assumptions (A) and (C), the equation is disconjugate
at +o0o and presents a dichotomy, see [10] for precise definitions. This facts are the
basis of our approach as it ensures the existence of a nice Green kernel to represents
L' in an integral form.

Lemma 1. Assume that a satisfies (A) and ¢ fulfills (C). Then the linear equation
(4) possesses a positive (increasing) solution uy and a linearly independent positive
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(decreasing) solution us such that

lim u(z) = 1i5[_1 uz(x) =0

and

lim wuy(z) = lim ws(x) = +o0.
T——+00 T— —00

Moreover, uy,us can be chosen in such a way that
(5) uy (0)u2(0) — u1(0)us(0) = 1.

Proof. The proof follows from classical arguments of the theory of linear second
order equations. The assumptions imply that the origin is a saddle point, hence us
(resp. wq) is taken as a solution of the stable (resp. unstable) manifold. Condition
(A) also implies that a given solution can not have positive maxima or negative
minima. A direct consequence is the disconjugacy of the equation and the monotone
behavior of u1,us. Condition (5) is easily obtained multiplying u,us by a suitable
constant. (]

For every right-hand side h such that h/a is bounded, the non-homogeneous
equation
—u" + e(x)u’ + a(z)u = h(z)
has a unique bounded solution (one may argue for instance with the classical the-
ory of lower and upper-solutions). This solution can be computed by variation of
constants leading to the Green function for bounded solutions

uy (x)ug(s)e™ Jo (T, -0 <z <s< 400
6 G = o
( ) (1'75) { u2(a:)u1(s)eff0 c(T)dT7 —0<s< <400

where uq, us are the solutions described in Lemma 1. Note that by Lemma 1, uy, us
intersect at a unique point xg, so that we can define a function p € BC(IR) by

1
— x < o,

us(x)

(7) p(r) =
1

uy ()
It follows from the monotonicity of u; and us that p(xz) = 1/ max(uy(z), us(z)).
We conclude this section by collecting some properties of the Green function. Most
of these have been stated in [15] for ¢ = 0. We provide a short proof in order to
keep our paper self-contained.

)
y xr > xg.

Proposition 1. Assume that a, ¢ satisfy (A) and (B). Then one has
(P1) G(z,s) > 0 for every (z,s) € R* ;
(P2) G(x,s) < G(s,s) for every (x,s) € R* ;
(P3) for any non-empty compact subset P C IR,

G(z,s) > m1(P)p(s)G(s,s), forall (x,s) € P x IR,
where
(8) m1(P) = min{u (inf P), ua(sup P)};
(P4) G(s,s)p(s) > G(z,s)p(z) for every (z,s) € IR* ;
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Proof. Properties (P1) and (P2) are trivial because of the positivity and mono-
tonicity of u; and us.

We prove (P3) for (z,s) € P x IR with x < s since the remaining possibility is
analogous. Using the fact that us is a positive non-decreasing function and that
the function p satisfies

©) p@) € s

we have

G(z,5) > ug(inf P)uy(s)e™ o “Ddr > my (P) 2(5)
2

Finally, we consider (P4). Again, we only consider the case x < s. Write

u1(s) p(s)
G(s, s)p(s) = G(z, s)p(x) (@) p@)
If p(s) = ﬁ(s), then p(x) = ﬁ(?) too and the conclusion follows from the mono-

tonicity of u; and ws. If p(s) = #(s), then either p(z) = #(I) or p(z) = ﬁ(r) In
the first case, the conclusion is obvious while in the second case, one uses the fact
that ua(z) > uq(z). O

Finally, the following lemma will be useful.

Lemma 2. Assume that a, b and ¢ satisfy conditions (A), (By) and (C). Then the
equation

(10) —u" + e(x)u + a(z)u = b(x),

has a unique bounded positive solution that can be written asu(x) = [, G(x, s)b(s)ds.
Moreover, we have u(£o0) = 0.

Proof. Tt is clear that [, G(z,s)b(s)ds is a positive solution of (10). The boun-
dedness is justified next. In self-adjoint form, the homogeneous linear equation (4)
reads

(11) — [P(2)] + a(z)P(z)u = 0,

where P(z) = e~ /s “T)dr. Note that by the choice of uy, the function P(z)u)(z)
is positive and moreover it is strictly increasing by means of the latter equation.
Therefore, it has a non-negative limit at —oo,

Ly := lim P(z)uj(z)>0.

r— —00
An analogous argument gives

Ly := lim P(x)ub(z) <0.

r—+00
Now, by integrating (11) over | — 0o, z[ and ]z, +oo] respectively, one gets

x

+oo
P(z)uy(z)—14 :/ a(s)P(s)uy(s)ds, Lo—P(x)us(x) :/ a(s)P(s)uz(s)ds.

— 00
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Then, by combining Liouville’s formula and (5),

+oo

/IR G(z, s)a(s)ds :uQ(x)/ a(s)p(s)ui(s)ds + ul(ac)/ a(s)p(s)uz(s)ds =

= [uz(2)uy (2) — ur()uy(2)] P(x) — Liug(x) + Louy (z) <
< [uz(2)v) (x) — ur(z)uy(2)] Px) = 1.
With this in mind,

/ G(z,s)b(s)ds = / G(z, S)Ea(s)ds <
R R a(s)
so the boundedness is proved.

Notice also that uniqueness is straightforward; on the contrary the difference of
two bounded solutions would be a non-trivial bounded solution of the homogeneous
equation (4), which is impossible. Hence, it remains to compute the limits at oc.

Let us prove that lim,_, . u(xz) = 0. We separate the argument in two cases.
Assume first that u reaches a positive limit L monotonically. Then lim,_ o, v/(z) =
0. If L > 0, the equation shows that u”(x) > aL/2 as & — oo which is impossible.
Therefore, we conclude that L = 0.

If u is not asymptotically monotone, there is a sequence of local maxima wu(t,) >
0 with lim,,_, t,, = +00. From the equation, we infer that

a(tn)u(tn) < b(tn)

and, using assumptions (A) — (By), we conclude that u(t,) — 0. O

b

a

b

a

)
oo

) /IR G(z, s)a(s)ds <

3. AN AUXILIARY RESULT WITH A COMPACTLY SUPPORTED POTENTIAL.

In this section we assume the auxiliary condition
(Be) b e C(IR; IR) is a nonzero nonnegative function and has compact support.

Of course, (B¢) is stronger than (Bp). This condition will be used as a first step
in the proof of Theorem 1.

Let BCT(IR) be the set of positive bounded continuous functions defined on IR.
We learned from the preceding section that we can look for a positive bounded
solution of (1) as a fixed point of the operator T': BC"(IR) — BC™ (IR) which can
be written as

Tu(x) ::/ G(z, s) b(s)
R u(s)?

Under condition (B¢), such operator is well-defined and a fixed point is indeed a
positive solution of (1) satisfying (2).

In order to find a fixed point of T', we will use the following well known theorem
on cones (see for instance [11, p.148] or [1]).

ds.

Theorem 2. Let P be a cone in the Banach space B. Assume Q1,2 are open
bounded subsets of B with 0 € Q1 and Q1 C Qo. If T: PN (Q2\ Q1) —» P isa
continuous and compact map such that one of the following conditions is satisfied
(HL) ||Tu|| < |lull, if ve PNOQ, and ||Tul|| > ||ull, if u € PN INs
(H2) || Tu|| > |lull, if u e PNOQy, and ||[Tul|| < ||u|l, if w € PN OQs.

Then, T has at least one fized point in PN (Qa\ ).
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Since our operator works on a space of functions defined on the whole real line,
Ascoli-Arzela Theorem is not enough to ensure compactness. We will use a com-
pactness criterion inspired by [16]. The proof is included for the convenience of the
reader.

Lemma 3. Let Q@ C BC(R). Let us assume that the functions u € Q are equicon-
tinuous in each compact interval of R and that for all u € Q we have

(12) lu(z)| < &(x), Vo e R
where £ € BC(R) satisfies
(13) lim ¢&(x) = 0.

Then, Q is relatively compact.

Proof: Given a sequence (u, ), of functions of 2, we have to prove that there
exists a partial sequence which is uniformly convergent to a certain u. Note that
the elements of Q are uniformly bounded by ||£||c and equicontinuous on compact
intervals by hypothesis, therefore the Ascoli-Arzela theorem and a diagonal argu-
ment provide a partial sequence (we still denote it by (uy),) which is uniformly
convergent to a certain u on compact intervals. Of course, u satisfies also (12).
Now, we have to prove that

Ve >0, Ing st. n >ng = |Jun — uf|eo < e

By using (13), fix & > 0 such that max [{(z)| < . On the other hand,
z€R\]—k, k[ 2

by using the uniform convergence on compact intervals, there exists ng such that
€
max _|un(z) —u(z)| < = for all n > ng. Then,
z€[—k,k] 2

n o] S n - + n - < )
[ e un(e) —u(e)| +_max | fua(e) —u(o)] <

and the proof is finished. m

Proposition 2. Let us assume (A), (Bc) and (C). Then, there exists a positive
solution w € BCT(IR) of (1) satisfying (2).

In order to apply Theorem 2, we consider the Banach space BC(IR) endowed
with the supremum norm and look for an invariant cone for 7T'. Let us consider the
set

(14) P= {u € BC(R) : u(x) >0, min u(y) > mipo |u||} ,

yESupp(b)
where pg = infg,,,4) p(), p(z) being defined by (7), and the constant m; =
m1(Supp(b)) is defined by (8). Note that the compactness of Supp(b) implies that
po > 0. Also, it is easy to see, by definition, that mipg < 1, and hence this cone is
non-empty.

Proof of Proposition 2. We define the open bounded sets €21, 25 as the open balls
in BC(IR) of radius r and R, to be fixed later.



BOUNDED AND HOMOCLINIC SOLUTIONS 7

Step 1. - We claim that (PN (Q2\ Q1)) C P. Take u € PN (02\ Q). Property
(P1) of the Green function and the sign of b imply that Tu(z) > 0 for all z. Besides,
for all 7 € IR, we have

+o0 s 400 s
min  Tu(r) = min / G(z,s) ) g > m1/ p(s)G(s,s) u ))pds

z€Supp(b) z Supp(b) ) _ oo u( p oo U(S

5)
b(s)
= /Supp(b) p(T)G(T7 S) U(S)p

ds = mapo(Tu)(7),

where we have used (P3) and (P4). Therefore T(P N (Q2\ Q1)) C P.

Step 2. - Compactness. The continuity of 7' is trivial so that we focus on the
compactness property. We will use Lemma 3. Let (un), C PN (Q2\ Q1) be a
bounded sequence. Define the sequence (vy)n, C P by vp(z) = Tup,(z). We just
need to prove that, up to a subsequence, v,, converges uniformly in IR. Notice that
the u?’s are uniformly bounded, say by M. Therefore, we compute

= x,S b(S) S ! xT,S s)as
@)l =1 [ Gl 2o < s [ Gl s)bls)is

Now, observe that by Lemma 2, the function [, G(z,5)b(s)ds goes to zero at Foo.
Moveover, the equicontinuity of the v, sequence is clear as it follows directly from
the continuity of the Green function. Hence, we are able to apply the previous
compactness criterion.

Step 3. - We claim that | Tu|| > ||u||, if w € PN OSY. For u € PNoQy,
mipor < u(z) <r for all x € Supp(b).

If w e PNOQ; and r is small enough,
1
|ITu(z)|| > — sup / G(z,5)b(s)ds > r = ||u] .
rP z€R J Suppb

Step 4. - We claim that ||Tu|| < ||u||, if w € PNINs. For u € PN oy,
mipoR < u(x) < R for all = € Supp(d).

Taking R big enough, we obtain

ITul < swp [ Gl s)p(s)ds < R = u].
Supp(b)

(Rmipo)? zem

It follows from the previous steps that we can apply Theorem 2 and the proof is
complete. O

4. PROOF OF THEOREM 1.

The existence of a bounded solution is proved by using the theory of upper and
lower solutions (see [12, 14] for more details). Let b satisfy (B¢) and be such that
b(x) < b(z) for every x € IR. By Proposition 2, the equation
b(x)

” ’ _ o)
—u" + e(x)u’ + a(z)u = up
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has a positive bounded solution «(x). This function is a lower solution of (1). A
well-ordered upper solution is easily found as a constant

b\
o (2]
o0

Then, the classical theory of upper and lower solutions provides a bounded solution
of the original equation (1) between « and g.

Suppose now (Bp) holds and let us prove the convergence to 0 of the bounded
solution u. The argument is similar to that employed in Lemma 2. Let us prove
that lim, 4o u(z) = 0, the limit at —oco follows in the same way. There are two
possibilities

If lim, 4o u(x) = L > 0 monotonically, we easily reach a contradiction as in
Lemma 2.

If there is a sequence a local maxima u(z,) > 0 with (z,), — 400, then we
infer from the equation that

b(zn)
a(zn)
Passing to the limit, we conclude that u(z,) — 0 and the proof is done.
It remains to prove the uniqueness. In fact, we can write the equation as

(15) v —c(x)u = f(z,u)

u(a:n)1+p <

with f(z,u) = a(x)u — bﬁ) uniformly increasing in the second variable and apply
comparison arguments like those employed in [6]. The argument is as follows. As-
sume that there are two positive bounded solutions w1, us and define the difference

d(x) = ui(x) — uz(z). Then,

d’" —c(x)d = f(z,u1) — f(z,uz).
Since f(z,w) is increasing, d is a bounded function without positive maxima or
negative mimina. Therefore it must have a limit at +0o. A simple limiting argument
as those employed before shows that this limit must be zero. Combining this
information with the fact that d can not have positive maxima or negative minima,
one deduces that d(x) = 0.
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