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We present some analytical results about the existence of periodic
orbits for the planar restricted three body problem with dissipation
considered recently by Celletti et al. We show that, under fairly gen-
eral conditions on the dissipation term, the circular orbits cannot be
continued to the dissipative framework. Moreover, we give general
conditions for the occurrence or not of an Hopf bifurcation around
the libration points L4 and L5. Our results are consistent with the
numerical findings of Celletti et al.

Keywords: Restricted Problems, Dissipative Forces, Periodic Orbits,
Fredholm Alternative, Hopf Bifurcation.

1 Introduction

The dynamics of circular planar restricted three body problem in a synodic
frame of reference is determined by the differential equation

z̈ + 2iż − z = −(1− µ)
µ+ z

|µ+ z|3
+ µ

1− µ− z
|1− µ− z|3

+ εD(z, ż, µ), (1)

where µ ∈ [0, 1/2] and z = x + iy ∈ C \ {−µ, 1 − µ} and ż = ẋ + iẏ.
The parameter ε ≥ 0 and the function D are derived from dissipative forces
acting on the small body. The classical setting corresponds to ε = 0, D = 0.
Recently, the dissipative case has been considered in [2]. In that paper several
choices for D are discussed,

• D(z, ż, µ) = −
(
iz + ż + α iz

|z|3

)
, α ∈ [0, 1[ (Stoke’s drag);

• D(z, ż, µ) = − 1

r2
1

(iz + ż) (Poynting - Robertson (PR) force)

where r1 := |µ+ z|.
The particular case of the Stoke’s drag which corresponds to α = 0 is

called the linear drag, and in this case

D(z, ż, µ) = −(iz + ż). (2)

It is interesting to notice that the incorporation of dissipative terms goes
back to the origins of Celestial Mechanics. Already Jacobi considered Ke-
pler’s problem with resistance in his book in Mechanics [4]. He introduced
dissipative forces of the type −f |Ż|n−1Ż, where Z = eitz is the coordinate of
the small body in the inertial frame. The linear drag corresponds to n = 1.
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The study in [2] is based on numerical computations and covers many
aspects of the dynamics of (1). We will concentrate on the existence of closed
orbits using analytical tools. The simplest closed orbits of (1) for ε = 0 are
obtained by local continuation in µ of the circular orbits z(t) = ρeiωt, µ = 0
and ρ3(ω + 1)2 = 1. Indeed some additional restrictions on the parameter ω
are required and we refer to [6] for more details. A first attempt to produce
closed orbits in the dissipative case could be to try to continue the circular
orbits in the parameters µ and ε simultaneously. We will prove that such a
continuation is not possible, at least if ε is not too small compared to µ. This
seems to be consistent with the numerical findings of [2], as all the closed
orbits drawn in that paper are far from being circular. The libration points
Li = Li(µ) are the equilibria of system (1) for ε = 0 and it is well known that
L4 and L5 are elliptic if µ < µ∗ = 0.03852... and hyperbolic if µ > µ∗, see
[5]. This exchange of stability suggests an alternative method for the search
of closed orbits. First we continue the libration point L4 = L4(µ, ε) to the
dissipative case, then by analogy with the conservative case we expect the
existence of µ∗ = µ∗(ε) such that L4(µ, ε) is linearly asymptotically stable
if µ < µ∗(ε) and unstable (hyperbolic) for µ > µ∗(ε). In such case we can
look for a Hopf bifurcation and closed orbits when µ− µ∗(ε) is positive and
small. In this paper we will show that this program works for the linear drag
and for the Stoke’s drag with small positive values of α. In contrast, for the
PR drag we will prove that the perturbed L4 and L5 are hyperbolic unstable
equilibria for all the values of µ, a fact that rules out the possibility of a
Hopf bifurcation around these points. These results about the occurrence or
not of a Hopf bifurcation will follow from two general theorems, which are
stated for general dissipative forces. Incidentally we notice that no closed
orbits for the PR drag are found in [2]. Many questions on the existence or
non-existence of closed orbits for the dissipative problem (1) seem to be open
and interesting.

2 Non continuation of the circular orbits

We consider the equation (1) when ε depends on µ. In this section ε = ε(µ)
is a function in C1[0, δ], δ > 0, satisfying

ε(0) = 0, ε(µ) > 0 if µ ∈]0, δ].

For µ = 0 we obtain Kepler’s problem in a synodic frame. This problem has
the circular solutions z(t) = ρeiωt where ω is a real parameter, ω 6= −1, 0
and ρ3(ω + 1)2 = 1. Let us select one of these circular orbits so that ρ and
ω become fixed numbers. The dissipative term D : Ω ⊂ C2 × [0, 1

2
]→ C will
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be a function defined on an open set Ω which is open relative to C2 × [0, 1
2
]

and contains the circular orbit. More precisely,

{(z, w, µ) ∈ C2 × [0,
1

2
] : |z| = ρ, w = iωz, µ = 0 } ⊂ Ω.

The notation D = D(z, ż, µ) can be misleading because in many cases D will
not be holomorphic in z, ż and µ. Notice that for Stoke’s drag there appear a
term of the type |z|3, while for the P-R force there is a term |µ+z|2. Typically
the function D will be real analytic but for our purposes it will be sufficient
to understand D as a function of real variables defined in Ω ⊂ R2×R2× [0, 1

2
]

and belonging to C1(Ω,R2).
We say that the circular orbit admits a smooth continuation if there exists

a function z : R× [0, δ1]→ C, (t, µ) 7→ z(t, µ), where 0 < δ1 ≤ δ, satisfying

(i) For each µ ∈ [0, δ1], z(·, µ) is a solution of (1) with ε = ε(µ).

(ii) There exists a function T = T (µ) in C1[0, δ1] with T (0) = 2π
ω

and such
that

z(t+ T (µ), µ) = z(t, µ).

(iii) z(t, 0) = ρeiωt.

(iv) The function (t, µ) ∈ R× [0, δ1] 7→ (z(t, µ), ż(t, µ)) ∈ C× C is C1.

We will prove the following result:

Theorem 2.1 In the previous conditions assume that ε′(0) > 0 and

Im[

∫ 2π
ω

0

d(t)e−iωtdt] 6= 0,

where d(t) = D(ρeiωt, iωρeiωt, 0). Then the circular orbit does not admit a
smooth continuation.

Remark. The condition ε′(0) > 0 is essential in the previous theorem. For
ε ≡ 0 the circular solution admits a smooth continuation if ω 6= −2, 0 and
ω 6= 1

k
, k ∈ Z \ {0}. We refer to [6] for more details.

Proof. We will argue by contradiction. Assume that z(t, µ) is a smooth
continuation of ρeiωt and denote by η(t) the derivative with respect to the
parameter at µ = 0. That is,

η(t) =
∂z

∂µ
(t, 0).
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From the differential equation (1) and the condition (iv) we deduce that
∂z̈
∂µ

(t, µ) exists and it is continuous. Hence the derivatives in t and µ commute.

Differentiating (1) with respect to µ and evaluating the result at µ = 0 we
are lead to the linear differential equation

L[η] = b(t),

where L is the differential operator

L[ξ] = ξ̈ + 2iξ̇ − (1 +
1

2ρ3
)ξ − 3

2ρ3
e2iωtξ

and

b(t) =
1

ρ2
eiωt +

1− ρeiωt

|1− ρeiωt|3
+

1

2ρ3
+

3

2ρ3
e2iωt + ε′(0)d(t).

The function b(t) is periodic with period 2π
ω

. Also η(t) has this property but
this is not so obvious. In general the derivative with respect to parameters of
a periodic function is not periodic. This is easily illustrated by the function
F (t, µ) = sin(µt). With some work we will prove that η is 2π

ω
-periodic. Let us

differentiate with respect to µ the identity appearing in (ii). After evaluating
the result at µ = 0 we obtain

iωρeiωtT ′(0) + η(t+
2π

ω
) = η(t).

We will prove that T ′(0) = 0. To this end we consider the function

ϕ(t) = η(t) + βteiωt

with β = iω2ρT ′(0)/2π. The number β has been adjusted so that ϕ is 2π
ω

-
periodic. After some computations we find that

L[teiωt] = − 3

ρ3
teiωt + 2i(ω + 1)eiωt.

From the identity βL[teiωt] = −b(t) + L[ϕ] we deduce that β vanishes, for
otherwise an unbounded function should coincide with a continuous periodic
function. We conclude that T ′(0) = 0.

If we follow the steps used in [6] and set σ = e−iωtη and ν = e−iωtη̇ we
get the system

σ̇ = −iωσ + ν

ν̇ = (1 + 1
2ρ3

)σ + 3
2ρ3
σ − i(ω + 2)ν + e−iωtb(t).
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Taking σ = x1 + ix2 and ν = x3 + ix4 we obtain the following system in real
coordinates 

ẋ1

ẋ2

ẋ3

ẋ4

 = A


x1

x2

x3

x4

+B(t)

where

A =


0 ω 1 0
−ω 0 0 1
1 + 2(ω + 1)2 0 0 ω + 2
0 1− (ω + 1)2 −(ω + 2) 0

 and

B(t) =


0
0
1

ρ2
+

cos(ωt)− ρ
|1− ρeiωt|3

+ 2(ω + 1)2 cos(ωt) + ε′(0)Re[d(t)e−iωt]

− sin(ωt)

|1− ρeiωt|3
+ (ω + 1)2 sin(ωt) + ε′(0)Im[d(t)e−iωt].


Now we note that this real system admits a periodic solution of period 2π/ω
which is obtained by considering η(t) in the new coordinates. It follows from
Fredholm alternative for periodic systems that B(t) must be orthogonal to
the 2π/ω periodic solutions of the adjoint system ẏ = −ATy. Here the notion
of orthogonality refers to L2(0, 2π/ω). In particular it must be orthogonal to

ψ =


ω + 2
0
0
1

 ,
which is a constant solution of ẏ = −ATy. Then, the orthogonality condition
may be written as∫ 2π/ω

0

< B(t), ψ > dt =

∫ 2π/ω

0

B4(t)dt = 0, (3)

whereB4(t) is the fourth component of the vectorB(t). The function− sin(ωt)
|1−ρeiωt|3 +

(ω + 1)2 sin(ωt) is odd and so it has zero average. In consequence,∫ 2π/ω

0

B4(t)dt = ε′(0)

∫ 2π/ω

0

Im[d(t)e−iωt]dt
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and we arrive at a contradiction if this integral does not vanish.
It is easy to check that the previous theorem is applicable to the dissipa-

tive terms presented in the introduction. For Stoke’s drag

d(t) = −i(ρ(ω + 1) +
α

ρ2
)eiωt

and for P-R force

d(t) = − i
ρ

(ω + 1)eiωt.

3 Study of the Hopf bifurcation around the

libration point L4

In this section we study the occurrence of the Hopf bifurcation around L4

and L5 for the restricted three body problem with dissipation. Actually, the
computations are similar for the two points, and we focus on L4. We will
perform our computations in real coordinates. Accordingly, we start this
section by rewriting in real form the general equations of the restricted three
body problem with dissipation. Denoting by

J =

[
0 −1
1 0

]
,

the symplectic matrix in R2, we can write the equations of motion as follows:{
z′ = w
w′ = −2Jw +∇φ(z, µ)− εF (z, w, µ)

(Pµ,ε)

where

z = (x, y), w = (u, v) := (x′, y′), φ(z, µ) =
1− µ
|µ+ z|

+
µ

|1− µ− z|

and the dissipative term D is expressed (up to a sign) in the form

F (z, w, µ) =

(
f(z, w, µ)
g(z, w, µ)

)
.

Again ε > 0 is a free parameter, ∇ denotes the gradient in z and f, g :
(R4 × [0, 1/2]) \ ∆ → R are two real analytic functions with a singular set
∆. We assume that ∆ is compact and with positive distance from the curves
described by the points (L4(µ), 0, µ) and (L5(µ), 0, µ) as µ varies in [0, 1/2].
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Recall that L4(µ) = (−µ + 1/2,
√

3/2) and L5(µ) = (−µ + 1/2,−
√

3/2).
In words, the dissipation terms are well defined in a neighbourhood of the
libration points, and this neighbourhood can be chosen to be the same for
all the values of µ. This property holds for all the drags considered in [2].
In fact, in the case of the linear drag ∆ is empty, for the Stoke’s drag with
α > 0 it is

∆ = {(z, w, µ) | z = 0, µ ∈ [0, 1/2]},

and for the PR drag it is

∆ = {(z, w, µ) | z = −µ, µ ∈ [0, 1/2]}.

Notice that in our general setting we have not considered additional pa-
rameters in the perturbation terms, such as the parameter α of the Stoke’s
drag. The only reason we did this is to keep our notation simpler. In fact,
the general results about the smooth dependence of suitable functions on
the parameter µ which we use in our proofs hold for any number of param-
eters (as long as the perturbations depend smoothly on them). The extra
parameter α will appear in Corollary 3.3.

The libration point L4(µ) is a non-degenerate solution of the equation

∇φ(z, µ) = 0, µ > 0.

Actually a well known computation shows that the Hessian matrix

D2φ(L4(µ), 0) =

[
3
4

3
√

3
4

(1− 2µ)
3
√

3
4

(1− 2µ) 9
4

]
,

and the determinant of this matrix does not vanish if µ ∈]0, 1
2
]. This implies

that for any δ ∈]0, 1
2
[ there exists ε1 = ε1(δ) > 0 such that the equation

∇φ(z, µ)− εF (z, 0, µ) = 0,

defines a smooth function (µ, ε)→ L̃4(µ, ε) on the set [δ, 1/2]× [0, ε1] which
satisfies L̃4(µ, 0) = L4(µ), µ ∈ [δ, 1/2]. This shows that the libration point L4

can be continued for small values of ε, uniformly with respect to µ ∈ [δ, 1/2]
giving rise to the corresponding perturbed equilibrium (L̃4(µ, ε), 0) of system
(Pµ,ε). To justify the previous assertions we first apply the implicit function
theorem at each point (L4(µ), µ) and ε = 0, then a compactness argument
on the interval [δ, 1

2
] together with the uniqueness of the implicit function

allows to find a common continuation on µ ∈ [δ, 1
2
] and ε ∈ [0, ε1(δ)]. If we

denote the second member of system (Pµ,ε) by Ψ(z, w, µ, ε) we have that the
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Jacobian matrix of Ψ with respect to (z, w) around the perturbed libration
point is given by:

DΨ(L̃4(µ, ε), 0, µ, ε) =

[
0 I2

D2φ− ε∂1F −2J − ε∂2F

]
,

where each component indicates a 2×2 block and ∂1F = ∂(f,g)
∂(x,y)

, ∂2F = ∂(f,g)
∂(u,v)

.

All the derivatives of φ are computed at (L̃4(µ, ε), µ) and all the derivatives
of f and g are computed at (L̃4(µ, ε), 0, µ). In what follows, to keep our
notation simple, we will sometimes drop the dependence of such derivatives
and of other quantities on (µ, ε). However, to avoid any confusion, we will
leave explicit such dependence in the first members of the equalities. In
particular

A(µ, ε) =
∂2φ

∂2x
, B(µ, ε) =

∂2φ

∂x∂y
, C(µ, ε) =

∂2φ

∂2y
.

To compute the characteristic polynomial Pµ,ε(λ) of DΨ it is convenient
to employ the following observation: given a 4 × 4 matrix defined by two
dimensional blocks [

0 I2
M N

]
,

the characteristic polynomial is − det(M+λN−λ2I2). In our case Pµ,ε(λ) =
− det(D2φ− ε∂1F − λ(2J + ε∂2F )− λ2I2) =

∑4
k=0 ak(µ, ε)λ

k, where

a4(µ, ε) = 1, a3(µ, ε) = εã3(µ, ε), a2(µ, ε) = 4− A− C +O(ε),

a1(µ, ε) = εã1(µ, ε), a0(µ, ε) = AC −B2 +O(ε),

and

ã3(µ, ε) :=
∂f

∂u
+
∂g

∂v
;

ã1(µ, ε) := −A∂g
∂v

+B

(
∂f

∂v
+
∂g

∂u

)
− C∂f

∂u
+ 2

(
∂g

∂x
− ∂f

∂y

)
+O(ε).

Since we will obtain our results by perturbing from ε = 0, it is worth
recalling the behavior of the roots of Pµ,0 as µ varies in the interval ]0, 1/2].
See also [5]. When ε = 0 we know that

A(µ, 0) =
3

4
, B(µ, 0) =

3
√

3

4
(1− 2µ), C(µ, 0) =

9

4
,
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so that the eigenvalues of DΨ(µ, 0) satisfy the equation

λ2 = −1

2
±
√

1− 27µ(1− µ)

2
.

If we denote by µ∗ the smallest root of the equation 1− 27µ(1− µ) = 0,
then we have three occurrences:

1) 0 < µ < µ∗; the eigenvalues of DΨ(µ, 0) are two pairs of distinct non
zero and conjugate eigenvalues of the form ±βk(µ)i, βk(µ) > 0, k =
1, 2.

2) µ = µ∗; the two pairs above merge, that is β1(µ
∗) = β2(µ

∗) =
√

2/2.

3) µ∗ < µ ≤ 1/2; there are four distinct eigenvalues of the form ±αk(µ)±
iβk(µ), with αk(µ) > 0 and βk(µ) > 0, k = 1, 2.

Of course, in case 3) we have two complex conjugate eigenvalues with
positive real part and two complex conjugate eigenvalues with negative real
part. Then, by the continuous dependence of the eigenvalues on parameters
(on which we will be more specific below) if we consider any µ2 > µ∗, this
configuration of the eigenvalues will persist for any f and g if ε is small
enough. As a consequence, to have (or not) an Hopf bifurcation around
the perturbed libration point will depend essentially on the position in the
complex plane of the eigenvalues of DΨ for µ < µ∗. It turns out that this
position will be determined by some inequalities which involve some first
derivatives of f and g.

In our first result, we will give conditions on these functions which guar-
antee that, for a suitable µ1 < µ∗ and for all sufficiently small positive ε,
the four complex roots of Pµ1,ε have negative real parts. Actually, these
conditions will imply that there is a unique value µ(ε) ∈ [µ1, µ2] of µ such
that exactly two complex conjugate eigenvalues of DΨ cross the imaginary
axis transversally. As a consequence, a Hopf bifurcation occurs around the
perturbed libration point. This result applies to the linear drag.

In the second result our assumptions on f and g will rule out the possi-
bility of a crossing of the imaginary axis by the eigenvalues for small ε, so
that a pair of complex conjugate eigenvalues will always have negative real
part and a pair of complex conjugate eigenvalues will always have positive
real part. In this case, for any small ε no Hopf bifurcation occurs around the
libration point, that will always be unstable. This second result applies to
the PR drag.
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One of the tools we will use in the proof of our first result is the Routh-
Hurwitz criterion (see [3]), which gives some necessary and sufficient con-
ditions for all the roots of a polynomial to have negative real parts. This
criterion involves some quantities which we introduce below before stating
our result.

The quantities we need are the following:

H3(µ, ε) = a3a2a1 − a4a
2
1 − a2

3a0 = ε2H̃3(µ, ε),

where
H̃3(µ, ε) := ã3a2ã1 − ã2

1 − ã2
3a0,

and
H2(µ, ε) := a3a2 − a4a1 = εH̃2(µ, ε),

where
H̃2(µ, ε) := ã3a2 − ã1.

Now we can state our first result.

Theorem 3.1 Assume that there exist µ1 ∈ [δ, µ∗[ and µ2 ∈]µ∗, 1/2] such
that the next inequalities hold:

i) H̃3(µ1, 0) > 0;

ii) ã3(µ, 0) > 0,
∂H̃3(µ, 0)

∂µ
< 0, ∀µ ∈ [µ1, µ2].

Then, there exists 0 < ε∗ ≤ ε1 such that for any ε ∈]0, ε∗] there is a unique
µ(ε) ∈]µ1, µ2[ such that a Hopf bifurcation occurs around L̃4(µ(ε), ε).

The notion of Hopf bifurcation is understood in the sense of [1]. More pre-
cisely, we get that for any ε ∈]0, ε∗] there is a unique µ(ε) ∈]µ1, µ2[ such
that the following holds: there exists a neighborhood Jε of s = 0+, functions
ω(s), µ(s) ∈ C1(Jε) and a family of non-constant periodic solutions (zs, ws)
of system (Pµ,ε) such that:

i) ω(s) → Imλ2(µ(ε), ε) as s → 0+, where λ2(µ(ε), ε) 6= 0 is a suitable
eigenvalue of DΨ on the imaginary axis (see also Lemma 3.2 below);

ii) (zs, ws) has period Ts = 2π
ω(s)

;

iii) the amplitude of the orbits tends to zero as s→ 0+.
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To prepare the proof we need some properties on the behavior of roots
for certain polynomials of degree 4 of the type

q(λ, µ) = λ4 +
3∑

m=0

am(µ)λm

with am ∈ C1[µ1, µ2], 0 ≤ m ≤ 3. The polynomial q satisfies the property of
transversal crossing if, given any root (λ̂, µ̂) with Reλ̂ = 0, then λ̂ is simple
and

d

dµ
Reλ(µ) |µ=µ̂> 0,

where λ = λ(µ) is the C1 branch of roots satisfying λ(µ̂) = λ̂.
The dependence of roots with respect to parameters is not always smooth.

However, for simple roots the implicit function theorem guarantees the exis-
tence of a smooth branch passing through the given root. This observation
has been used in the previous definition.

Lemma 3.2 In the previous notations assume that the roots of q can be
labelled as λk = λk(µ), 1 ≤ k ≤ 4, with

Reλ1(µ) ≤ Reλ2(µ), λ3(µ) = λ1(µ), λ4(µ) = λ2(µ). (4)

In addition the property of transversal crossing holds and

Reλ1(µ1) ≤ Reλ2(µ1) < 0, Reλ1(µ2) < 0 < Reλ2(µ2). (5)

Then there exists a unique µ̃ ∈]µ1, µ2[ such that q(λ, µ̃) has roots on the
imaginary axis. More precisely,

Reλ1(µ) < 0 for each µ ∈ [µ1, µ2] and (µ− µ̃)Reλ2(µ) > 0 if µ 6= µ̃.

Proof. Define the sets N0 = {µ ∈ [µ1, µ2] : Reλ1(µ) > 0} , N1 = {µ ∈
[µ1, µ2] : Reλ1(µ) < 0 < Reλ2(µ)} and N2 = {µ ∈ [µ1, µ2] : Reλ2(µ) <
0}. These sets are open relative to [µ1, µ2], as can be shown using degree
theory because roots of complex polynomials have always positive Brouwer
index. Since N0, N1 and N2 are pairwise disjoint and µ1 ∈ N2, µ2 ∈ N1, the
complement C = [µ1, µ2] \ (N0 ∪ N1 ∪ N2) must be non-empty. For every
number µ̃ in C, the polynomial q(λ, µ̃) has roots on the imaginary axis. To
prove the uniqueness of µ̃ we notice that the property of transversal crossing
has strong consequences on the structure of C. Indeed every point µ̃ in C
has to be isolated and, for some small δ > 0, one of the alternatives below
holds,

(i) [µ̃− δ, µ̃[⊂ N2, ]µ̃, µ̃+ δ] ⊂ N1
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(ii) [µ̃− δ, µ̃[⊂ N2, ]µ̃, µ̃+ δ] ⊂ N0

(iii) [µ̃− δ, µ̃[⊂ N1, ]µ̃, µ̃+ δ] ⊂ N0.

In consequence C has at most two points. From the configuration µ1 ∈ N1,
µ2 ∈ N1 we deduce that C is a singleton and (i) holds. This also implies
that [µ1, µ̃[⊂ N2 and ]µ̃, µ2] ⊂ N1. Finally we observe that Reλ1(µ̃) < 0, for
otherwise Reλ1(µ̃) = Reλ2(µ̃) = 0 and the transversal crossing would imply
that we are in case (ii).

Proof of theorem 3.1. We will show that the polynomial Pµ,ε(λ) is in the
conditions of the previous lemma for small ε > 0. Then theorem 2.6 in [1]
implies that there is a Hopf bifurcation. The set of roots of the polynomial
Pµ,ε(λ) depends continuously on parameters. This is a well known property
of polynomials depending on parameters and having a constant leading co-
efficient. For ε = 0 we know that the roots of Pµ,0(λ) are complex conjugate
and so this property also holds for small ε and arbitrary µ ∈ [δ, 1

2
]. From

now on we assume that ε is sufficiently small so that the roots of Pµ,ε(λ)
are λi(µ, ε), 1 ≤ i ≤ 4, with Imλi(µ, ε) > 0, i = 1, 2, and such that (4)
holds. Since µ2 > µ∗ we know that Reλ1(µ2, 0) < 0 < Reλ2(µ2, 0) and this
implies that the inequality for µ = µ2 in (5) holds if ε is small. The in-
equality for µ = µ1 is more delicate since Reλ1(µ1, 0) = Reλ2(µ1, 0) = 0.
Since a4(µ, ε) = 1, for any µ ∈ [δ, 1/2], by the Routh-Hurwitz criterion the
characteristic polynomial Pµ1,ε has four roots with negative real parts for a
fixed ε ∈]0, ε∗] if and only if the following conditions hold:

a) ak(µ1, ε) > 0, k = 0, · · · , 3;

b) Hk(µ1, ε) > 0, k = 2, 3.

In order to prove that a) and b) hold for any sufficiently small and positive
ε, we start by noticing that

a2(µ, 0) = 1 > 0, and a0(µ, 0) =
27µ(1− µ)

4
> 0, for any µ ∈ [δ, 1/2].

Moreover, by i) and the first inequality of ii) we have

ã1(µ1, 0)

ã3(µ1, 0)
−
(
ã1(µ1, 0)

ã3(µ1, 0)

)2

>
27µ1(1− µ1)

4
> 0,

so that 0 < ã1(µ1,0)
ã3(µ1,0)

< 1. We conclude that ã1(µ1, 0) > 0 and H̃2(µ1, 0) =

ã3(µ1, 0)− ã1(µ1, 0) > 0.
By the continuous dependence of the coefficients of Pµ,ε on the parame-

ters, we conclude that there exists ε∗ = ε∗(µ1, µ2) ≤ ε1 such that a) and b)
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hold for any ε ∈]0, ε∗] and the roots of Pµ1,ε have four complex roots with
negative real parts.

Finally we check the condition of transversal crossing. For this aim we
start by observing that, choosing if necessary a smaller ε∗, we may assume
that

ã3(µ, ε) > 0,
∂H̃3(µ, ε)

∂µ
< 0, ∀µ ∈ [µ1, µ2]× [0, ε∗]. (6)

Assume that µ̂ is such that Reλj(µ̂, ε) = 0 for some j = 1, 2. Let us denote
by k the other index in the set {1, 2}. Then, by the first inequality of (6) we
have

2Reλk(µ̂, ε) =
4∑
1

λi(µ̂, ε) = traceDΨ(µ̂, ε) = −εã3(µ̂, ε) < 0, (7)

so that λj(µ̂, ε) is simple. Indeed the four roots must be simple and we denote
by λi(µ, ε) the associated smooth branch with i = 1, 2, 3, 4. Let us check that
∂Reλj(µ̂, ε)

∂µ
6= 0. To show that this last condition holds, we will make use of

Orlando’s Formula ([3], page 25), which in our case takes the following form:

H3(µ, ε) = 4Reλ1(µ, ε) ·Reλ2(µ, ε) · |λ1(µ, ε)+λ2(µ, ε)|2 · |λ1(µ, ε)+λ4(µ, ε)|2.
(8)

Then, by differentiating with respect to µ both sides of equation (8) and
using the second inequality of (6) we get:

∂H3(µ̂, ε)

∂µ
= ε

∂H̃3(µ̂, ε)

∂µ
=

= 4
∂Reλj(µ̂, ε)

∂µ

(
−ε

2
ã3(µ̂, ε)

)
|λ1 + λ2|2(µ̂,ε)|λ1 + λ4|2(µ̂,ε) < 0 (9)

and we conclude that
∂Reλj(µ̂, ε)

∂µ
> 0. (10)

Our proof is concluded.

As an immediate consequence of Theorem 3.1 we have the following:

Corollary 3.3 If F (z, w, µ) = Jz+w (linear drag) then for any sufficiently
small positive ε there exists a unique value µ(ε) ∈]0, 1/2[ such that a Hopf
bifurcation occurs around (L̃4(µ(ε), ε), 0, 0). An analogous conclusion holds
for the Stoke’s drag for α sufficiently small.
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Proof.
In the linear drag case it is :

ã3(µ, 0) = 2, H̃3(µ, 0) = 1− 27µ(1− µ),
∂H̃3(µ, 0)

∂µ
= 27(−1 + 2µ)

and the assumptions of Theorem 3.1 are satisfied by choosing any µ1 ∈ [δ, µ∗[
and any µ2 ∈]µ∗, 1/2[.

Notice now that the Stoke’s drag depends linearly on α, so that the

corresponding functions ã3 H̃3 and ∂H̃3

∂µ
will depend in a smooth (actually

real analytic) way on (µ, α, ε). This implies that, if α is small, these functions
still satisfy the assumptions of Theorem 3.1, and our claim follows.

To deal with the PR drag we will need the following general result:

Theorem 3.4 Assume that there exists µ1 ∈ [δ, µ∗[ and µ2 ∈]µ∗, 1/2] for
which the following inequalities hold:

ã3(µ, 0) > 0, and ã1(µ, 0) < 0, ∀µ ∈ [µ1, µ2]. (11)

Then, there exists ε∗ > 0 such that

Reλ1(µ, ε) · Reλ2(µ, ε) < 0, ∀(µ, ε) ∈ [µ1, µ2]×]0, ε∗], (12)

where λ1, λ2 and their conjugates are the eigenvalues of DΨ.

Proof. Choose ε∗ such that the following inequalities hold:

ã3(µ, ε) > 0, and ã1(µ, ε) < 0, for any (µ, ε) ∈ [µ1, µ2]× [0, ε∗].
(13)

Our claim follows now immediately by considering the sign conditions we
get from (13) together with the relationships of a3 and a1 with the roots of
the characteristic polynomial, namely:

0 < a3 = εã3 = −2(Reλ1 + Reλ2)

and
0 > a1 = εã1 = −2Reλ1|λ2|2 − 2Reλ2|λ1|2

for any (µ, ε) ∈ [µ1, µ2]× [0, ε∗].
In fact, these last inequalities imply that no eigenvalue of DΨ can have

zero real part and that λ1 and λ2 have real part with opposite sign.
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Corollary 3.5 In the case of the PR force if ε is sufficiently small, then for
any µ ∈ [δ, 1/2] the libration point is always unstable and no Hopf bifurcation
occurs around it.

Proof. In the case of the PR dissipation it is

ã3(µ, 0) = 2, ã1(µ, 0) = −3 + 2µ,

and the assumptions of the last theorem are fulfilled with µ1 = δ and µ2 =
1/2.
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