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Abstract

We consider non-periodic holomorphic twist maps of the form
1 _
b =0+ < (y+ Fu(6,7), ri=1+r TRy (0,7r),

for a €]0,1] and v € R\ {0}. Under appropriate assumptions on Fj, F» and a primitive h
of r1 dfy — rdf it is shown that 7, = O((logn)"/®), if (6,, Tn)nen, 18 @ forward complete
real orbit of the map.

1 Introduction

Over the last years we have examined the dynamics of twist maps with non-periodic angles [4, 5,
6, 7]. Motivated by the Fermi-Ulam ping-pong model, and also by the Littlewood boundedness
problem, we have obtained results on the role of the bounded orbits in the general dynamics
[8] and also on the improbability of escaping orbits [9, 14, 15]. However, the first result for
this class of maps is older and due to Neishtadt [11]. He studied the ping-pong model in the
analytic case and proved that for any orbit the velocity v, after the impact n must satisfy

v, = O(logn), n — . (1.1)

In this paper we consider more general holomorphic maps f : (6,7) + (61,71) of the form
1
91:9+r—a(’}/+F1(9,7’)), T1:r+r1_°‘F2(0,7’), (12)
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where a €]0,1[ and v € R\ {0}. They should be viewed as perturbations of
0=0+L, r=r
/,nOl

The latter map is well-defined on Rx]0, co[ and has a holomorphic extension to the complex
domain C x {r € C : Rer > 0}. Moreover, it is symplectic, due to ry dfy — rdf = db, for
ho(0,7) = —2L r1=@ We will investigate the dynamics of (1.2), being defined on a set of the

l1—a
type
Q=Rsx{reC:Rer>r,|[Imr| <n|rl}

for some d,r > 0, n €]0,1], with Ry = {# € C : |Imf| < §} denoting the open strip in the
complex plane about R of width . Our main assumptions are:

(i) the smallness of the holomorphic functions F; on Q (supposed to map reals into reals),
in the sense that F;(0,r) = O(r~®), uniformly in 6 € Ry, for j = 1,2;

(i) h(0,7) = bo(0,r) + O(r'=2%) uniformly in § € Rs, where r df; —r df = db holds for (1.2).

Under these hypotheses we are going to show (Theorem 3.1) that there exists a constant C' > 0
such that if (0,,,7,),,cy, 15 a forward complete real orbit of (1.2), then there is ng € N so that

r < Cllogn)/®, 0> ng.
For the proof, we apply a rescaling ¢ = £'/°r to put f from (1.2) into the form
¢6 . 91 = 9+€R1(97£7€)7 51 :€+€R2(97£75)7 (13)

where Ry(0,¢,¢) = g (v + Fi(6, 5%)) and Ry(6,€,¢) = €' 7°F5(0, 55=). It turns out that the
family of maps {t.} can be defined on a common domain G,, where G = Rx|1,2[ and

G,={z=(q,p) € C*:|Imgq| < p, dist(p,I) < p}.

This leads us to study (see Section 2, also for more discussion of the subtleties) general maps
P.: G, — C? given by

PE : = +€l(x78)7 €Ty = (9171)1)7 T = (Q7p)a

where [ belongs to a certain class of maps M, ,, that has to be carefully set up in order to
account for singularities of [ or % at ¢ = 0; recall the definition of Ry, Ry in terms of Fi, F5
above. Inspired by [7], we call the family of maps { P.} E-symplectic, if p; dg1 — pdq = dh(-,¢)
for a function h € M, ,, such that, as e — 0,

oh
h(g,p.e) = em(q,p) + O, 5-(¢,p,¢) = m(q,p) + O(e),
uniformly in (¢,p) € G, for a bounded function m : G, — C. It turns out that all these
conditions can be verified for (1.3) after rescaling b from (ii) to h. Furthermore, it is possible
to construct a function F = E(x) satisfying JVE(z) = l(x,0), where J denotes the standard
symplectic matrix; in fact E(6,¢) = E(§) = 2= £'~ for the maps from (1.3). The function £
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should be thought of as an approximate first integral (adiabatic invariant) for the family {P.}.
This means that the variation of E along the orbit remains small for an exponentially large
time. More precisely, Theorem 2.5 ensures that if

($n>ogn§N = (Pan(%))ogngN

is a real forward orbit piece of P, so that x,, € G for all 0 < n < N, then
|E(z,) — E(z)| < Ce, 0<n<min{N,N.}, N.=[e""], (1.4)

for constants C', D > 0 and if ¢ > 0 is small enough (all independent of the orbit). Going back
to the original variables (6,r), it follows that

IS0 — S| < CsP. m<n<m+ e

where s, ~ 717® (up to a multiplicative constant), 3 = % <1land 0 = ;%= > 0. Then to

complete the proof of Theorem 3.1 we need to show that limsup,, . (bg‘(”# < (4. This is
accomplished in a clean way by using Lemma 3.4, which is related to upper and lower solutions
to the difference equation z,1; = z,, + Cx?.

The proof of Theorem 2.5, which implies the adiabatic bound (1.4), is given in an appendix
(Section 7), and it is based on realizing P. as the Poincaré map of a periodic Hamiltonian system,
as outlined in [11]. Nevertheless we include the necessary details, since what we precisely need
is a version that allows for a non-smooth dependence on . Furthermore, the fact that in
G = Rx]1,2] the first coordinate can be unbounded poses some technical challenges; this is
accounted for by introducing assumptions on the primitive of the 1-form that are not explicit
in [11]. This leads to the introduction of suitable function classes H,, and H, , for the relevant
Hamiltonians H = H(x,t,¢) in the Hamiltonian normal form theorem (Section 6).

Section 4 concerns the application to the ping-pong map. Note that o = 1/2 in this case,
but in the notation of the main theorem (Theorem 3.1) as mentioned above r, = E,, = v /2
corresponds to energy, not velocity, and hence we recover (1.1). An important issue here is how
to extend the ping-pong map to the analytic setup and how to change variables appropriately.
In fact it will turn out that even in this case our result is slightly stronger as what is mentioned
in [11], since it comes with some uniformity, in the sense that it provides the estimate

, v
limsup —— < Cp
n—oo n

for a constant Cy > 0 that is independent of the chosen orbit.
It remains an open question, if Theorem 3.1 yields an optimal bound. In Section 5 we

consider the examples
/2 20
O=0+\/—, m=r+——,
1 - 1 1+ 92)1\7

for N € N. By direct analysis, it can be shown that for (6y,7ry) € R? such that 6, > 0 and

ro > 0 the forward complete orbit (6, Tn)nENo does exist, and moreover

sup r, < oo if N > 2,
n€Np



whereas - -
iminf —2— < 1 _n i = 1.

0< hggolf (og 2 = hinj;ip (log )2 <o if N=1
In addition, it will turn out that Theorem 3.1 is applicable for N > 2 only, but not for N = 1.
This indicates that: (i) some assumption of Theorem 3.1 could maybe be relaxed (to cover
N =1); (ii) in some examples maybe unbounded orbits do exist. However, given the advanced
technical machinery that is used to establish Theorem 3.1, both questions seem to be difficult
to answer.

2 E-symplectic families of maps

An important observation in [11] is the existence of adiabatic invariants for families of analytic
canonical maps close to the identity. Given a convex domain G C RY x RY and a family of
symplectic maps

P.:G—=RYXRY, z=x+c¢l(se),

it is possible to construct a function £ = E(z) satisfying
JVE(z) =I(z,0), (2.1)

0 Iy
—Iy 0
numerical integration method for the Hamiltonian system & = JVE(z). This fact suggests
that E(x) should be an adiabatic invariant for P., meaning that

where J = ( . For small ¢ the iteration z,,; = P.(x,) can be interpreted as a

|E(P"(z)) — B(z)] < Ce, 0<n<N., (2.2)

£

where N. is of the order e”/¢; the constants C, D > 0 should only depend upon an appropriate

norm of [. In essence this is discussed in Remark 5 and Proposition 3 of [11]. Additional details
can be found in [2], in particular in the case of bounded domains.

However, the previous statements must be taken with some caution in the case where the
underlying domain is unbounded. As a counter-example we consider the family of translations

1 =2 +eJv + v,

defined on the whole space G = RY x RY. Here v # 0 is a fixed vector and E(z) = (z,v)
satisfies (2.1), since [(x,€) = Jv + ev. Due to P*(x) = x + nel(z, ) we obtain

|E(P!(x)) — E(2)] = e*nlvl*.
Therefore (2.2) does hold only for n < N. = O(1/¢) many steps.

To overcome this inherent difficulty, Benettin and Giorgilli in [2] considered an unbounded
domain G and a family of maps derived from a symplectic integration algorithm for a Newtonian
system of the type § = —VV(q). Then they impose some growth conditions on V' (q) as |q| — oo.
We will follow a different approach and assume that our family { P. } satisfies a condition inspired
by the notion of an exact symplectic map (called E-symplectic), as it was understood in our



previous work [7]. Furthermore, to simplify matters, we will restrict ourselves to the case of
direct interest to us for applications. Throughout we will take

N=1 and G=RxI,

where I C R is an open and bounded interval. Our goal will be to understand the dynamics
of a map on the plane (0,7) — (61,71) when r — oo. For this reason our family of maps {P.},
P.: (q,p) = (q1,p1), will be obtained after a rescaling ¢ = 0, p = er with ¢ € R and p €]1,2].
This procedure will lead to functions [(x, ) that are analytic in x, but not necessarily smooth
in ¢; a prototype can be the function [(z,e) = h(z/e?), where h is real analytic in [1, co[ and
h(¢) — 0 as ¢ — oo. Then [ is continuous as a function of the two variables (x,¢), but the
partial derivatives Ol do not always exist at € = 0.

The following definitions are motivated by the previous discussions. In general, for the

U0, >

respectively. Note that for A € C¥™¢, z € C4, A; € Ch*4 and A, € C¥92 this implies
| Az < d|Alfz],  |A1A;| < d[Ay]|Ag].
The points in G = R x [ will be denoted by x = (q,p). For p > 0 we will write
G, ={z = (¢,p) € C*: [lmgq| < p, dist(p,I) < p}.
Given ¢ : G, — C holomorphic, let

lell, = sup {lp()] - = € G}

If 0 < r < p, then by the Cauchy integral formula one has

1
D < —
| Del], < P ol
where D¢ is the Jacobian.
Definition 2.1 (The classes M,, and M, ,,) Let p >0 and o €]0,1].

(i) The class M, , consists of those continuous maps [ : G, x [0,0] = C2, | = l(x, &), which
satisfy:

(a) 1 maps real into reals; and

(b) for every e € [0,0] the map l(-,€) is holomorphic on G, and
12,5 = sup {[lI(- &)l - e € [0, 0]} < o0

(ii) The class My ,, consists of those continuous maps | : G, x [0,0] — C*, | = I(z,¢),
satisfying

(a) 1 maps real into reals;

(b) 1is C*> in G,x]0,0];



(c) for every e € [0,0] the map l(-,€) is holomorphic on G,;
(d) one has

I,y = I, +sup {H%(.,&:) ieelio]} <o

Remark 2.2 Note that, for a map | € M,, or | € Mj,,, all the derivatives 929I(-,¢) :
G, — C? for € €]0,0] are holomorphic, where o € N} and k € Ny. Similarly, all the 921 :
G, x [0,0] — C? are continuous functions of both variables. This follows from the Cauchy
integral formula and the continuity of /. Furthermore, the derivatives can be interchanged:

D28 (-, ) = BEORI(- ).

Definition 2.3 Suppose that | € M, ,,, and for € € [0,0] consider the family of maps P. :
G, — C* given by

PE : I ::E—l—€l(l',€), I = (Q17p1)7 T = (Q7p> (23)
We say that the family {P.} is E-symplectic, if there is a function h € M ,, such that
p1dgy — pdq = dh(-, ) (2.4)

and there exists a bounded function m : G, — C satisfying

h(q,p,e) =em(q,p) + O(e?) as ¢—0 (2.5)
and

oh

402 =mla.p) +0() as &0 (2.6

uniformly in (¢,p) € G,.

Remark 2.4 (a) m is holomorphic in G,. To see this, note that 2%(-,¢) is holomorphic for

€ > 0 by Remark 2.2. Since m is the uniform limit of fol %(q, p,te) dt as e — 0, it is holomorphic
itself.

(b) m satisfies

om ol om ol

dq dq
where [ = (ly,13). For, we observe from (2.5) that e~'h — m uniformly on G,. Therefore also
the derivatives converge, uniformly on compact subsets of G,. From (2.4),

oh ol ol oh ol ol
A 4 potdel =, el =p—tfely =t
€ 2 2+paq+5gaq, € o p6p+528p

Thus it remains to pass to the limit ¢ — 0 and use Remark 2.2. Relation (2.7) can also be

stated as
Vm(x) = pVii(z,0) + < lQ(a(;’ 0) ) ., x=1(q,p). (2.8)



(c) One has

ol dly
—— 0) +—=— 0)=0 2.9
aq(q,p, )+ ap(q,p, ) =0, (2.9)
as follows from % = %. Relation (2.9) implies that the Jacobian matrix DI(z,0) is Hamil-
q0p poq

tonian, i.e., it satisfies Di(z,0)*J + JDI(z,0) = 0, or equivalently, JDI(x,0) is symmetric.
Since G, is simply connected, we conclude that there is a holomorphic function £ : G, — C
such that JVE =1(-,0), i.e., (2.1) holds. Actually, (2.8) shows that we can take

E(z) = li(z,0)p —m(z), z=(q,p). (2.10)

(d) The relation JVE = [(-,0) yields

E E
dE:a—dq—l—a—dp:—lgdq—i—lldp.
dq dp

Hence E(x) = E(xg) + f,y(—lg dq + 1y dp) for every path ~ that connects a fixed gy € G to x.
This observation makes the connection to the formula for E given in [11] below (2.7).

(e) Condition (2.6) does not follow from (2.5), as the example

1
h(q,p, 8) = em(q,p) + £2sin (g>
shows.

The key result of this section is the following theorem. It should be compared to [11, (2.7),
p. 135 and Prop. 3, p. 136].

Theorem 2.5 Suppose that | € My ,,, and for ¢ € [0,0] consider the family of maps P: :
G, — C? given by
P.: xy=x+c¢l(x,e). (2.11)
Let the family {P.} be E-symplectic. Then there exist & €]0,0] and constants C, D > 0 (de-
pending upon p, o, ||l||, , . the interval I, [|L||, ,, and sup,.cp 4 le=1(%(-,e) —m)||,) such that
if
(‘r”>0§n§N = (Pgb(l‘o))ogngN

1s a real forward orbit piece of P. so that x,, € G for all0 < n < N, then
|E(z,) — E(z0)] < Ce, 0<n<min{N,N.}, N.=I[e"/"]. (2.12)

We postpone the proof to Section 7.



3 Main result

To motivate our main result let o €]0,1[ and v € R\ {0}. Consider the map (0,7) — (61,71)

given by
/>/

ra

leg—i— T =T.

It is well-defined on R x]0, co[ and has a holomorphic extension to the complex domain C x {r €
C : Rer > 0}. Moreover, the map is symplectic, since it satisfies

rldel—rdQ:dho

for

ho(6,7) = ——— 17, (3.1)

11—«

We will consider perturbations of this map on a sub-domain of C? of the type
Q=Rsx {reC:Rer >r,|[Imr| <n|rl}, (3.2)

where d,r > 0, n €]0,1[, and Rs = {# € C : [Im 6| < §} denotes the open strip in the complex
plane about R of width 4.

Theorem 3.1 Consider the map f: (0,7) — (01,71) given by

6 =0+ ria(*y—l—Fl(H,r)), ro=1r+r TR (0,r), (3.3)
under the following hypotheses:

(a) Fy and Fy are holomorphic in Q from (3.2).

(b) If (0,r) € QN R?, then Fy(0,r), F>(0,7) € R.

(¢) F;(0,1r) = O(r=®), uniformly in 0 € Ry and for j =1,2.

(d) There is a holomorphic function b : Q@ — C that maps reals into reals and such that
r1df, —rdf = db as well as

h(8,7) = bo(6,7) + O(r' ), (3.4)
uniformly in 0 € Rs, where by is defined in (3.1).

Then there exists a constant C > 0 such that if (0n,70),en, @5 @ forward complete real orbit of
f, then there is ng € N so that



Remark 3.2 (a) The dependence of C' with respect to the parameters will be discussed along
the proof; C' will be obtained from a sequence of constants C4,...C43.

(b) If the functions F; and F» are 2m-periodic in 6, then f can be defined on a cylinder and
the conclusion can be improved to r, = O(1) as n — oo for each complete real orbit. This is
a consequence of the Small Twist Theorem, see [17, Chapter III]. In fact, after the rescaling
p = er with p € [1,2], the map f has an expansion of the form

0 =0+ & % + O, pr=p+ O,

as ¢ — 0, uniformly in 6 € Rs. Taking a sequence ¢, — 0, we find corresponding invariant
curves 1 = 1,(0) such that 1/e, < 1,(0) < 2/e, for # € R. These curves are closed in the
cylinder and act as barriers for all real orbits, preventing them to escape. The same conclusion
is valid if then dependence on 6 is quasiperiodic and the frequencies satisfy a Diophantine
condition, cf. [19].

(¢) Without any further assumptions, for a map f which satisfies (a)-(d), there are infinitely
many forward complete real orbits such that r,, = O(1) along the orbit. This is a consequence
of the results in [5]. To establish the claim, we first observe that (c) yields for » € R the bound

OF,

o 0,r) = O(r_(1+o‘)), r — 00, (3.5)

uniformly in § € R; (3.5) follows from the Cauchy formula, see the proof of Theorem 3.1 below.
According to [7], the latter estimate is sufficient to guarantee the existence of a generating

function h = h(6, 0,) associated to f, i.e., r = % and 1 = — 2% are verified. Actually one can

90
take h(0,01) = —h(0, R(0,6,)), where r = R(0,0;) is implicitly defined by the first equation in

(3.3). Some computations then show that

Oé’)/l/a

R(6,60) ~7'/*(6: = 6)"*, h(0.61) ~ T (61 —6) =,

—

as 01 — 60 — 07, where as usual F(z) ~ G(x) as * — o means that lim, ., F(z)/G(x) = 1.
Hence we can invoke [5, Thm. 2.5] or [7, Exercise 5.6] to deduce that for each # > 0 the map f
has an orbit (6, Tn)neNo such that r,, > 7 for all n € Ny and furthermore sup,, v, < oo.

To prepare for the proof of the theorem, we are going to discuss some aspects of the method
of upper and lower solutions for the difference equation

Tni1 = 9(Tn), (3.6)

where g : [ — R is an increasing function that is defined on an interval I C R.
A sequence (Vy)o<,<y C I is called a lower solution of (3.6), if y,41 < g(y,) for n =
0,...,N — 1. An upper solution is defined by reversing the previous inequality.

Lemma 3.3 Let (v,) and (T'),) be a lower solution and an upper solution of (3.6). If vo < Ty,
then v, < T, for all n.



Proof: This follows by induction from the monotonicity of g. O

Next we will show how to construct lower and upper solutions for an equation that will be
important for the proof of Theorem 3.1. Consider

Tpt1 = T + Clg?

where C' > 0 and 38 < 1. The function g(x) = x + Cz” is increasing in I = [0, 00[, if 8 > 0,

and it is increasing in I = [(C|B|)ﬁ, oo[, if f < 0. Inspired by the general solution of the
differential equation & = C'z?, we test sequences of the type

1
Yo =(A+Bn)T=5, n>0,

for some A, B > 0; the condition A > (C’|6\)ﬁ is also assumed, if 8 < 0, to make sure that
Yn € I. From the mean value theorem we obtain

B
Tn+1 — Tn = m(A—i_B(n—i_Cn))lfB

for some ¢, €]0, 1].
Let us first look at the case where g € [0, 1[. Here we deduce that

B B

—— A< oy < —— AP 3.7
g ST T I S T g T (3.7)

Hence 7, will be an upper solution, as soon as B > C(1 — ). To get a lower solution, we
observe that -

IYn—&_-l B B

=1 <1l+—.

N

Therefore we get
8 Byt
Tn+1 < <1 + Z) Vs

and thus, due to (3.7), 7, will be a lower solution, if B(1 + %)% <C(1-p).
For 5 < 0 the inequality (3.7) is reversed. As a consequence, 7, will be a lower solution,

if A > (C\ﬁ\)ﬁ and B < C(1 — @), and it is an upper solution for A > (C’]ﬁ])ﬁ and
B(1+ %)% > C(1 — (). Thus to summarize:

(a) If B < 1is fixed and B =1C(1 - f3), then I', = (A + Bn)ﬁ will be a lower solution,
if A > 0 is taken sufficiently large (depending on C' and f); this fact won’t be needed in
what follows.

(b) If B < 1is fixed and B =2C(1 — (), then I, = (A + Bn)ﬁ will be an upper solution,
if A > 0 is taken sufficiently large (depending on C' and f3).
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Returning to the general setup, let us now assume that the interval I is of the type I =|b, 00|
and let A : Ng — Ny be a given function with the property that

h(n) >n+1, neNy. (3.8)
Let (Yn)nen, C I be a sequence such that
Y < g(Ww), 0<n<m < hn) (3.9)

This sequence is a lower solution of (3.6), but it has additional favorable properties; in this case
it will be possible to sharpen the conclusion of Lemma 3.3 as follows.

Lemma 3.4 Let (yn),cn, € 1 and (T), oy, C I be such that:

(a) () satisfies (3.9),
(b) (T'y) is an upper solution to (3.6),

(¢) o < T,
(d) (T'y,) is increasing and limsup,,_, . Yn = 0.

Then there is an increasing function o : Ng — N such that
Yoy > In and v, <I'h, me{0,...,0(n)—1}. (3.10)

In addition,
on+1) > h(c(n)—1), n € Ny (3.11)

Proof: Define
o(n) =min{k € Ny : vy > T, }.
It follows from (d) that o is well-defined and monotone increasing. Also, thanks to (c), we have
o(0) > 1 and accordingly o(n) > 1 for all n € Ny; in particular, the statement (3.11) makes
sense. The relations in (3.10) are obtained directly from the definition of o, and we are going to
prove (3.11) by contradiction. So assume that for some n € Ny we have o(n+1) < h(o(n)—1).
Then
h(c(n) —1) > o(n+1) > o(n) > o(n) —1

shows that we can use (3.9), with n replaced by o(n)—1 and m replaced by o(n+1), to deduce
that Y,(m41) < 9(Yom)—1). Since g is increasing and due to (b), this would yield

Vo(nt+1) < Q(VU(n)fl) < g(I'y) < Ty,

which is impossible by (3.10). O
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Remark 3.5 The previous proof is still valid, if the sequence (7,,) does not lie in I, but satisfies
a modified version of (3.9). Assume that there a numbers b* > b, > b such that Iy > b* and

Vg1 =0 = 4, > b, (3.12)
Then 7, is required to have the property that
Yo =be = b< v <g(m), 0<n<m<h(n). (3.13)

Proof of Theorem 3.1: Step 1: Some estimates. We will show that, after restricting the size
of Q, the functions F; and Fy will satisfy some additional estimates. From (c) we know that
there are numbers C; > 0 such that

|F;0,r) <Cor™, (0,r)ef, j=1,2. (3.14)
We consider the smaller region

Q, = Rs x {TGC:Rer>2£,|Im7’| < gM}

and claim that there are constants CJ(I) > (0 for j = 1,2 such that

or,

7 <CWp et (9 eq,, j=1.2, (3.15)
T

(6,7)

where C’j(l) only depends upon r, n and C}. To prove this we first use an elementary geometric
argument to find a constant x €]0,1[, depending upon r and 7, such that if (0,r) € €., then
all points (6, p) with § € Rs and |p — r| < k|r| will belong to €. Now it is possible to use the

Cauchy formula

OF; 1 F;(0

—](9,7”):—/ ]( ’p) dpa

or 2mi J., (p—1)?
where 7 is a circle with center r and radius x|r|. Then (3.14) leads, after a short computation,
to (3.15). The same kind of arguments in conjunction with (d) yields the following bounds for

h:

15(0,7) — bo(0,7)] < C3r'™2* (,r) € 9, (3.16)
%(977“) - %(977) <cr (0,r) €, (3.17)

where C3 > 0 and C’él) > () are suitable constants. From now on the domain (2 will be replaced
by €2.. To simplify notation, we will assume that already € is a domain on which the estimates
(3.14), (3.15), (3.16) and (3.17) are verified.

Step 2: Rescaling. Under the transformation ¢ = £'/%r the map f becomes
¢€ : 01 :0+5R1(97§78)7 51:€+6R2(9a§78)7

where

Ri(0,€,¢) = 5%(7 o (9, 5%)) Ro(0,€,¢) = €19, (e, 51%)
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According to (a), 1. is defined on
Y. =Ry x {€ €C: [Im¢| < n|¢|,Re & > 1},

We intend to apply Theorem 2.5 to the family of maps {t.}, and the first task will be to
determine a common domain. Let us fix I =]1,2[ and define G = R x I. A generic point
in G will be denoted by x = (0,£) and we also recall that |x| = max{|f|, |£|} will be taken
as the norm on C?. Elementary geometric considerations show that it is possible to select
p €]0,min{1/2,d} and ¢ > 0 such that G, C X, for ¢ € [0,0]. The next step is to show that
[ = (Ry, Ry) belongs to M, ,,. Note that we are extending this map to € = 0 by letting

R1<97€70) = é‘la’ R2(9a§70> =0.
The functions R;(-,-,0) are obviously continuous on G,. We are going to show that
Ri0.6:2) > g Ralf,6:2) 0, (3.18)

as € — 0, uniformly in G,. This implies that the extension of R; to G, x [0, 0] is continuous,
and hence the same holds for [. The limits in (3.18) are a consequence of (3.14) and the bounds
1/2<1-p< ] <2+ p<5/2for (0,6) € G,

Now that we know that [ is continuous in GG, x [0, o], the conditions (a), (b) and (c) from the
definition of the class M, ,, follow directly from the assumptions on F; and F5. To establish
(d), we first consider [|I| ,,. Here

HRl('v '7€>||p < 20‘(‘7‘ +2%Ch 6)7 HR2(7 '78>Hp <mq Gy, (319)

for m, = max{(3)'7>*,2°*7"}, is derived from 1/2 < |¢] < 5/2 and (3.14), so that [|I] , < oc.
For the derivatives w.r. to €, we have

0R, 1 &7 9, & OR,
Oe ( a ettt/e gp (9’ 51/a>’ Oe (

for £ €]0, 0]. Using (3.15), we deduce that

IS 8F2(9 £ )

a elti/a g 7 gl/a

0,&,¢e)=— 0,&,¢e)=—

Lone

p T«
so that ||I[|, ,, < oo and therefore I € M .
Step 3: The symplectic condition. We apply assumption (d) to observe that

o £
h(0.€.2) = (6. =27 (3.20)
is a potential for ¢. on G, i.e., { dby — £df = dh(-,¢) is satisfied. Moreover, from (3.16), we
obtain that
h(0,€,e) =em(0,€) + O(e®) as € —0, (3.21)
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uniformly in (6,§) € G,, where m(6, &) = ho(6,&); for this note that m is homogeneous in £ of
degree 1 —c. The function m is bounded on G,. Next, condition (2.6) follows from (3.17), and it

should be observed that the bound on [e7!(2 — m) Hp then only depends upon Cj, C’?()l) and a.

It remains to prove that h € My ,, in order to conclude that the family {¢.} is E-symplectic;
note that h is extended to ¢ = 0 by h(0,£,0) = 0. From (3.21) we get the continuity of h
on G, x [0,0]. Next we are going to show that condition (d) in the definition of M, ,, (see
Definition 2.1(ii)) also holds. The definition of hy and (3.16), (3.17) imply that

h(0,r) = O(r'™*) and %(9,7") =0(r )

uniformly in 6 € Rs. Thus using these estimates, we obtain a uniform (in € €]0, o]) bound on
(-, e)ll, and (|52, e)]l -
Step 4: Application of Theorem 2.5. Since

we deduce from (2.1) that
v l—a
E0,6) = ——
(07 5) 1 — 5 9

and thus in fact £ = F({). Then Theorem 2.5 yields the existence of & €]0, 0] and constants
C, D > 0 such that if ¢ € [0, 5] and

(xn)ogngjv = (6n7§n>ogn§]\[
is a real forward orbit piece of 1. so that 1 < &, <2 for all 0 <n < N, then

‘E<£n) - E(go)’ S éga 0 S n S min{N7 N€}> NE - [eb/s] (322)

Step 5: Going back to the original system. First we fix two numbers 1 < a < 3/2 < b < 2. Let
(0ns ), <n<n, Pe @ real forward orbit piece of f such that e = (2r,, /3)™* < &, where ¢ is from
the previous step; by decreasing ¢ further, we may assume that in addition

5 < ﬁ min { (g)la _gle ple (;)M} (3.23)
as well as 5 b a_1
& < min {m m} (3.24)

are verified. Then we have &,, = /%, = 3/2 €]1,2[, where in general we let &, = £'/°r,,.
Denote by
N, =max{m >n; :1 <&, <2 for n with ny <n <m}

the longest time such that along the orbit (6,,&,) of 1. it holds that 1 < ¢, < 2. From
Step 4 and (3.22) it follows that

)

n1<n<ng

1— . .
aCe, ny <n <min{N,,ni + N.}, N. =[],
~

14



Thus for n; <n < min{N,,n; + N.} we deduce from € < ¢ and (3.23) that

3\ -« 1 — . 3\ -« 1— A
al=e < (—) T %e<gg (—) b Ll <pie (3.25)
2 y 2 ~y

We claim that N, > n; + N.. Otherwise (3.25) would be applicable n = N, to imply that
En, € [a,b]. We do also know that £y, .1 €]1,2[. But then

Enot1 = En, FeRa(On,, 6N, €)

together with (3.19) and € < 1 would lead to [n, 11 — én,| < Mo Coe? < my Cye. This in
turn would yield &x, 41 €]1,2[ by (3.24), which is impossible. This completes the argument for

N,, > ny + N., and the previous discussion can be summarized as follows: If r,, > (3/2) 6=/,
then

ra = < Carp %, e <n <y + [T, (3.26)
where Cy = (3)'72*(122)C and C; = (2/3)°D.

-«

+~ and writing m = ny, (3.26) reads as follows: If

1-a
Step 6: Conclusion. In terms of s, = C;* r
Sm > Cg, then

IS0 — S| < Cr s, m<n<m+ e (3.27)
where 5 = % <1,0=1% >0 0C = (3/2)12(C5/6)/? and C; = CyCs. We need
to prove that limsup,,_, . (bgsw < () for an appropriate constant C, > 0 that will be
independent of the initial condition sg. Suppose now that limsup,,_, . s, = 0o, or equivalently
lim sup,,_, o, 7n = 0.

We intend to adapt (3.27) to the framework described in Lemma 3.4 and Remark 3.5. The
function g(z) = x + C;2” is increasing in I =]b, oo, where we take b = 0 for 3 > 0 and

b= (C’7|B|)ﬁ for § < 0. In addition,
h(n) = n + [e*]

satisfies (3.8), since all the s,, are positive. The numbers b, and b* are defined as follows. First

we take )
b. = max{Cs + 1,20, (2C7) -7 }.

To obtain b* so that (3.12) is satisfied for ~, = s, we need an estimate of the type s, >
Cy spy1 — 1, which is valid for all n € N. By the definition of the map and by (3.14):

11—« 12«
Tni1 =T+ 1, “Fo(0p,1n) <1p+ Cor,

which translates into

11—«

1—-a
Spp1 < O™ (1o 4+ Corh 27 < Op (7 4 Cy {720 0=9))
Sn+ Cs s 2 < (Cs + 1) (s, + 1)

for a suitable constant Cg > 0. Expressed differently, we have the bound

Sn > 09 Sp4+1 — 1 for Cg = (Cg + 1)71. (328)
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Therefore an appropriate choice for b* > b, > b is b* = (Cg + 1)(by + 1). Finally we take
1 1

I', = (A+ Bn)™75 with B = 2C7(1 — ) and A™F > max{sg,b*}. From the discussion prior

to this proof we know that (I",) will be an upper solution to z,1 = x, + C7 28, if A is fixed

n?

to be sufficiently large (depending on sy, 8, Cs, C7). Clearly I'y > max{sg,b*} and (T',) is
increasing. Lastly, (s,) satisfies (3.13), the latter due to (3.27): if s, > b, then s,, > Cs and
(3.27) applies. It follows that s, — C7s? < s, < g(s,,) for 0 < m < n < h(m). The lower
bound also yields

1
Sp > Sm(1 — 07375”_1) > 3 Sm >

for such n. Hence Lemma 3.4 provides us with an increasing function ¢ : Ny — N such that
So(n) > I, 8 < Ty for m € {0,...,0(n) — 1} and furthermore

o(n+1)> o) —1+[e*m1], ne N, (3.29)
Thus from (3.29), (3.28) and s,(,) > I'y, we deduce
o(n+1) > o(n) + et —2 > o(n) + @50 2 > g(n) 4 @L=D" _ 9
After some straightforward manipulations using the definition of I';, and ﬁ =1, this yields
on+1)>o(n)+ Cype™™ —2

for constants C', c1; > 0 depending upon Cy, 6, A and B. Therefore

n—1 n—1
cun
O'(n) - U(O> + (O'(k + ].) — O'(k)) Z 1+ CIO g ecllk — 2n Z ClO 66011—_1 — 2n. (330)
k=0 k=0

Thus o has at least exponential growth, which means that its ‘inverse’ will remain below a
logarithm. More precisely, let

(m) = min{n € Ny : m < o(n)}.

Then m < o(¢(m)) — 1 and hence s,, < I'yayy. In addition, from (3.30) it follows that
P(m) < log(m + Cia) + Cy3 for suitable constants Cio, C13 > 0. This in turn leads to

Sm < (A+ Bw(m))ﬁ < (A+ Blog(m + C1) + BC13)'/°

and therefore also

. Sm
T Tlogmyis =

for C, = BY? which completes the proof. Note that C, is independent of the initial condition
Sg, but in general the ng from the statement of Theorem 3.1 will depend on sg. O
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4 Application to the ping-pong map

The Fermi-Ulam ping-pong map (see [5]) for the forcing function p is usually expressed in terms
of the variables time and velocity at the impacts with one of the rackets. Assuming that this
racket is fixed, the equations for the map (¢, vo) — (t1,v1) are

t1:t~—|—p—), U1:U0—2p<t~),
U1
where ¢t = £(ty,vo) denotes the hitting time to the other racket, which is obtained from the
relation (f — to)vg = p(t). A computation shows that v, dt; A dv; = vydty A dvg, and this
formula suggests the energy F = %1)2 to be used as the conjugate variable of time. In this way
we obtain the symplectic map V¥ : (tg, Eo) — (t1, E1),

7 p(f) _ B -1V 2
W=t pe By = (VE, — V2p(D))%,

where t = t(tg,vo) is implicitly defined by means of

p(t)
V2E,

The real domain of the map ¥ contains a half-plane of the type ¢y € R, E > R, (see [5]).

t=ty+

As an application of Theorem 3.1 we will obtain the following result, which is an upper
bound for the velocities in the analytic case; also see [11, Example 5.

Theorem 4.1 Letd > 0 and p : Ry — C be holomorphic and such that p maps reals into reals,
Ip(2)| < C for z € Rs, and 0 < a < p(t) < b fort € R. Then there exist constants Cy, E, > 0,
depending only upon the parameters, such that if (t,, En)neNo s a forward complete real orbit
of ¥ with liminf, ., E, > E., then there is ng € N so that

|E,| < C.(logn)?, n > n,
and for the velocities v, = \/2E, this means |v,| < /2C,logn for n > ny.

Remark 4.2 According to [11], only logarithmic accelerations are possible. This means that
the estimate v, = O(logn) as n — oo holds for any forward complete orbit. The above
statement is slightly stronger, since the estimate has some uniformity: note that

lim sup Un < /20,

n— 00 10g n

and C, is independent of the chosen orbit.

The idea of the proof is to use Theorem 3.1, not in the coordinates (¢, £'), but in (w, W) given

by w = fot p(d;)2 and W = p(t)?E. Thus we need to verify that the map (wq, Wy) — (wy, Wy)

satisfies the assumptions of Theorem 3.1. This will be accomplished in three steps. First we
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are going to show that ¥ has a well-defined holomorphic extension. In the second step we will
prove that the map (wg, Wo) — (wy, W7) is exact symplectic, and the function b = b(wo, Wp)
satisfying

W1 dw1 - W(] dwo = db
will be computed. Finally, after applying Theorem 3.1 to this new map, we will go back to
the original to obtain the conclusion. Incidentally, we would like to mention that the quantity
W12 appears in [11, Example 5], where it is considered as an adiabatic invariant.

4.1 The complexified map

We start with two lemmas on holomorphic functions.

Lemma 4.3 Let g : Rs — C be holomorphic and such that Reg'(z) > 0 for z € Rs. Then g is
one-to-one.

Proof: This is a particular case of [13, Prop. 1.10]. O

Remark 4.4 Under the assumptions of Lemma 4.3, as g is non-constant and holomorphic,
the image g(Rs) C C is open. Thus ¢! : g(Rs) — R is well-defined and holomorphic by the
inverse function theorem.

Lemma 4.5 Let g : Rs — C be holomorphic such that g maps reals into reals and there exists
a >0 so that Reg'(z) > a for z € Rs. Then R,s C g(Ry).

Proof: Fix w = a + ib € R, i.e., we have |b] < ad. In particular, we can choose o €]0,d|
such that |b] < ac holds. To find a solution z € Rs of g(z) = w, note first that g(R) = R
by assumption. Hence there is x € R satisfying g(z) = a. We consider the functions fi(z) =
g9(z) —a and f3(z) = —ib and our intention is to apply Rouché’s Theorem on the rectangular
region bounded by

[={(:Refecz—Ajz+ A, Im =20} U{{:Re{ =2+ A Im¢ € [—0,0]},
where A > 0 will be taken to be large enough (see below). Once we have established that

A > [AE)], e, (4.1)

the proof will be complete, since then fi(z) = g(z) — a and fi(2) + fao(2) = g(2) — w will
have the same numbers of zeros inside of I'; this number is one, by the choice of x and as g is
one-to-one by Lemma 4.3. To check (4.1) on the horizontal parts of I' take £ = ¢ £ io, where
t€x—A x4+ A]. Then g(z) € R yields

[f1(E)] = lg(t £io) — g(x)| = [Im g(t + io)].

As ¢’ is real on R, one has, using the hypothesis,

ttio

ttio o
[Im g(t +io)| = ’Im/ J(2) dz‘ = ’Im / q(2) dz‘ = ‘Re/ g'(t tis)ds| > alal.
T t 0
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It follows that |f1(£)] > alo| > |b] = |f2(§)]. It remains to verify (4.1) on the vertical parts of
I. For, take £ = (x + A) +is, where s € [—0,0]. Define K = max {|g(x + iv)| : v € [—0,0]}.
Now observe that, for t € R,

t+is

|Reg(t +is)] = |Reg(x+is)+ Re / g (2)dz

x+is

> ‘Re /tg’(u—l—is)du - K
> aft— ] - )
due to the hypothesis. As a consequence,
1[1()] = lg(x £ A +is) —a| > aA = K —|a| > [b] = [f2(S)],
provided that we fix A > a~(|a| + |b] + K). 0

Now we return to the ping-pong map and define ©(z) = p(2)? for 2 € R;. From the
assumptions on p we may assume that a < b < . Then

a’d
=G

satisfies 0; < $. The expression Argz €] — 7, 7| for z € C\ {0} will denote the argument of .

Lemma 4.6 The function ¢ satisfies

1
Rep(z) > §a2 and |p(2)| < 2V°, 2z € Ry,

and moreover -
|Arg p(2)]| < T z € Ry, /0.

Proof: From the Cauchy integral formula we deduce that

2072
lp ()|<T for 2z € Rsyo.

Take z =t 4 is € R;s/2. Then ¢(z )+ ftﬂs €) d¢ implies that
t+1is 02
Rego(z)Za2+Re/ (§)d§>a——||
t
as well as .
t+is 202
P <8 +] [ ©d] <+ 2
t
and o
Im p(2)] < 5 |sl.

Thus if 2 € Ry, then Rep(z) > a?/2 and |p(2)] < b + 2062 % < 3b?/2. In addition, if
z € Ry, 2, then [Im ¢(2)] < a*/4 < Rep(z), which yields the claim on the argument. O
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Lemma 4.7 The function 7 : Rs, — C, 7(z) = OZ pé%z = foz %, is holomorphic, one-to-one
with holomorphic inverse, and satisfies

RU(A) C T(RA) for A E]O, 51], (4.2)
where o(A) = 2 A.

Proof: By Lemma 4.6 the function ¢(z) does not vanish on the simply connected domain Ry,

and hence ﬁ has a holomorphic primitive 7(z). Lemma 4.3 in conjunction with Lemma 4.6

implies that 7 is one-to-one. Also 7 maps reals into reals and satisfies

ReT’(z):Re< ! >:|¢(l 2Reg0(z)2a_2.

#(2) 2)| 201
Thus Lemma 4.5 applies with a@ = % to prove that (4.2) holds. Concerning the fact that
771 7(Rs,) — C is holomorphic, cf. Remark 4.4. O

To extend the ping-pong map ¥ as a holomorphic map, we take the complex square root to
be /z = |2|"/? exp((i/2)Arg z), where the complex plane is cut along | —o0, 0]. In particular, /z
is holomorphic on C\| — 00, 0] and extends the positive square root. Note that \/¢(2) = p(z)
holds for all z € Rs, 2. To establish this identity, it is sufficient to adapt the proof of Lemma
4.6 to the function p to conclude that |[Argp(z)| < 7 for z € R, /.

Lemma 4.8 Let e = 86%2. Then for every z € Rsyq and E € C\] — 00,0] such that |E| > e the
equation

(%)
V2E
has a unique solution Z = Z(z, E) lying in Rs)s. Moreover, (2, E) — Z(z, E) is holomorphic as
a function of two variables. In addition, A €]0,0/4] and z € Ra implies that Z(z, E) € Roa.

zZ=2z+

(4.3)

Proof: Consider the function g(z, E) = Z — f’/(z%, so that we need to solve ¢g(Z, F) = z. For

z € Rj/3 one has

. 2C
pE) <5 (1.4
by the Cauchy integral formula. It follows that
/(= /(= 2 1
Re 29z p) =1 —ReZE) g - WO oy ¢ _1

02 VOB =T ValEpE =T Ve 2

for Z € Rs/2. Thus from Lemma 4.3 we infer that ¢g(Z, £) = z can have at most one solution
Z € Rg)p. Next let A €]0,5/4]. Then Re 2(Z, E) > 1/2 for Z € Rya. Therefore we can invoke
Lemma 4.5 with @ = 1/2 to obtain Ry C ¢(-, £)(Rea). Finally we can apply the implicit
function theorem to deduce that Z = Z(z, E) is holomorphic on the domain Rs, x {E €
C\] — 00,0] : |E| > e}. O
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Now we are in a position to define the holomorphic extension of the ping-pong map,
U:Uy CcC*—=C? (2,E)— (2, E),

given by
p(2)

V2(VE - V2p/(3))

where Z = Z(z, F) is from Lemma 4.8 and

B = (VE-V2p(3))%, (4.5)

21 =2+

Uy = {(2,E) € Ry x (C\] — 00,0]) : |E| > e}

To see that this map is well-defined, we first observe that, according to Lemma 4.8, Z € Rs/s.
Thus both p and p’ can be evaluated at Z. Moreover, using (4.4) it follows that the denominator
in the equation defining z; never vanishes: we have

220 e

|E|1/2 > §1/2 _

4.2 The change of variables and the new map

The map W is exact symplectic on the domain
Z:{\o = {(Z,E) EUy: z € Rél/g}.

More precisely, it satisfies the identity

B dz — Edz = dh (4.6)

for 1 ] 1
E) = —=p(3)* . 4.
Wz E) = =5 p(2) (z1—2+§—z> (4.7)

The new restriction on the size of |Im z| guarantees that h is holomorphic on Up. In fact, both
denominators z; — Z and Z — z do not vanish. This is a consequence of the definitions of z; and
Z, together with the inequality

~ 1
Ip(2)| > —=a >0, z&€Ry,

V2

which in turn follows from Lemmas 4.6 and 4.8.

The generating function for the ping-pong map was computed in [5]. This computation,
together with the relationship between the function h and the generating function (see [7]),
imply that (4.6), (4.7) holds. Note that all computations in [5] were done on the real domain
of ¥, but once again we rely on the uniqueness of holomorphic extensions.

Later we will need to reformulate (4.6), (4.7) in the new variables (w, W), where w =
7(z) and W = p(z)?E. This can be achieved from general principles, without any further
computation. For this reason we include a short digression into general maps.
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Consider the space C? endowed with the 1-form

o = pdyq,

where ¢,p € C are the coordinates of a point. Assume that D, D C C? are two domains with
sub-domains Dy C D and D; C D. Let x : D — D be a holomorphic diffeomorphism such that
X(D1) C Dy and

X'o=0+dm

for some holomorphic function m : D — C. In addition, let 7" : D; — C? be a holomorphic
map with 7'(D;) C D and
T"0c =0+ dh

for some holomorphic function A : D; — C. Then T = y Lo T o x : D; — D is well-defined
and a short calculation reveals that

T"0 =0+ db (4.8)

for )
h=hox+m—molT. (4.9)

In fact, the standard properties of pullbacks of differential forms yield
dhox) = x*(dh) =x*(T"c —0) = (Tox)'c—x0c=(xoT)o—xo
= T"(x"'o)—x'co=T"(c+dmn)—c—dn=T"0c —c+dmoT —m),

which proves (4.8).
Now we go back to the ping-pong and introduce the full change of variables I' : (2, E)
(w, W).
Lemma 4.9 The map
[':Rs, xC—C? (2,E)~ (w,W),
where w = 7(2) and W = p(2)*E, is a holomorphic diffeomorphism between Rs, x C and
I'(Rs, x C) that verifies o = 0. Moreover, if A €]0, 6], then R,yay x C C T'(Ra x C).

Proof: According to Lemma 4.7, I" is holomorphic and satisfies Rya) x C C I'(Ra x C) for
A €]0,6,], due to (4.2) and the fact that its inverse I'™! is given by (w, W) — (z, p(z)72W),
where z = 77!(w). This inverse is also holomorphic. To prove that [*o = o, observe that
dw = @ dz, and hence W dw = F dz as desired. O

To adjust our situation to the general framework as outlined above, we define
D=TI(Rs, xC), D=Rs xC, x=I"1' T=1.

Furthermore, we take m = 0 and h from (4.7). To introduce D; and Dy, let A = 2% and take

4
p > 4 so large that 2A + %ﬁ < 01. Then we define

Dy = {(w,W) € Rypa) x C: [Arg W] < 7, [W| > pCoe},

Dy = {(3,E) eRAxC:Ee€C\|]—o00,0],|E| > pe},
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and check all the conditions set out before. First of all, D; C D and D; C D are immediate,
using Lemma 4.9 for the latter. Also x : D — D is a holomorphic diffeomorphism by definition,
and moreover x(D;) C Dy. For, let (z,E) = I"Y(w, W) € x(D;). Then w € R, (a) implies
z € Ra by Lemma 4.9. Furthermore, since |p(z)| < C,

Wl pC?
E| = > =
1= pap ™ ez =
and due to Lemma 4.6,
1 T w T
Arg BE| < |A ‘A _’ FLT_T
|Arg E| < |[Arg W + o<1t iTy

so that in particular F ¢] — 0o, 0] and accordingly (z, E') € D;. Next, to see that T'(D;) C D,
we have to make sure that (z1, F1) = T'(z, F) has [Im 2| < 6; for (2, E) € D;. As z € Rp and
|E| > pe > e, we have Z € Ryp by Lemma 4.8. In addition, (4.4) yields |p/(Z)| < % and thus
by the definition of Fj:

2v/2C _ 1
|E1‘1/2 = |\/E— \/ip’(éﬂ > |E‘1/2 _ \/_T > 5 |E|1/2;

recall that e = 86%2 and p > 4. Thus by the definition of z;:

Ip(2)| V20

)
Imz| < I+ P conp V22 cony O
[Im 2] < [Im 2] V2|E V2 T |E[\/2 = 2/ !

which completes the argument for 7(D;) C D. Since D; C U, h from (4.7) is well-defined and
holomorphic on D; and we have T*o = o + dh due to (4.6).

Now that we have verified the conditions of the general argument, we can conclude from
(4.8) and (4.9) that ® =ToWol ! : Dy — C? (w, W) — (wy, Wh), is well-defined and satisfies

Widw, —Wdw=dh, h=hol L (4.10)

4.3 Application of the main theorem and proof of Theorem 4.1

To summarize, so far we have established that the map ® : D; — C? is well-defined and
holomorphic. We are going to apply Theorem 3.1 with f = ®, r = pC?e, n = %, a = % and
v = /2. For the width of the strip we take ¢ to be o(A), and in order to write ® in the required

form (3.3), we introduce Fy = F and Fy = G for

W, —-Ww
Flw, W) =VW(w, —w) — V2, Gw,W)=-——. 4.11
(w0, 1) = VT (0~ w) (0. W) = =7 (@.11)
We also define F’(w,W):wl—w—\/%,so that F(w, W) = vW EF(w,W). Then the assump-

tions (a) and (b) of Theorem 3.1 are satisfied. For, recall from (3.2) that ® needs to be defined
on

Q={(w,W)eRs x C:ReW >r, |ImW| <nW|},
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which is the case due to Q2 C D;.

To derive the needed bounds |F| = O(|W|~Y/?) and |G| = O(|W|~'/?) as required by (c),
we need to make some preliminary observations. From Lemma 4.8 we know that z € R5 /2, SO
that |p/(2)] < 2C/d by (4.4). In general, if £ € C satisfies Re > 0, then Re /¢ > f €12
Therefore if |E| > 2e and Re E' > 0, then

Re (VE — Vap/(3 >—\/——f20

and hence E; € C\] — 00,0]. As a consequence, y/F; can be understood as a single-valued
expression and we can write the first equation in (4.5) as

. p()
= . 4.12
Lastly, if even z € Ra, |F| > pe and Re E > 0 holds, then one also has
s 2C 1
VE-vap(9)] > VIE -V > L /TE]
and hence 1
|Ey| > 1 |E|. (4.13)

We also have z € Ra C Ry, and therefore lo(2)] < 2b* by Lemma 4.6. It follows that
|E| = | W)| > 55 |W], and thus |Ei| > gz [W/| due to (4.13). Then from the definitions of Z

and 2y, cf. (4.3) and (4.12),

C C
\/_]Ell/Q_ \/_\E ’1/2—

In particular, |z — 2| < 3C|W|~Y/2. To bound F, we first observe that

<Cb|W|Y2 |z — 2| < < 20b|W| 712, (4.14)

2 =2 < —=—?

. p(@) 1 1 .
zl—z:z+\/2_El—z:[E+\/2_Ejp(z). (4.15)

Since [ArgW| < T and |Arg -5 POl | < I, we have VIV = \/o(z)VE = p(z)VE. Now the

expression for F is split up according to

: _ V2 V2L
F(w,W)—wl—w—\/—W—wl JE 7 Fi + B,
where
- 1 1 1
o= o= [ 7El e
= T(Zl)—T(Z)—m
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by (4.15), and

For the first term,

Ai=| [ Gioe ) (4.16)

From geometric considerations we deduce that

I —2| < |zl—z|§3CbIW\’1/2,
(=2 < max{|Z—z|,|Z — x|} <2Cb|W|'/2,

for any point ¢ on the segment [z, z;]. The upper and lower bounds for p provided by Lemma
4.6 together with the estimate for |p| allow us to find a constant K; > 0 such that for each

¢ €lz, 2]
1 1

p(Q)?  p(x)p(3)
As a consequence, (4.16) yields

< Kymax{|¢ — 2|,|C — 2|} < 3CK.b|W|/2,

|F1| S 3CK1b |W|_1/2 |Zl — Z| S 902K1b2 |W|_1.
To bound F, we note that by (4.5) and (4.4)

VE - VE < VI < 229

Therefore, due to (4.13),
WE-VE| 1 20 _ 4Clp(z)| _ 4C

<
V2 EVIE] ()]~ sy/[E[IW] = W] T 4
and thus we deduce that altogether
|F(w, W)| = /IW[F(w,W)| < VW[ (|F| + |F]) < C[W[?2

holds for an appropriate constant C; > 0 depending only upon §, C, a, b. Concerning the
bound on |G|, according to [9, (5.10)] one has

2
|F2| = |W|_17

1

Wy — W = %gp(%) / A= N[ (1= NZ+A2) (- Nzt Az)|ar, (@)

0

where once again ¢(z) = p(z)?. In the paper just mentioned this relation was used for a
real-valued p, but as all functions involved are holomorphic, it extends to the complex-valued
case due to the uniqueness theorem in complex analysis. Now A < ¢,/4 and §; < 6/4 yields
Im((1—=X)Z+ A2)] < |ImZ|+ |Imz| < 2A + A = 3A < §/2 and similarly [Im ((1 — X)Z +
Az1)] < [ImZ] 4+ [Imz;| < 2A 4 67 < §/2. Owing to the Cauchy integral formula one has
" (2)| < (2/6)*C? for z € Rs/s. Therefore (4.17) implies that

Wy —W| <4C*% 3|2 — 2| < 12C°0 63 |W|~V2,
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and hence
|G(w, W)| <12 C°ho—3 ]W|*1,

which is in fact better than G = O(|W|~'/?) what we would have needed in assumption (c) of
Theorem 3.1.

Lastly we are going to verify the hypothesis (d) of Theorem 3.1, the function h being given
by (4.10) with A from (4.7). We also note that bo(w, W) = —v/2W for our choice of parameters
and we need to establish that |h — bo| = O(1). To simplify the estimates, it is convenient to
express h and b is a different way, which is based on the definition of the maps ¥ and ®. More
precisely, using the various definitions we write

Mz E) = _%p(5)2<211_5+2iz)
_%p(z) (p?g i pé))

= 2 0(2) (VE(VE ~ V3 () + VIE)

= —V2Ep(2) +p(2)p'(2)

and

b, W) = —/2IT % )

where (z, F) = I'!(w, W). As a consequence,

(1) = oo, W) = VIV (1= 5500 4yl ),

Similarly as before, the lower bound on |p(z)| and the upper bound on [p’| together with (4.14)
lead to

‘1 - @‘ < Kylz — 3| < CKab|W|™V2,
p(z)

which proves that
|h(w7 W) - ho(U), W>| < 02'

Let us now fix F, > a% r, where r appears in the definition of the domain 2. Suppose that
(L, En)neNo is a forward complete real orbit of ¥ with liminf, ,. E, > E,. By assumption
there exists N € Ny such that E, > &1 for n > N. Then W, = p(t,)?E, > a*E,, > r for
n > N shows that (wy, W),y is a forward complete real orbit for ®, and hence Theorem 3.1
is applicable. - O

5 An example

Consider the map f: (0,r) — (01,r1) defined as

/2
0 =0+ o =1 —q(0), (5.1)
1
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where ¢ is a given function. This map is symplectic, because it can be expressed in the form

_ 0Og — _ 99 ; ;
r= 355, "1 = —g, for the generating function

9(6,61) = +Q(0)

0, — 0
with ) denoting a primitive of ¢q. This is possibly the simplest family of maps in the framework
of Section 3. We will analyze the dynamics for the particular case where

20

q(0) = —m

for an integer N > 1.

Assuming that (6y,79) € R? is such that 6y > 0 and ry > 0, we observe that a forward
complete orbit (6, rn)neNO can be produced; the sequences 6,, and r,, are positive and increasing.
We are going to prove that always

sup r, < oo if N > 2,
n€eNg

whereas

T'n . Tn .
e Tn T 1
0< hggjlf (ogn)? = hglj;ip (log )2 <o if N=1

As we will see, Theorem 3.1 is applicable for N > 2. but not for N = 1. Therefore the
predictions of the theorem in this particular case are far from being optimal. So the main open
questions in this respect are: Is the growth rate r, = O((logn)?) best possible in Theorem 3.17
On the contrary, are all orbits bounded?

5.1 Applicability of Theorem 3.1
First note that the map (5.1) can be written in the form (3.3), with a = 1/2, v = v/2,

q(0), (5.2)

Fl(g,’l"):\/g(ﬁ—l), FQ(@,’T‘):—%

r

where in the following the complex square root will be understood as before.

The function ¢ is bounded and holomorphic on any strip Rs with § < 1; we fix § = 1/2 for
definiteness. It follows that |¢(8)| < C for 6 € Ry, where C' = 4V, To prove this, consider
0 € Ry/p and |0] > 2 first. Here we have

A _ 20l _ 1

OIS Tor =1 = Trre~ = 7=

If € Ry/p and |0 < 2, then |1 + 6% = |6 +4]|0 — i| > 1/4 yields

g0y = 219

= <249 < 4N
1+ 62"
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We now proceed as in the previous section to find an appropriate domain of holomorphy
Q) C C2. Clearly the hypotheses (a)-(c) of Theorem 3.1 are satisfied. The validity of (d) is
more delicate. As has been used before, in general the primitive of the form ry df; — r df is
computed from the generating function g via h(6,r) = —g(0,6,(0,7)). Thus for the map from

(5.1) we get
h(0,7) = =/2(r — q(0)) — Q(0).

bo(0,7) = —V/2r,

cf. (3.1), and (3.4) says that we should have |h(6,r) —ho(6, r)| bounded, uniformly in (6,7) € €,
in order that Theorem 3.1 is applicable. For N > 2 the primitive Q(f) = W
is bounded, which shows that Theorem 3.1 can be used. On the other hand, for N = 1 the
primitive is Q() = —log(1+6?), and the best estimate one can get is [h(6,7) —ho(0,7)] = O(1)
for each 0 € R, /5, but it is not uniform.

We also note that

5.2 The real dynamics

We start with a useful notion of equivalence for sequences.

Definition 5.1 Let (ay), oy and (bn),cy be two sequences of eventually positive numbers. We
say that (a,) is equivalent to (by,), if there exist constants C' > ¢ > 0 and nyg € N such that
ca, < b, < Ca, is verified for n > ny; this will be written as (a,) =~ (b,).

Lemma 5.2 Let (py), oy be an increasing sequence of positive numbers such that

n—1

o= (X 7) (53)

k=2

for some o > 1, where R = Zf;ll p1_1/2. If 0 > 1, then (p,) is bounded. If o = 1, then
(pn) > ((logn)?).

The proof is given in the next subsection.

Going back to the map f from (5.1), we consider (6, r) € R? such that 6y > 0 and 79 > 0.
Let (0,, rn)neNo denote the resulting forward complete orbit; we already noted above that 6,
and r, are positive and increasing. As a first step we are going to show that lim,, ., 6, = oc.
Otherwise we would have 0 < 6y < 6, < C for n € N. Then r,11 —r, = —q(6,,) = |q(6,)]
implies that

O<m<rp—rm<M<oo, neN,

where m = inf, ey |¢(0,)] and M = sup,,cy |¢(0,)|- Then (r,) ~ (n) and consequently
0 =00+ |2 oo (5.4)
=1 V" |

which is a contradiction.
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In terms of R,, = Z;:ll \/%7 the relation (5.4) can be written as 6, = 6y + /2 Rn41, which
implies that also lim,,_,,, R, = 0o holds, and furthermore (6,,) ~ (R,,4+1). Since R,,;1 — R, — 0,

we deduce that (0,) ~ (R,) is verified. Due to lim,,_, 6, = co and

202N
8 62N71 —
’(J( )| (1 + QQ)N’
there are constants K > k > 0 such that
K
g1 <|q(0n)] < N1 " > 0.

If follows that for suitable ny € N and constants K* > k* > 0 one has

* *

TaN-1 <q(0)] < v " > No.

As a consequence, for n > ng we obtain from 7, = r,,1 +>°7_ [q(0;)] that

n n

%4+k§:§ﬁ33%5%4+K§:mMT

j:no ] j:no J

From this it is easily deduced that (r,) ~ (Z;L;Ql #), and hence Lemma 5.2 applies with
J

o = 2N — 1. Tts conclusion is that (r,) is bounded, if N > 2, whereas (r,) ~ ((logn)?), if
N =1.

5.3 Some auxiliary results

Lemma 5.3 For some a,b > 0 consider the differential equation i’ = ae‘byw, y > 0. Then
every solution satisfies
_oyle) 1
zh—g}o (Inz)2 b2 (5:5)

Proof: First we observe that y is increasing and 3'(x) < a. Thus y is well-defined for x — oo
and satisfies y(x) — oo as x — 00, since the equation has no equilibrium. By separation of

variables,

1 b
(y(l’)l/Q . E) 6by(az:)l/2 _ %w i C,

where C' is a constant. Taking any b; < b < by we deduce that, for large x,

@ 90 a2,

which yields the claim upon taking the logarithm. ]
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Lemma 5.4 Let p : [1,00[— [1,00[ be continuous. Furthermore, suppose that there are con-
stants 0 < v <I' and zy > 1 so that

xﬁ/—ngx, x > xo, 5.6
Wp( ) . R(y)o ( ) 0 ( )
for some o0 > 1, where R(y f1 p(§ 1/2 fory>1. If o0 > 1, then p is bounded. If o =1, then
there are constants 0 < ¢ < C such that
c< PO (5.7)
(log z)?
for x sufficiently large.
Proof: Let ¢(z) = [/ R(y)g. Then ¢/ = R~ and ¢" = —oR~(“tD R’ together with R = p~1/?
leads to the dlfferentlal equation ¢’ = (cb’ )‘Lrl ~1/2_ Then (5.6) yields
/ 2(o'+1) / 2(oc+1)
2 ¢'(x) 2 ¢'(x) 7
Yo ¢,,( ) < ¢($) <To W; T 2 g
Owing to ¢” < 0, this can be rewritten as
/ /! /
/2 ¢'(x) 925 (z ) 1/2 ¢'(x)
FOS@ S s =T T T2 o

First we consider the case where 0 = 1. Here we obtain

2 (10g/(a) + 20(x)' ) > 0,

2 (10g/(a) + 26(2)"")

IN

0,

for z > zy. Upon integration and exponentiation one gets

1/2

¢ (z) 27 Pe(@)' 2 - Jbo ¢ () 2D 20()' 2 5 Bo

— Y — )

for x > xg, where by = log ¢/ () +27"2¢(x0)/? and By = log ¢/ () 4+ 2I'"/2¢(2¢)*/?. Therefore
¢ is a lower solution of Yy = ae~""? for a = e, b=2v"? and an upper solution for a = e,
b =22 Let y and y denote the Correspondmg solutions with common initial values y(zo) =
g(wo) = ¢(x0). Then

y(x) < o(x) <Y(x), ==z
)

According to Lemma 5.3 one has lim,_, % = % and lim,_, (12(3 = %. Recalling (5.6),
this leads to (5.7), where we can take for instance ¢ = ﬁ and C' = 27r
In the second case o > 1, (5.8) can be expressed as
_T1/2, ¢'(x) @b”( ) 71/2 ¢'(z)
Sy = ¢'(x )5 N o)/
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Upon integration of the inequality on the right-hand side, it is found that

d g / o—1
;E(U_1¢m>a+a¢”mmwm)go

Therefore it follows from ¢’ > 0 that
o o—1
-0/ (2)7 42910 0(2)'? <

o — g

o a=1
2" ¢(2)'/? < — ¢(20) 7 +29"%0 6(x0)""?,

which shows that ¢ is bounded. Since 1 < p(x) <y~ 1¢(x), also p is bounded. O

Proof of Lemma 5.2: First we consider the case where o = 1.

Step 1: p, — o0 as n — oo. Otherwise we would have p,, — po €]0,00[ as n — oco. But then
(R,) ~ (n), and consequently the series Rin is divergent. However, this contradicts (5.3).

Step 2: R,, — o0 as n — 00. Otherwise we would have R,, — R €]0,00[ as n — 0o. Then
(5.3) yields

but this in turn leads to (R,,) ~ (27_11 L/) which is divergent as n — oc.

Step 3: (Pnt1),>1 = (Pn),>; and (Ru41),5; = (Rn),>;. To establish these assertions, we first
introduce a convenient notion. A sequence (a,) will be said to have the bounded difference
property (BD property, for short), if a, — oo as n — oo and the sequence of progressive
differences (a,4+1 — a,) is bounded. If (a,) has the BD property, then (a,41),5; = (@n),>1
since |ani1/a, — 1| < C/|a,| < 1/2 for n large enough. The BD property is not invariant
under the equivalence of sequences, but if (a,) has the BD property and (b,) ~ (a,), then
(bn+1) = (bn)

Returning to (p,) and (R,), owing to (5.3) and Step 1 we know that >, —, Ri — 00 as

n — oo. Since the differences are bounded (even converging to zero) by Step 2, ( Z:; R%c) has
the BD property. Invoking (5.3) once more, it follows that (pn41) =~ (pn). Similarly, (R,,) has

the BD property, and thus (R,41) ~ (R,,).

Step 4: To prove that (p,) =~ ((logn)?), we may assume that p, > 1 for n € N. Then the
function p : [1, 0o[— [1, co[ obtained by piecewise linear interpolation from p(n) = p, is contin-
uous, increasing and such that lim, ,., p(z) = co. Let R(y fl 1 ——573 for y > 1. According to

Lemma 5.4 it is sufficient to establish the estimate (5.6). Ifj << S j+1, then p; < p(&) < pji1.

Since )
n df n— j+1 df
R = [ ogme2 | g

J=1

for n € N, we deduce that R, — pfl/z < R(n) < R,,. Hence we may employ Step 3 to obtain

(R(n)) ~ (R,). Finally we observe that if y € [j,j + 1], then R(j) < R(y) < R(j +1). For
x € [N, N + 1] then

=

-1

1

<
Il
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yields
N-1

v dy Moo
< —_—.
J+1 / R(y) _ZR(])
If we now use (5.3) in conjunction with py < p(x) < pn11 and (ppy1) =~ (pn), the relation (5.6)
follows easily.

j=1

<.

In the case where o > 1 we need to prove that (p,) is bounded. Assume on the contrary that
we would have p, — 0o as n — oo (recall that the sequence is increasing). This would imply
R, — o0 as n — o0, as otherwise R,, — Ry €]0,00[ as n — oo for an appropriate R,,. Then
(5.3) yields

n—1

()= (7).

but this in turn leads to (R,) ~ (Z;:ll ]1%), which is divergent as n — co. Thus we are in
the same position as after Steps 1 and 2 in the above argument. An inspection of Steps 3 and
4 shows that they can be straightforwardly adapted to the current setting. In other words, we
can apply the case ¢ > 1 of Lemma 5.4, and hence the function p(x) is found to be bounded.
Since p, = p(n), the sequence (p,) must be bounded which is a contradiction and completes

the proof of Lemma 5.2. O

6 Appendix I: A Hamiltonian normal form

In this appendix we will give fully detailed proofs of some of the results in [11] and we will
discuss the assumptions that are needed for those proofs to work.

Definition 6.1 (The class #H,,) For p > 0 and o €]0,1] let H,, be the class of continuous
functions H : G, x R x [0,0] = C, H = H(xz,t,¢), satisfying

(a) H is T-periodic in t;
(b) H maps reals into reals;
(c) for everyt € R and € € [0, 0] the function H(-,t,€) is holomorphic on G,; and

(d) the gradient w.r. to x, VH =V ,H(q,p,t,€), is a continuous function from G, xR x [0, 0]
to C? such that

IVH|,, :==sup{[VH(, ", t,e)ll, : t € R, e € [0,0]} < o0.

Remark 6.2 Note that for a function H € H,, all partial derivatives 0¢H : G, x R x [0,0] —

C? w.r. to x are again continuous functions of all three variables, where as usual 00H = %H
q p

for a multi-index o € N2. This is a consequence of the fact that the Cauchy integral formula

can be differentiated w.r. to x.
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Definition 6.3 (The class ﬁpﬁ) The class ﬁp,g consists of those H € H,, with the addi-
tional property that

T
/ H(z,t,e)dt =0 (6.1)
0
for x € G, and € € [0, 0.
Observe that if H € ﬁpﬂ, then t — f(f H(z,s,e)ds is T-periodic.
For h € ’}?[p,g consider the (time-dependent) implicit Euler transformation ® : (z,¢,¢) — y

with inverse (y,t,¢) — x = V(y,t,¢), x = (q,p), y = (q1, 1), which is given by

' oh " oh
— g e d = — ds. 6.2
q1 q 5/0 apl(qaplasag) S, N p+€\/0 aq((Lpl?Sﬂg) S ( )

Solving the second equation, we obtain p; = p1(q, p, t,¢), and the first equation then determines
¢ = q1(q,p,t,€). We will show that the map ¥ is well-defined and it is an admissible change
of variables, in a sense that is made precise in the following definition.

Definition 6.4 Let 0 < py < p and 0 < o4 < 0. A map ¥V : G,, x R x [0,07] — C?,
x=V(y,t,e), will be called an admissible change of variables, if it satisfies

(a) U maps reals into reals;
(b) WV is T-periodic in t and V(y,0,¢) = V(y,T,¢e) = y;
(c) U is continuous;

(d) for everyt € R and ¢ € [0,01] the map V(-,t,e) is holomorphic in G,,, and for every
y € G, and e €0,01] the map ¥(y,-,e) € CY(R);

(e) all admissible partial derivatives with regard to y and t are continuous functions of all the
arguments (y,t,e); and

(f) for everyt € R and € € [0,01] the map V(-,t,¢) is a symplectic diffeomorphism from G ,,
onto its image.

Lemma 6.5 For 0 <r < p and o > 0 given, let 0y = min{%5",0}. Then, for each h € ﬁpp
with T||Vh||, , <1, the equations (6.2) define a map

U:G,. xR x[0,0] = C?

that is an admissible change of variables and satisfies V(G,,t,e) C G, for every t € R and

e € [0,01]. Moreover,
(., ) = I, < eT([VA],, (6.3)

for e €[0,01].
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Remarks 6.6 (a) The simple geometry of G implies the following useful fact: if (¢, p), (q1,p1) €
G, then also (¢,p1), (¢1,p) € G,. For this reason the equations (6.2) are well-defined.

(b) The condition T'[|VA]|,, <1 is just imposed to get a definitive value for o1. When we are

going to apply the lemma to an arbitrary h € ﬁ,w later, a rescaling argument (in ) can be
used.

Proof of Lemma 6.5: To solve the first equation in (6.2) we evenly split the interval [r, p]
into r < Ry < Ry < p, where Ry —r = Ry — Ry = p — Ry = 5. Define

X ={qeC:|Imq| < Ry}

as well as ¢ = min{ %", o}. For (q1,p1) € Gg, and ¢ € [0, 5] fixed, let

tOh
F(Q)ZQ1+€/8 (¢, p1,8,€)ds.
1

Then F : X — X is a self-map, since eT'||Vh]|,, < e <& < 5% = Ry — Ry. The condition
(6.1) in Definition 6.3 allows us to restrict to the time interval [0, T']. From the Cauchy integral

formula we deduce ) 5
D*h < —||VAh = —||[Vh
1Dkl g, ., < TR VA, , Py VA, ,

This estimate applies in particular to the cross-derivative 6(?171;1 and ensures that F is a con-

traction, due to
30

IVA]] (6.4)

pcr—

T < T

e
| —

The unique fixed point of F defines a continuous map ¢ = ¢(q1,p1,t,¢) : Gp, X R x [0,6] = X
Then the definition of ¥ is completed by setting

L oh
—(q(q1,p1.t,€),p1,8,¢) ds.

p=p1—¢
0 dq

Note that
dist(p, I) < dist(p1, 1) +T||[Vh|,, < Ri+e < Ri +6 < Ry,

and hence ¥ is defined on G, x R x [0,4] and takes values in G, C G,. The bound

|\I/(q1,p1,t,6) - (q17p1)| < sTHVh”p,a (65)

is a direct consequence of the definition of ¥, and in particular (6.5) implies (6.3), since r < Rj.
To prove the smoothness of W, we observe that ¢ is defined implicitly by the equation F' = 0,
where

toh
F(q,Q1,p1,t:5):q—Q1—€ . Op (q P1,5,€)ds.
D1

The transversality condition

OF tog2h
= — 11—
dq / aqal(qp““)ds#o
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is satisfied, due to (6.4). Hence the implicit function theorem applies to yield that ¢ (and hence
p) verifies all the smoothness requirements for an admissible change of variables.

It remains to establish that W(-, ¢, ¢) is a symplectic diffeomorphism from G, onto its image,
for t € [0,7] and € € [0, 01]. Using (6.5), which is valid for y = (¢1,p1) € Gr,, we deduce that

3 3 1
c — 7|V i -<, (66)

£
Dy t,e)— Il < T|IVh =
| (QI,pl, 76) | = Rl —r H ||p,a

/w—

=

where DV = D,V = D, )V is the Jacobian. This will allow us to interpret W(-,¢,¢) as a
Lipschitz continuous perturbation of the identity. Indeed, if we define I' = ¥ — I, then owing
to the convexity of G, and from (6.6) we obtain the bound

1
_ d _
Twte)-T@te) = | [ Ley+1-95t)ds
0
< 2 ily—il=5ly—l
hS 4?/ Y =9 Yy—y

for y,y € G,. Hence the Lipschitz constant of I'(-,¢,¢) is < 1/2. This in turn implies that
U(-,t,¢e) is one-to-one on G,. According to (6.6), i.e., |D¥(q1,p1,t,e) — I| < 1/4, the matrix
DV has an inverse. Thus the inverse function theorem can be applied at each fixed y € G,
to deduce that W(-,t,¢) is a diffeomorphism from G, onto the open set V(G,,t,e) C G,. This
diffeomorphism is symplectic, because it has been obtained from the equations (6.2), which can
be derived from the generating function

¢
S(Qaplat7€> :qpl_g/ h(valasag)dS' (67)

0
This completes the proof of the lemma. O

A

Corollary 6.7 Under the assumptions of Lemma 6.5, let 0 < 7 < r < p and denote by
Uy — x the map that is induced by (6.2). Let 0o = min{oy,5°} = min{&", 5, 0}, If
t€R and e € [0,09], then ¥U(G,,t,¢) D Gs.

For the proof, the following result will be helpful, which is [16, Prop. 1.3, p. 50].

Lemma 6.8 Let XY be Banach spaces and suppose that U C Y is open. If U : U —

U(U) C X is a homeomorphism, W~ is Lipschitz continuous with constant Lip(¥~1) < X, and
B,(y) C U, then

V(B (y)) D Brya(¥(y)).

Proof of Corollary 6.7: We are going to apply Lemma 6.8 with U = G,, ¥ = U(-,¢,¢) and
A = 2. Inspecting the proof of Lemma 6.5, we have shown in (6.6) that |DWU(y) — I| < 1/4 for
y € Gg, D G,., where we write ¥(y) = U(y,t,e). This yields

DU(y) | = | Yo (1Y (Du(y

221 |DU(y) — I < 2.
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Next observe that if y € Gy, then B,_;(y) C G,, as a consequence of the geometry of G and
the choice of the norm. For y € G; we also have |y — ¥(y)| < € by (6.3), which means that
y € B.(¥(y)). Owing to Lemma 6.8 we obtain

Yy e Bz-:(\Ij(y)) C B(rff)/2<q}(y)) C \Ij(BrfP«g)) C ‘IJ(GT)’

as claimed. |

Lemma 6.9 For 0 < r < p and o > 0 given, let H € H,, and h € 7-N[pvg be such that
T|Vhl,, < 1. Defining o1 = min{%3",0} as before, we consider the admissible change of
variables x = V(y,t,e) for (y,t,e) € G x R x [0,01] according to Lemma 6.5. Then, for every
e € [0,04], the T-periodic Hamiltonian system

&t =¢eJV, H(z,t,¢e) (6.8)
is transformed (pulled back via V) into
y=eJV,K(y,t,e), (6.9)
where
K(y,t,e) = H(W(y,t,e),t.e) — h(q(y,t,€),p1,t,€); (6.10)
recall that y = (q1,p1), ¥ = (¥, V) with ¥y = q and Uy = p. Moreover, K € H,,, and

5
VKL, < 3IVH,, + 5 IVA,,. (6.11)

r,o1 —
Proof: Given a Hamiltonian system @ = JV,H(x,t) and a change of variables z = U(y, )

that is induced by a generating function of the type S = S(q, p1,t), the pull-back of the system
is y = JV,K(y,t), where

K1) = H(W(y,0),0) + 2 (aly, ), p1,1)

This is part of the classical theory of non-autonomous Hamiltonian systems, cf. [1]. It was
known early on, see [12, pp. 13-16] for an elegant exposition. In our case a generating function
S of W is given in (6.7), and the formula (6.10) follows.

To show that K € H,,, we differentiate (6.10) to obtain

oh oh
VK = (DV)*'VH — — Vq —

(Dw)* 9 V9 o

From (6.6) we know that |[DWU(y) — I| < 1/4 for y € Gg, D G,, which in turn yields |[D¥(y)| <
5/4. In particular, also |Vq| < 5/4, dropping the arguments. Therefore
5 5 |0h Oh
SIVH| + 2 _‘ -
2| [+ 4 10q + op1

leads to (6.11). O

(0,1)".

VK| < 2|DW||VH|+ ] ‘ Val + |5
op1! —

36



Given H € H,, we define the function
I . _
H(z,e) = T/ H(z,t,e)dt and H=H — H.
0

Then H € H,. is autonomous and He ﬁpyg. Moreover, we have the bounds

||VH|| < ||VH||p,a' a‘nd ||V‘H||p,a S 2||v‘[—"]||p7a' (6]‘2)

po —

Lemma 6.10 For 0 <r < p and 0 > 0 given, let H € H,, be such that THVI:[H,),U <1. We

apply Lemma 6.9 with h = H. Then the admissible change of variables U : y — x and the new
Hamiltonian function K satisfy

(- e) =1l < eTIVH],,, (6.13)
1K = Hl,,, < 2eT|VH|,,(IVH],, +[VH],,), (6.14)
1Kl,p, < 4TVH],, (IVH|,, +IVHI,,), (6.15)

for e €[0,04].

Proof: The first estimate (6.13) is a direct consequence of (6.3). To derive (6.14), we rewrite
(6.10) in the form

K(y,t,e)—H(y,e) = H(W(y,t,e),e)—H(y, &)+ H(V(y,t,¢),t,e)— H(q(y,t,€),p1,t,€). (6.16)
Since ¢ = ¥ is just a coordinate of U,
(W (y,t,e) = (a(y,t.2),p)| = p(y, ) = ol < [W(y,t,¢) =y,
and hence it follows from (6.16) and (6.13) that

1K = Hll,y, < 2VH| 0 1V = Ill, 4, +20IVH|,, ¥~ 1]

< 28T‘|V‘H||p,o(||v‘g”p,o‘ + ||V]:‘I||p,a>‘ (6]‘7)

01 r,o1

Observing that

- 1 (T _

|IK - H,, = Sup{‘f/ [K(y,t,e) — H(y,e)] dt ryeGmsE[Om]}
0

< sup{|K(y,t,e) — H(y,e)| :y € G,,t € Re € [0,01]}

= [|K—Hl,,, (6.18)
(6.14) is a consequence of (6.17). Concerning (6.15), it suffices to write K = (K — H)+ (H — K)
and to use (6.18) as well as (6.17). O

For the next result we are going to apply Lemma 6.10 N times.
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Lemma 6.11 Let 0 < r < p and o > 0 be given. For every integer N > 1 and H € H,, so
that T||VH||,, < 1/2 there exists an admissible change of variables ¥ = Uy (y,t,€), which is

defined on G, x R x [0,0n] for
oy = min {p — T }

72N
and which satisfies V(G,,t,e) C G, fort € R and € € [0,0y]. Furthermore,

&t =¢eJV, H(z,t,¢) (6.19)
is transformed (pulled back via ¥y ) into
y=¢eJVyHy(y,t e) (6.20)

for Hy € H,y, and moreover we have

||\IIN('7'75)_I||T < 257 (6.21)
IVHN], 4, < (%) 27, (6.22)
IVHN|, ., < = (6.23)
r,0 2T
_ _ 24 _ _
[Hn(y.€) = Hn(y,0)] = -7 e+[H(y,e) = H(y, 0], (6.24)

forye G, and e € [0,0x].
First we are going to state an auxiliary result that will be useful in the proof of this lemma.

Lemma 6.12 Let (by)cp<x and (ci)ocp<g for some K € NU {oo} be sequences of positive
numbers such that
b < abp_1(bp—1 +cr—1) and cx < b+ cp1

for 1 <k < K, where a > 0 is such that 4a(by + o) < 1. Then
1
bkgﬁbo and ¢, < by + ¢
for0 <k <K.

Proof: We check that b, < 27%b, and ¢, < by Z§:1 277 + ¢ by induction. Clearly this holds
for £ = 0. For the induction step, by hypothesis we have

bk+1 < abk(bk + Ck) < Oéonik(b()Qik + bo + Co) < 20&[)027’{([)0 + Co) < b027(k+1),

and hence in particular

k k+1
Ch1 by + 0 <02 P 4 00) 27 4o =b Y 27 +a,
Jj=1 j=1

38



which completes the argument. o

Proof of Lemma 6.11: We introduce a uniform partition of the interval [r, p| by

PN =T < pNn-1 <...<p1 <po=p,

where pp — ppy1 = &+ for k= 0,..., N — 1. The midpoint of [p;1, pi] Will be denoted by 7441,
so that pp — Try1 = The1 — Prr1 = Sy

Set Hy = H and observe that THVFIOHM = THV[?HM < 2T|VH],, <1 by (6.12) and
by assumption. Hence We can apply Lemma 6.10 for r replaced by r; to obtain an admissible
change of variables W(!) that is defined on G,, x R x [0,6,] and takes values in G,, where
o1 = min{?5*, 0} = min{Zx,0}. The transformed Hamiltonian is denoted by H; € H,, s,

and from (6.13)—(6.15) we have the bounds

||\Ij(1)(.7.7€) _]Hrl S gT”V‘E[OHp,J’ (625)
|y — ol 50 < 25T [V Holl,, (IVHoll,, + IV Holl,,). (6.26)
[Hill,, 6, < 4T (VHo|,, (IVHol,, + IV Holl,,), (6.27)

for € € [0, 61]. Since on < 71, we may replace d; by oy in all of the above. Next we are going
to derive some preliminary estimates on Hy and H;. Let

bo = |VHol,, and co=|VH,,

as well as ) B 3 B
by =|[[VH1 = VHl, ,. tIIVHil, ,, and ca =|[VH, . .
Note that by (6.12),
b < 2| VHI,, < 7 and e < |VH],, < o (6.28)
Furthermore,
by, < 12;\74 b—1(bg—1 +cx—1) and ¢ < by + cp (6.29)

are verified for £ = 1. To establish this claim, note that by the Cauchy integral formula, (6.26)
and (6.27),

o= V=Vl 0 + 1V, 0, € (1= ol 0, + 10,0, )
< inV QonT + 40w T) [V Hol|, (IVHoll,., + IV Aol ) = oL b by + o).
(6.30)
Concerning the bound on ¢, we have
e = IV, . < |IVH — V||, + [V, . < b+ (6.31)
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We are going to prove that this process can be repeated N times, if we consider the sequence
of nested domains

G, =G,y CG,, CG ... CG,, CG, CGy CGY =G,

PN-1
We will find a sequence U*) k = 1,... N, of admissible changes of variables sending the
set Gy, x R x [0,0n] into G,,_,. These changes of variable U*) and Hamiltonian functions
Hy € Hep o C Hp,on Will be constructed by finite induction w.r. to k € {1,..., N}. Suppose
that UMW .. W® and Hy,..., H; have already been obtained, with the additional property
that (6.29) holds, where

b = |VHe = VHell,, . + IVH, .. and e = VH, .
for k > 1. With a = WZ#T we note that
40&(1)0 + Co) S 1,
since by (6.12) and our hypotheses
48NO'NT = 144N0’NT 72N(7N
Ey— (IVHoll,, + IV Holl,,) < ———[VHI|,, < o =1

Hence Lemma 6.12 applies to yield b, < 27%by and ¢, < by + ¢o. In particular, it follows from
(6.28) that )
THVHkakJN <Tb, <Thy <1,

and Lemma 6.10 is applicable, for r replaced by ry;; and o replaced by on. The resulting
admissible change of variables W*+1) is defined on G, . X R x [0,6441] and takes values in
G, where 031 = min{#=+ oy} = min{£=,on} = on. The transformed Hamiltonian is
denoted by Hy1 € Hy,,, 0y, and from (6.13)-(6.15) we deduce the bounds

WD e) =1, < eTIVH, . (6.32)
[Hir1 = Hilly o < 26T (IVHE|, o IVHEN, o + IVHR, 5),  (6.33)
[Hiilly,,on < AETIVHR, o (IVH, o + IVHE, o), (6:34)

for e € [0,0n]. Analogously to (6.30) and (6.31), it follows from the Cauchy integral formula in
conjunction with (6.33) and (6.34) that (6.29) holds for k + 1. Therefore the inductive process
to obtain the W) and Hj, can be completed up to k = N.

For the estimate (6.22), note that by (6.29) and (6.28)

IVHN, 0, = IV Hy|

TON PN,ON

1
by <27V < 5270
The bound (6.23) is also a consequence of (6.29) and (6.28), since

3
CN<b0+Co<—.

V| <

= [VHy|

TON
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The desired admissible change of variables Uy is defined as the composition
Uy =0D o 0@ o,  owW)

which is defined on G, x R X [0, on] and takes values in G,. To obtain (6.21), we are going to
use the formula

=

Un(-e)— 1= - (U — oW o o TM(. . e) + (TWM(.,. &) —1I). (6.35)

=
Il

For k > 1 the composition W*+V) o . o WIN) maps G, into G,. C Gy, in y. Therefore due to
(6.32), with k + 1 replaced by k, and using (6.28),

™ =1 0wt o 0¥, o), < [WW(,-e) ~II|,, <eT|VHi|
< eTbyq < T2 *Dpy < g2,

Pk—1,ON

Analogously,
N) _ — (N)(. . — (N)(. . — -(N-1)
||‘11( ('7 '75) ]Hr - H\I} ( ) ’5) ]||pN < qu ( ) 75) IHrN < €2 :

Using (6.35), the foregoing estimates in turn lead to

N-—1
“\IIN(': '7€> - IHr < Z H[(\Il(k) - I) © \II(’H—I) ©...0 \I}(N)](u '76)”7" + ||\I/(N)(7 '76) - ]”r
k=1

H

< 252 (k=1) 4 g2~ (N-1) < 9¢
k=1

which is (6.21). To prove (6.24), we first note that by (6.33) and (6.28),

[ Hvr = il < I Hesr — Hill,,.,, oy
< 26T|VHl,, ., IVHill, 0y + IV Hll,, )
S 28Tbk(bk + Ck)
< 2eT27%bo(27 by + by + co)
6
< 2'(z)=
For y € G, and ¢ € [0, 0] it hence follows that
|FIN(y7 ) - HN(y70)|
N-1
= ‘Z Hiia(y,e (Hy41(y,0) — Hy(y,0)) + (Ho(y, ) — Ho(y,0))
k=0
N-1
< 23 || Hipr — Hill, oy + 1H(y,) — H(y,0)]
k=0
p
< ey 27+ |H(y,e) - H(y,0)] < €+|H(y, e) — H(y,0)[.
k=0
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This completes the proof of Lemma 6.11. O

Now we are in a position to derive the “Hamiltonian normal form” with exponentially small
remainder. For our particular domain G = R x I, this is essentially the result that is announced
in [11, Remark 2, p. 134]. To prepare for the statement, we need to introduce a more relaxed
class of transformations, as compared to Definition 6.4.

Definition 6.13 Let 0 < p; < p and 0 < 0y < 0. A map ¥ : G, x R x [0,0¢] — C?,
x=V(y,t ), will be called a change of variables, if it satisfies

(a) W maps reals into reals;
(b) U is T-periodic in t and V(y,0,e) = VY(y,T,e) =y;

(c) for every € € [0,01] the map V(-,-,¢) is C' in the real sense, and for every t € R and
e € [0,04] the map V(-,t,¢) is holomorphic in G,,; and

(d) for everyt € R and € € [0,01] the map V(-,t,¢) is a symplectic diffeomorphism from G ,,
onto its 1image.

Note that we are not assuming any property of continuous dependence w.r. to the parameter
€. This is in contrast to the previous notion of an admissible change of variables, introduced
in Definition 6.4.

Theorem 6.14 For 0 < r < p and o > 0 given, let H € H,,. Then there exist C,D > 0
(depending upon T',r, p, ||VH||IW) with the following properties. There is a change of variables
x = V(y,t,e), which is defined on G, x R x [0, o] and which satisfies V(G,,t,e) C G, fort € R
and € € [0, 0], such that

&t =¢eJV, H(z,t,¢) (6.36)

is transformed (pulled back via V) into
y=e(JV,N(y.e) + JV,R(y, . €)), (6.37)

for functions N' € H,, and R € ﬁr,g. Furthermore,

(- e) =1, < Ce, (6.38)
VNG, < C, (6.39)
IVyR(, o), < CePrs, (6.40)
N (y,e) = N(y,0)] < Ce+|H(-e)— H(-,0),, (6.41)

fory € G, and € € [0,0]. In addition,

N(y,0) = H(y,0). (6.42)
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Proof: We are going to show that

20\ 24)\? p—r
C—maX{Z)\,T,T} and D = 144N

have the asserted properties, where A = 2T[|VH]||, ;. The cases H = 0 or ¢ = 0 are trivial,

so in particular we may assume that A > 0. We rewrite (6.36) as @ = éJVxAIf[(x, t,€), where
€ =X €0,6] for 6 = Ao and H(z,t,&) = X' H(z,t,\"'é). It follows that H € H,; satisfies
2T||IVH| ,, = 2TA\'||VH||,, = 1. Thus we may apply Lemma 6.11 to H and with

p—r
N = [ }
72)\e
Hence there exists an admissible change of variables © = \il(y,t,é), which is defined on G, X
R x [0, o N] for

A . p—-Tr .
0N = min {72—]\[,0},
and which satisfies U(G,,t,¢) C G, for t € R and ¢ € [0, 5x]. Furthermore, & = £JV,H(x,t,&)
is transformed into y = éJV, K (y,t,€) for K € H,;,, and in addition we have
3

~ . R - 1 B _
1o 8) = 1l <28 VR, < (F)27 VK., < 5

<
T =~

T,&N

~

_ R _ 24 =, .
’K(y,é‘) —K(y,())’ < ?g—i_ ’H(yag) _H(y70)|?

for y € G, and € €]0,oy]. Define

U(y,t,e)=U(y,t,\e), N(y,e)=AK(y,\e) and R(y,t,e) = I\K(
fory € Gy, t € Rand e €]0,0]. We also put ¥ = [ fore = 0. If £ €]0,0], thené = e < Ao =4

and moreover ) .
. p—r p—r
= eV < Sae(E ) = 2
TN =N\ ) T N
so that € €]0, on]. Accordingly, the first few claims are straightforwardly verified; this includes
(6.38), (6.39) and (6.41). Concerning (6.40), we use the above estimate on VK to get for
e €]0,0]

IVyR(: - el

r

O AY N _ (2A) g-ve (%) g5
MVEC-9l, < (5)27 = (5) 2 <(F)2
= (%) 4_12215 < <%> 6_1614_;6

T —\T ’
which completes the proof of (6.38)—(6.41).
Finally, with regard to (6.42), we observe that in all the previous lemmas we have ¥ = [
for e = 0. Then we can define N'(y,0) = H(y,0), since Hy(-,0) = H(-,0) for each k throughout
the iteration. O

Corollary 6.15 Under the assumptions of Theorem 6.14 let 0 < 7 < r < p and denote by
U : y — x the change of variables that has been constructed there. Let o, = min{%,a}. If
t € R and e € (0,04], then V(G,,t,e) D Gj;.

Proof: The argument is similar to the one for Corollary 6.7. O
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7 Appendix II: Application to maps

Here we will prove Theorem 2.5, following the approach outlined in [11]. First we realize the
map P. as the Poincaré map of a periodic Hamiltonian system and then we are going to apply
the previous results from Section 6; see [18, p. 13/14] for general information and additional
references in a more abstract context.

We start with an auxiliary result on the construction of a Hamiltonian function from an
exact symplectic isotopy.

Lemma 7.1 Assume that ® : G x [0,1] — R? is C™ and that ®(-,t) : G — G(t) = (G, 1) is
a diffeomorphism for every t € [0,1]. The inverse map is denoted by V(-,t) and we will also
write

X:(D(Jf,t), x:\II(X,t), ZL’Z((],p), X:(Q7P)7 (D:(,F,g)

Assume that

PdQ —pdq = dn(-,t) (7.1)
for a C*™-function n: G x [0,1] — R. Then
TV e (X, 1) = %f(\y(x 1.1, (7.2)
where 9F 9
Pau(X, ) = - (W(X,),0) GU(X, ),1) — ZHW(X, 1), 1) (7.3)

ot

18 defined on

D={(X,t):t€[0,1,X € G®)}.

Remark 7.2 (a) Note that G(t) C R? is open and D is diffeomorphic to G x [0, 1] via the map
(z,t) — (®(x,t),t). Moreover, X(t) = ®(x,t) is a solution to X (t) = JVhau (X (t),1).

(b) Lemma 7.1 remains valid, if ® and n are C', and the cross-derivatives
e 90 o’n 9
otor Oz dt’ Otdx  Oxot’

exist, coincide and are continuous functions of (x,t).

(c) If ©(-,t), U(-,t) and n(-,t) have holomorphic extensions, then also the identity (7.2) can be
extended.

(d) We refer to [10, Thm. 6.2.1] for a similar result.

Proof of Lemma 7.1 : The identity (7.1) holds in the space of one-forms on G. Differentiating
w.r. to t, we obtain

S eaa() = a(3)
It follows that
d(%r —%)zaidg d(af)g d(?j)za—}—dg—%d}" (7.4)
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on GG. To pull back this identity under the map V(-,¢) : G(t) 2 X — x € G, denote h(x,t) =

W (2, 1) G(w,t) — G 9 (x,t). From (7.4) we thus deduce

dhaux (1) = d(ho V) =d(¥"h) = ¥*(dh) =
_ (%T o\I/)dP— (%_g o\I/)dQ

which is equivalent to (7.2). O

dg - Zar

v (G 49~ 5 )

Lemma 7.3 Let G = R x I C R? for an open and bounded interval I C R. Suppose that
l e Mi,., and for e € [0,0] consider the family of maps P. : G, — C? given by

P.: xy=x+c¢l(z,e). (7.5)

Let the family {P.} be E-symplectic and fit 0 < r < 7 < p. Then there exist 6 €0,0]
and a Hamiltonian Hu.. € Hps such that for e € [0,6] the Poincaré map (time-1-map) of
t = eJVHu(x,t,€) is P-, restricted to G,. Furthermore, there exists a constant Cyux > 0
such that

’Haux(x7 t? 8) - Haux(a;” t? 0)‘ S CauX€ (7'6)
for x € Gy, t € [0,1] and € € [0,6]. The constant Caux will depend upon p, o, v, 7, ||ll|, ,,,
the interval I, [|h|, ,, and sup.qj le"1(%2(-,e) — m)||, (cf. the notion of E-symplecticity,
Definition 2.3).

Proof: Let x : [0,1] — [0, 1] be a strictly increasing C*°-function such that x(0) =0, x(1) =1
and x(0) = x(1) = 0. Define

O(z,t,e) =z +ex(t)l(z,ex(t)) (7.7)

and

n(x,t,e) = h(x,ex(t)).
For fixed e we intend to apply the relaxed version of Lemma 7.1, as outlined in Remark 7.2(b),
(¢). The condition (7.1) holds, due to (2.4) in Definition 2.3.

Our first aim will be to construct the inverse W. Define 71 = 1(p + 7) and fix oy €]0, 0] so

that
1 1

ol pe < 5o —m1) = glo—7). (7.8)
We are going to prove that ®(-,t,¢) is a diffeomorphism from G,, onto its image, if ¢ € [0, 1]
and € € [0,01]. For ¢ = 0 we have ®(x,t,e) = z, so we can assume that ¢ > 0. Using the
Cauchy integral formula, one gets

8l 01 1
. l < [ < -
|, < T e, < ST, <
Hence the matrix 5% 51
M = =1 — :
S @,,) = I+ ex(t) 5 (@, ex(t) (7.9)

45



satisfies [M — I| < 1. As a consequence, M has an inverse and therefore ®(-,t,¢) is a local
diffeomorphism from G, onto its image, which is contained in Gs the latter by (7.8). If
T1,T2 € Gm; then

r+p7

Lol
(D21, t,2) — D, t,2)| = xy—m+fﬂﬂ</1a#Mq+ﬂ—Aﬂ%mﬁ»d0@q—@)
0
> | 1
= $1—€E2|—§|$1—$2|
- 2 1 210

note that here the convexity of G (and hence G,,) has been used. It follows that ®(-,¢,¢) is
one-to-one on G,, and its inverse ¥(-,¢,¢) has Lipschitz constant 2. Observe that (7.8) also
implies that
1 . 1 .
ol ,. < Z('O —7) = 5(7“1 — 7).
Arguing analogously to Corollary 6.7, it follows that

CI)(G”, t, 8) D G;

for t € [0,1] and € € [0, 01]. The Hamiltonian function A,y from Lemma 7.1 will be defined on
the domain

D={(X,t,e):t€[0,1,X € B(Gy,,t.€),e € [0,01]} D Gy x [0,1] x [0, 71]. (7.10)

Next we choose the number ¢ €]0, 04] so that

~

é—HlHl,p,U <r-=r,

which in turn implies that
d(G,,t,e) C Gy (7.11)

for ¢t € [0,1] and € € [0, 6], and moreover we have ®(z,t,¢) = P. ) (x) by definition.

From now on we consider ® on G,, x [0,1] x [0,6] and the inverse W(-,¢,&) = ®(-,t,¢)"!
has domain ®(G,,,t,¢). Since ® is continuous in its three arguments, the same can be said
about V. In addition, by the inverse function theorem, ¥ is holomorphic in the first variable.
Let € € [0,6] be fixed. We will prove that ®(-,-,¢) is C' in G,, x [0,1]. Moreover, the cross
derivatives do exist, they are continuous and coincide. To see this, we can once again restrict
our attention to ¢ > 0. Since | € My, the functions I(,£) and 2.(-,¢) are holomorphic.
Hence, by Cauchy’s integral formula,

JZeal, < o= 12
Hagfalg - p_lr (7.13)
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Note that in (7.12) the case € = 0 is admissible. By definition, ®(-,-,¢) is C* in G,x]0, 1]. For
t =0, ®(2,0,¢) = z and %2(z,0,¢) = I. From (7.12) and (7.9) we conclude that Z2(,-, ) is
continuous in G,, x [0, 1]. To analyze the derivative w.r. to ¢, we observe that

20 o 2ate) —®(,0e) @l(:c,ex(t)) =0,

ot t50+ t t—0+

where we used that x(0) = x(0) =0 and [|{|| ,, < co. For t >0,

0P ol

o (@ te) = ex(t) Uz, ex(t)) +ex(t) - (@, ex(t) |- (7.14)

Thus the continuity of S2(-,-,¢) is a consequence of ||l 1,0 < oo. To summarize, so far we
have shown that ®(-,-, ) is C' in G,, x [0, 1]. For the cross derivatives, from %—‘f(m, 0,e) =0 we
deduce that 22 (z,0,¢) = 0. Also, using (7.9) and (7.12),

Ox0t
azq) ; a_i(x’t’g) B a_i(xv Oa 5) . X(t) @l
519, (& 0-€) = lim 2 — =¢ lim == o (2, ex(t)) = 0.

Hence the cross derivatives exist at t = 0 and they coincide. The continuity of these derivatives
is obtained after differentiating (7.9) w.r. to ¢ in G,, x]0, 1]; again the bounds (7.12) and (7.13)
need to be used here. Both functions [ and h belong to the class M, ,,. Thus the previous
discussions also apply to the function n(-, -, €).

Altogether, we see that the relaxed version of Lemma 7.1 can be used to deduce the existence
of a function haux = haux(X, ¢, €), which is defined on D from (7.10), with the stated properties.
In particular, hau(-,t,¢) is well-defined on G;. Moreover, if € G,., then X(t) = ®(x,t,¢)
solves

X(t) = IVhaux (X (2),t,€) (7.15)
by Remark 7.2(a), and also € € [0, 5] yields X (t) € G; for ¢t € [0,1] due to (7.11). The Poincaré
map of (7.15) is G, 3 z +— ®(x,1,¢) = x +¢el(x,¢) = P.(x), i.e., the original map restricted to
Gr.

To express ha.x more explicitly, we recall from the previous computations that

a—(b(x,t,g) _ { ex(t) Iz, ex(t)) +ex(t) gt (w,ex(t))] : t€]0,1],e €]0,5] (7.16)
ot 0 : t=0ore=0
and similarly
on _J ex(@) Ih(z,ex(t)) : te€)0,1],e €]0,6]
E(x,t,s)— { 0 . t=0o0re=0 (7.17)

In the notation of Lemma 7.1 we have

Flo,te) = g +ex(t) bz, ex(t), G(x,1,e) = p+ex(t) la(z,ex(t)),
where x = (¢,p), and | = (I1,[3) are the components. Also observe that by (7.3)

haux (X, t,€) = aa;j(\lf(X,t,s),t, )GV (X, t,e),t,e)— %(\D(X,t,e),t,z—:).
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From x(0) = x(0) = x(1) = 0 and (7.17) it follows that h..(X,t,e) =0fort =0ort =1 or
€ = 0. Moreover, if t # 0 and € > 0,

éhaux(X,t,a) = x(t)(n(ex(t) +ax(t)%(x,ex(t))) (p+ ex(t) o, 2x(1)))

oh
X0 9 ex(0), (7.18)
and we write X = (Q, P) as well as x = W(X, ¢,¢). To pass to the limit ¢ — 0 in (7.18), we first
recall that W is continuous on G; x [0,1] x [0,6] and ¥(X,¢,0) = X. From (2.6) in Definition
2.3 of an E-symplectic family we know that oh oe(r,e) — (:U) as ¢ — 0 uniformly in z € G,.

Thus (7.18) yields
1
hH(l) g haux(Xa t> 5) = X(t) [ll(Xa O)P - m(X)]

and this limit is uniform in X € Gy, t € [0, 1].
Now we define
L haux (X, t,€) . € €]0,0]
Haox (X, t,e) = . : (7.19)
XO) (X, 0P —m(X)] : e=0
for X € G; and t € [0, 1], and we are going to verify that H,,, has the desired properties. From
the above discussions we know that H,, 1s continuous and

Hax(X,0,8) = Hyn (X, 1,6) = 0. (7.20)

As a consequence, H,,, can be extended to G; x R x [0,6] in a T" = 1 periodic fashion.
First we need to prove that Haw € Hs s, cf. Definition 6.1. Here (a)-(c) in this definition are
straightforward to check. Concerning (d), for € > 0 we know from (7.2) that

18<I>

JVH,w(X,t,e) = 5

= (WX, 1,8),1,¢).

Thus, by (7.16),
lim JV Ho (X1, €) = X(£) I(X, 0),
e—>

and this limit is uniform in G; x R. On the other hand, the definition of H,,, and (2.8) implies
that

IV Hp(X,1,0) = X(t)J [PWl(X’ 0) = Vm(X) + ( zl()g, 0) )]

= w0 () ) = oo,

This shows that V x H,.x is continuous in all of its arguments. Then the bound on ||V XHauXHﬂ 5
is not difficult to derive from (7.14).

Lastly, we have to establish (7.6). In view of the definition of H,,, and (7.20), it suffices to
consider X € Gy, t €]0,1] and ¢ €]0, ¢]. From (7.18) we deduce

| Haux (X, 1, €) — Haux (X, 1,0)| < ”XHoo (R1+ Ry + Rg),
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where

Ri = I ex(0)p — b(X,0)F,
Re = [m(x) = Zeex)]

ol

Ry = ex(t) [z, ex(O)] la(z, ex ()] + ex(?) | 5 (2, ex(t)) | Ip]

+e2x(1)? %(m, 5)((75))‘ [la(z, ex(t))]-

For Ry, we observe that by definition of X = ®(z,t,¢), see (7.7),

[ X — x| = ex(@) [Il{z,ex(®)] < e U],
Also note that = = U(X,t,¢) € G,, by construction. Therefore

2¢e 2¢e 2
= X[ < a6 1120 40 < 1110

1,6 p—T p—T
(7.21)

%
Oz

i, ex(8) = L (X, ex ()] < 2|

Since | € M, also
(X, ex(t) = UX,0) < U],
is verified. At this point we need to invoke the geometry of G = R x I. If I is contained in

[—R, R], then |P| < R+7 < R+paswellas |p| < R+r < R+p,dueto X € Gy and z € G,,.
Thus altogether, using the foregoing estimates,

[Baf < [l ex(d)] [p = Pl (@, ex(t) = (X, ex (@) [P] + [L(X, ex(t) — L (X, 0)| [P

2(R+ p)e

2 2
< ey, + 12110 + (B4 p) U] 50 €5

which is acceptable. For R, we can argue as follows. Since also h € M ,,, we obtain as in
(7.21) that

Ooh

o ex(®) — S ex(0)] < -2

pP—"

oh 2e
SO Ml € ==l 1]

r1 p—T

observe that ex(t) €0, 0] for € €]0,6] and ¢ €]0,1]. If we combine this estimate with (2.6),
then Ry < C¢ is found. Finally, from [ € M, ,, and |p| < R+ p, also R3 < Ce¢ is obtained.
This completes the argument for (7.6), and hence the proof of the lemma. O

Now we are in a position to complete the

Proof of Theorem 2.5: Let r; = £ and 7, = 2

0 <ry <ry <p. We deduce that there exist o,
that for € € [0, 4] the Poincaré map of

Y

. Then Lemma 7.3 can be applied to [ and
0,0 and a Hamiltonian H,,x € #,, 5, such

MM e

T =eJVHux(z,t ) (7.22)
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is P., restricted to G,,. In addition, one can find a constant Cy,x > 0 so that
| Haux (2,1, ) = Haux(2,1,0)| < Caux e (7.23)

forz € G,,,t €[0,1] and € € [0, 01]. The constant Cy,uy depends upon p, o, HlHLp,U, the interval
L, 1Al and sup,cio, e (2 (-, ) — m),.

Next we are going to invoke Theorem 6.14 to H,, for the parameters r = ry, p = ry,
o =0y and T = 1. By this result, we can find C, D > 0 (depending upon p and ||V Hayl|,, ,,)
with the following properties. There is a change of variables © = I'(y, ¢, &), which is defined on
Gy, X R x [0, 01] and which satisfies I'(G,,,t,¢) C G,, for t € R and ¢ € [0, 0], such that (7.22)
is transformed into

y=¢e(JV,N(y,e) + IV, R(y,t,€)), (7.24)
for functions N € H,,,, and R € H,,,,. Furthermore,
IV, NG, < C, (7.25)
IV,R(. o), < Ce P, (7.26)
N(y,e) =N(y,0)] < Ce+ [[Huux("€) = Haux( 0)]l,,. (7.27)
for y € G,, and € € [0, 04]. In addition,
N(y,0) = Haux(y, 0) (7.28)

is verified. According to the definition of H,, in (7.19) and by (7.18), one sees that it is possible
to bound ||V Haux,, ,, in terms of [/I[, , . the interval I and |[A]; , -

For later reference we first discuss the connection between N and the function E from
Theorem 2.5, cf. (2.10), and we also consider the variation of N' w.r. to e. From (7.28), the
definition of H,u(y,0) in (7.19) and (2.10),

N (y,0) = Haux(y,0) = /0 X(#) [L(y,0)P —m(y)] dt = 1 (y,0)P —m(y) = E(y),  (7.29)

where y = (Q, P). Using (7.27) and (7.23), we moreover find for y € G,, and ¢ € [0, 0;] that
N (y:€) = N(y,0) < Ce + [[Hanx (-, 8) = Haux (-, 0)[,,, < Che, (7.30)

where the constant € = C' + Cuux depends upon p, o, ||, ,,, the interval I, [|h], ,, and
SUD.¢)0,0] le"1(%:(-,e) — m)||, ; henceforth all constants are allowed to depend upon those pa-
rameters.

Nowwedeﬁnerg,:2%:%andm:%:gtoobtain0<r4<7“3<r2<r1 < p.
According to Corollary 6.15 there is o9 €]0, 01] such that

G, CI(G,,, t,¢)

for t € R and € € [0, 05]; in particular, T'(-, ¢,€)"! : G, = G,, is well-defined.
Let ®(x,t,¢) denote the solution to (7.22) satisfying ®(z,0, ) = x. Similarly, ¢(y,t,e) will
be used for the solution to (7.24) so that ¢(y,0,¢) = y. Now we select o3 €]0, 05] such that
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O (xz,t,¢) is well-defined on G,, x [0,1] x [0, 0] and takes values in G,,. The solutions of the
two systems are connected by the formula

d(y,t,e) =YD (y,0,¢),t,¢),t,e) =T H®(y,t,¢),t,¢)

fory € G,,, t € [0,1] and € € [0,03]. Letting ¢ = 1 and taking into account condition (b) in
Definition 6.13, it follows that

o(y,1,e) = IH(®(y, lLe),l,e) = ®(y,1,¢) = P.(y).

In other words, P. is also the Poincaré map of (7.24), at least in the domain G,,.
Now we are going to consider the autonomous system

y=eJV,N(y,e), (7.31)

denoting by é(y, t,e) the associated flow. Using (7.25), we deduce that there is & €0, 03] with
the property that ¢(y,t,¢) is well-defined on G,, x [0,1] x [0, 6] and moreover

~

o(Gr, x 10,1] x [0,0]) C G,,.

The system (7.31) is Hamiltonian, with Hamiltonian function eN(-,¢€). In particular, if P =
¢(+,y,1) denotes the Poincaré map of (7.31), then

N(P.(y),e) =N(y,e), yeG,, eecl0,6] (7.32)

To estimate the difference between ¢ and <;A5, we first observe that for ¢ € [0, 5],

1 1
IVN(,e)ll,, <

ro —

ID*N (o), < C = Ch,

r3 — T2 rs — T2

where we have once again resorted to (7.25). If (y,t,e) € G,, x [0,1] x [0, ], then the systems
(7.24), (7.31) in conjunction with (7.26) yield

‘gb(ya tv 8) - &(?ﬁ t? €)| = £ ‘ /0 [vaN(¢(y7 37 5)7 5) + vaR(¢(y> S? 5)7 87 5)

~

— IV N(9(y,s,€),¢)] ds
< C’gs/t lo(y, s,€) — quS(y, s,€)|ds + Cee P/=.
0
Hence from Gronwall’s inequality,
[6(y,t,) = d(y,t,e)] < Cee P/,
For the Poincaré maps, i.e., at t = 1, we deduce
|P.(y) — Po(y)| < C3ee™P%, yeG,,, =€[0,6], (7.33)

where C5 = Ce®?9.
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Now we are ready to complete the proof. Let (z,,)i<,<n = (P(20))o<n<n Pe a real forward
orbit piece of P. so that z, € G for all 0 < n < N. Since G C G,,, all the previous properties
can be used along the orbit. From (7.29) and (7.30) we get

|E(z) — E(z0)] < |E(2n) = N(@n,8)| + [N (20, €) — N(20,€)| + [N (20, 8) — E(0)]
N (2,0) = N (20, )| + [N (20, €) = N (20, )| + [N (20, ) — N (20,0)]
< 2Cie + [N (zp,e) — N(xo, ).

In addition, (7.32), (7.25) and (7.33) lead to

N e) = Mo, < 32 IN(R(2,),6) = Nz, )
= Y IN(P(a).2) ~ N(Bi(ao) <)

< CCsynee Do

Thus the claim follows if we define C' = 2C7 + CC5 and D =D. O
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