# THEORETICAL STUDY OF THE $S_{0}$ AND $S_{1}$ STATES OF PROTONATED SCHIFF BASES 

José A. Dobado and Marco Nonella

Biochemisches Institut, Universität Zürich
Winterthurerstraße 190, CH-8057 Zürich, Switzerland.

## INTRODUCTION

The chromophore of the light-driven proton pump Bacteriorhodopsin is a retinal molecule which is linked to the protein via a protonated Schiff base (PSB). During the photocycle, which is induced by light absorption, the chromophore undergoess isomerization reactions and changes its protonation state. The fast primary step takes place on the potential energy surface (PES) of the first electronically excited state S 1 . Two different mechanisms have been proposed for this primary step [1,2]:
? torn ?

In order to get more insight into the mechanism of this reaction we have carried ou MRCI calculations [3] of the $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ states of a PSB model molecule. The calculated PES together with results from recent molecular dynamics simulations [4] reveal important information for the discussion of the mechanism of the primary function of the two dihedrals 3 and 4 . We have chosen this restricted set of variables in order to compare the results of different levels of theory and also in order to compare our calculated PES to the model PES applied in molecular dynamics simulations [4].

PART A: Potential Energy Surfaces of Ground and Excited States during the photocycle. A reliable quantum chemical method for the prediction of the vibrational spectra of protonated Schiff bases would, therefore, be very helpful for the interperetaion of experimental FTIR data. Experimentally, a blue shift of the C=N stretching vibration has been observed after protonation of the retinal Schiff base. Semiempirical quantum chemical methods could not reproduce this behavior. It is an interesting and important task to test whether density functional methods are useful for the description of protonated Schiff bases. On the basis of GVB calculations on a small model molecule [5], this blue shift was explained with an increased $\mathrm{C}=\mathrm{N}$ force constant after protonation due to a rehybridization of the demonstrate, that this explanation is at least questionable in the model molecule and even very unlikely in the retinal Schiff base.

## METHODS

MRI calculations with single and double excitations have been carried out with the OLUMBUS[6,7] package of programs, using the standard $6-31 \mathrm{G}^{*}$ basis set. Atle eometrical parameters fixed except the two torsional angles 3 and 4 , which have been changed stepwise between $0^{\circ}$ and $180^{\circ}$ in order to generate the grid for the PES. The MRCI/6-31G* single point energy calculations used 10 reference states, 12 core and 12 frozen virtual MO's from a total of 100 basis functions, giving an active space of 3766784 CSF's.
Part B:
HF, DFT, MP, CISD, and CCSD calculations were carried out with the program GAUSSIAN94[8]. CASSCF and MRCI calculations with single and double excitations and with different reference contigurations have been carried out with


PART B: Force Constant Calculations of Methylimin and the Methyleniumion

MO-Schemes



Force constants (mdyn/Å) for different MRCI calculations
二 protonated


Force constants (mdyn/Å) v.s. number of double bonds


Force constants ( $\mathrm{mdyn} / \mathbf{A}$ ) and bond lengths ( $\dot{\mathrm{A}}$ ) of $\mathrm{C}=\mathrm{N}$ bonds at different levels of theory


## RESULTS AND CONCLUSIONS

 method, i.e. no increase of the $\mathrm{C}=\mathrm{N}$ force constant is found after protonation. - most of the applied quantum chemical standard methods except the CISD calculation are qualitatively in agreement with the GVB results. non of our calculations (except $\mathrm{CAS}(8,8)$ ), however, could reproduce the result that the $\mathrm{C}=\mathrm{N}$ bond length of the protonated molecule should be shorter than that of the unprotonated molecule.
ions we have searched for configurations which contribute significantly to the CI wave function
MO's of high energy are important.
on the basis of this data we have carried out MRCI calculations with different sets of reference configurations.
our data shows that the lower the energy of the MRCI calculations are (i.e. the better the CI wave function is) the smaller the difference between the two force constants becomes.

- Uue to limitations of the programs a real 'benchmark calculation' could not yet be performed.
length of the coniugated system makes clear that even ift the as a function of the correct in the case of the system with one double bond, this effect will most likely be lost in the case of the retinal Schiff base
the blue shift found in the retinal Schiff base has, thus, to be caused by other effects.












## References

| Smam |
| :---: |
|  |



