Z_LINEAR_K (Version 5.2)

The program (options 1 and 2) provides the asymptotical inferences (*z*-statistics or confidence intervals CI) for the parameters $L = \Sigma \beta_i p_i$ (a lineal function of *K* independent proportions with the β_i knows) or $R = p_2/p_1$ (the relative risk), by means of the optimal procedures and the score procedure. The key are:

- $x_i \sim K$ independent binomials (n_i, p_i) ;
- Coefficients $\beta_i: B(+) = \sum_{\beta_i > 0} \beta_i, B(-) = \sum_{\beta_i < 0} \beta_i, B = B(+) + B(-)$
- Parameter of interest: *L* (option 1) or *R* (option 2).
- TEST: $H: L = \lambda vs. K: L \neq \lambda (\lambda \text{ is know})$ or $H: R = \rho vs. K: R \neq \rho (\text{error } \alpha).$
- CI: $L1 \le L \le L2$ or $R1 \le R \le R2$ (confidence $1-\alpha$).
- In some cases the results of the one-tailed test and CI are also provided, as the optimal methods may differ from those in the two-tailed case.

Additionally (option 3), the programme also determines the contrast $\{\beta_{i0}\}$ ($\Sigma\beta_{i0} = 0$) that makes the maximum of the score statistic $Z^2(\lambda = 0)$ (see bellow) which provides a homogeneity test for $2 \times K$ tables alternative to the classical Pearson chi-squared. See paper (8).

SCORE TEST

The score z-statistics for *H*: $L = \lambda$ without continuity correction is:

$$Z(\lambda) = \frac{\overline{L} - \lambda}{\sqrt{\sum \beta_i^2 \hat{p}_i \hat{q}_i / n_i}}$$

where $\overline{L} = \sum \beta_i \overline{p}_i$, $\overline{p}_i = x_i / n_i$, $\hat{q}_i = 1 - \hat{p}_i$ and \hat{p}_i (= pi_LH in the output of the program) is the maximum likelihood estimator of p_i under *H*. The score z-statistics with a continuity correction (cc) is:

$$Z_{c}(\lambda) = \begin{cases} 0 & \text{if } |\overline{L} - \lambda| \leq c \\ \left[\text{Sign}(\overline{L} - \lambda) \right] \frac{|\overline{L} - \lambda| - c}{\sqrt{\sum \beta_{i}^{2} \hat{p}_{i} \hat{q}_{i} / n_{i}}} & \text{if } |\overline{L} - \lambda| > c \end{cases} \text{ where } c = \frac{B(+) - B(-)}{2\left\{ \prod (n_{i} + 1) - 1 \right\}}$$

When the test is for *H*: $R = \rho$, the expressions above are valid if they are changed β_2 for 1, β_1 for $-\rho$ and λ for 0. Finally, the test conclude *K* if $|Z(\lambda)|$ (or $|Z_c(\lambda)|$) $\geq z_{\alpha/2}$ (the 100×(1- $\alpha/2$)th percentile of the standard normal distribution). See paper (1).

SCORE CI

The CI for *L* (or *R*) is obtained to solve in λ (or ρ): $|Z(\lambda)| = z_{\alpha/2}$ or $|Z_c(\lambda)| = z_{\alpha/2}$.

p-VALUES

The program also provides the *p*-value of the test when the same makes sense (i.e. when the statistic is not obtained by increasing the data in a quantity that depends on the error α).

REST OF THE TEST AND CI

It comes in a similar way, but to other definitions of the statistic Z (see references). Equivalences between the outputs of the program and methods of the paper in references are

indicated in the following table:

-		
Case	Output program	Method in the paper
	Score (without cc)	S0 in (2)
$K \ge 3$	Score (with cc)	S0c in (2)
Parameter L	Adjusted Wald	W3 in (2)
	Peskun	P0 in (2)
<i>K</i> = 2	Score (without cc)	S0 in (3)
K Z	Score (with cc)	S0c in (3)
and	Adjusted Wald (a)	W2 in (3)
parameter <i>L</i> with $\beta_1 \neq -\beta_2$	Adjusted Wald (b)	W4 in (3)
	Adjusted likelihood ratio	LR1 in (7)
	Test for lambda = 0	
		Two-tailed: ZE0 in (6)
	Score (without cc)	One-tailed: ŽE0 in (11)
	Secre (with ea)	Two-tailed: ZE0c in (6)
	Score (with cc)	One-tailed: ŽW2 in (11)
	Adjusted Score (without cc)	Two-tailed: ZE3 in (6)
	Adjusted Score (with cc)	Two-tailed: ZE3c in (6)
	Adjusted Wald (without cc)	Two-tailed: ZW4 in (11)
K = 2	Adjusted Wald (with cc)	One-tailed: ŽW2 in (11)
		Two-tailed: ÃE1 in (11)
and	Adjusted Arc Sine (a) (with cc)	One-tailed: ÃE5 in (11)
narameter I with $\beta_1 = -\beta_2$	Test for lambda $\neq 0$ or CI for L	
parameter <i>L</i> with $\beta_1 = -\beta_2$		Two-tailed: ZE0 in (6)
(difference of proportion)	Score (without cc)	One-tailed: ZE0 in (11)
	Score (with cc)	Two-tailed: ZE0c in (6)
		One-tailed: ŽE0 in (11)
	Adjusted Arc Sine (a)	Two-tailed: AE1 in (6)
	Adjusted Arc Sine (a) (with cc)	One-tailed: ÃE5 in (11)
	Adjusted Arc Sine (b)	Two-tailed: AL1 in (7)
	Adjusted Wald	Two-tailed: ZW4 in (6)
	Peskun (b)	One-tailed: ZP'0 in (11)
	Peskun (a)	One-tailed: ZP0 in (11)
<i>K</i> = 2		r rho = 1
	Score (without cc)	ZE0 in (5) and (12)
and	Score (with cc)	ZE0c in (5)
parameter R	Adjusted Score (without cc)	ZE3 in (5)
	Adjusted Score (with cc)	ZE3c in (5)
(relative risk)	Adjusted score approx.	ZA1 in (5) and (12)
	Adjusted log transfor.	LW2 in (5) and (12)
	Adjusted log transfor. Peskun	LW2 in (5) and (12) ZP0 in (5) and (12)
	Peskun Adjusted score Wald	ZP0 in (5) and (12)
	Peskun Adjusted score Wald	ZP0 in (5) and (12) ZW2 in (5) and (12)
	Peskun Adjusted score Wald Test for rho ≠	ZP0 in (5) and (12) ZW2 in (5) and (12) 1 and CI for <i>R</i>
	Peskun Adjusted score Wald Test for rho ≠ Score (without cc)	ZP0 in (5) and (12) ZW2 in (5) and (12) 1 and CI for <i>R</i> ZE0 in (5) and (12)
	Peskun Adjusted score Wald Test for rho ≠ Score (without cc) Adjusted score approx.	ZP0 in (5) and (12) ZW2 in (5) and (12) 1 and CI for R ZE0 in (5) and (12) ZA1 in (5) and (12)
	Peskun Adjusted score Wald Test for rho ≠ Score (without cc) Adjusted score approx. Adjusted Wald	ZP0 in (5) and (12) ZW2 in (5) and (12) 1 and CI for R ZE0 in (5) and (12) ZA1 in (5) and (12) ZW4 in (5)
	Peskun Adjusted score Wald Test for rho ≠ Score (without cc) Adjusted score approx. Adjusted Wald Adjusted log transfor.	ZP0 in (5) and (12) ZW2 in (5) and (12) 1 and CI for R ZE0 in (5) and (12) ZA1 in (5) and (12) ZW4 in (5) Two-tailed: LW1 in (5)

Case	Output program	Method in the paper
	Peskun	ZP0 in (5) and (12)
	Adjusted_5 arc sin	AE5 in (5) and (12)
	Test or CI for L	
K = 1 Parameter L (one proportion)	Score (without cc)	Two-tailed:S0 in (4)One-tailed:S0 in (10)
	Score (with cc)	Two-tailed:S0c in (4)One-tailed:S0c in (10)
	Adjusted Arc Sine (a)	Two-tailed: A1 in (4)
	Adjusted Wald	Two-tailed:W2 in (4)One-tailed:W5 in (10)
	Modified Score	Two-tailed: MS in (9)

References

- Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2011). Inferences about a linear combination of proportions. *Statistical Methods in Medical Research* 20, 369-387. DOI: 10.1177/0962280209347953. Erratum in *Statistical Methods in Medical Research* 21(4), 427–428, 2012. DOI: 10.1177/0962280211423597.
- (2) Martín Andrés, A., Herranz Tejedor, I. and Álvarez Hernández, M. (2012). The optimal method to make inferences about a linear combination of proportions. *Journal of Statistical Computation and Simulation 82 (1)*, 123-135. DOI: 10.1080/00949655.2010.530601.
- (3) Martín Andrés, A. and Álvarez Hernández, M. (2013). Optimal method for realizing two-sided inferences about a linear combination of two proportions. *Communications in Statistics -Simulation and Computation 42*, 327-343. DOI: 10.1080/03610918.2011.650263.
- Martín Andrés, A. and Álvarez Hernández, M. (2014). Two-tailed asymptotic inferences for a proportion. *Journal of Applied Statistics 41 (7)*, 1516–1529. DOI: 10.1080/02664763.2014. 881783.
- (5) Martín Andrés, A. and Álvarez Hernández, M. (2014). Two-tailed approximate confidence intervals for the ratio of proportions. *Statistics and Computing 24*, 65-75 (published online: 28 September 2012). DOI: 10.1007/s11222-012-9353-5. (2015) "Erratum to: Two-tailed approximate confidence intervals for the ratio of proportions", *Statistics and Computing* 26(3), 743-744, 2016. DOI: 10.1007/s11222-015-9619-9.
- (6) Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2012). Asymptotic two-tailed confidence intervals for the difference of proportions. *Journal of Applied Statistics 39* (7), 1423-1435. DOI: 10.1080/02664763.2011.650686.
- (7) Álvarez Hernández, M. and Martín Andrés, A. (2017). New asymptotic inferences about the difference, ratio and linear combination of two independent proportions. *Communications in Statistics Simulation and Computation 46 (2)*, 1557-1568.
- (8) Martín Andrés, A. and Álvarez Hernández, M. (2015). Simultaneous inferences: new method of maximum combination. *Statistical Papers* 56, 1099–1113. DOI: 10.1007/s00362-014-0627-1.

- Martín Andrés, A. and Álvarez Hernández, M. (2016). Comment on "An improved score interval with a modified midpoint for a binomial proportion". J. Stat. Comput. Simul. 86 (2), 388-393. DOI: 10.1080/00949655.2015.1015128.
- (10) Álvarez Hernández, M., Martín Andrés, A. and Herranz Tejedor, I. (2016). One-sided asymptotic inferences for a proportion. *Journal of Applied Statistics* 43(9), 1738-1752. DOI: 10.1080/02664763.2015.1117595.
- (11) Álvarez Hernández, M., Martín Andrés, A. and Herranz Tejedor, I. (2018). One-tailed asymptotic inferences for the difference of proportions: analysis of 97 methods of inference. *Journal of Biopharmaceutical Statistics 28 (6)*, 1090–1104, DOI: 10.1080/10543406.2018. 1452028.
- (12) Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2022). One-sided asymptotic inferences for the relative risk: comparison of 63 inference methods. *Communications in Statistics Theory and Methods*. 51 (5), 1330-1348. DOI: 10.1080/03610926.2020.1760299.