Z_LINEAR_K (Version 5.2)

The program (options 1 and 2) provides the asymptotical inferences (z-statistics or confidence intervals CI) for the parameters $L=\Sigma \beta_{i} p_{i}$ (a lineal function of K independent proportions with the β_{i} knows) or $R=p_{2} / p_{1}$ (the relative risk), by means of the optimal procedures and the score procedure. The key are:

- $x_{i} \sim \mathrm{~K}$ independent binomials $\left(n_{i}, p_{i}\right)$;
- Coefficients $\beta_{i}: B(+)=\sum_{\beta_{i}>0} \beta_{i}, B(-)=\sum_{\beta_{i}<0} \beta_{i}, B=B(+)+B(-)$
- Parameter of interest: L (option 1) or R (option 2).
- TEST: $\quad H: L=\lambda v s . K: L \neq \lambda(\lambda$ is know) or $\quad H: R=\rho v s . K: R \neq \rho$ (error $\alpha)$.
- CI: $L 1 \leq L \leq L 2 \quad$ or $\quad R 1 \leq R \leq R 2 \quad$ (confidence 1- α).
- In some cases the results of the one-tailed test and CI are also provided, as the optimal methods may differ from those in the two-tailed case.

Additionally (option 3), the programme also determines the contrast $\left\{\beta_{i 0}\right\}\left(\Sigma \beta_{i 0}=0\right)$ that makes the maximum of the score statistic $Z^{2}(\lambda=0)$ (see bellow) which provides a homogeneity test for $2 \times K$ tables alternative to the classical Pearson chi-squared. See paper (8).

SCORE TEST

The score z-statistics for $H: L=\lambda$ without continuity correction is:

$$
Z(\lambda)=\frac{\bar{L}-\lambda}{\sqrt{\sum \beta_{i}^{2} \hat{p}_{i} \hat{q}_{i} / n_{i}}}
$$

where $\bar{L}=\sum \beta_{i} \bar{p}_{i}, \bar{p}_{i}=x_{i} / n_{i}, \hat{q}_{i}=1-\hat{p}_{i}$ and $\hat{p}_{i}\left(=\mathrm{pi} _\right.$LH in the output of the program $)$is the maximum likelihood estimator of p_{i} under H. The score z-statistics with a continuity correction (cc) is:

$$
Z_{c}(\lambda)=\left\{\begin{array}{ll}
0 & \text { if }|\bar{L}-\lambda| \leq c \\
{[\operatorname{Sign}(\bar{L}-\lambda)] \frac{|\bar{L}-\lambda|-c}{\sqrt{\sum \beta_{i}^{2} \hat{p}_{i} \hat{q}_{i} / n_{i}}}} & \text { if }|\bar{L}-\lambda|>c
\end{array} \text { where } c=\frac{\mathrm{B}(+)-\mathrm{B}(-)}{2\left\{\prod\left(n_{i}+1\right)-1\right\}}\right.
$$

When the test is for $H: R=\rho$, the expressions above are valid if they are changed β_{2} for $1, \beta_{1}$ for $-\rho$ and λ for 0 . Finally, the test conclude K if $|Z(\lambda)|\left(\right.$ or $\left.\left|Z_{c}(\lambda)\right|\right) \geq z_{\alpha / 2}$ (the $100 \times(1-\alpha / 2)$ th percentile of the standard normal distribution). See paper (1).

SCORE CI

The CI for L (or R) is obtained to solve in λ (or ρ): $|Z(\lambda)|=z_{\alpha / 2}$ or $\left|Z_{c}(\lambda)\right|=z_{\alpha / 2}$.

\boldsymbol{p}-VALUES

The program also provides the p-value of the test when the same makes sense (i.e. when the statistic is not obtained by increasing the data in a quantity that depends on the error α).

REST OF THE TEST AND CI

It comes in a similar way, but to other definitions of the statistic Z (see references). Equivalences between the outputs of the program and methods of the paper in references are
indicated in the following table:

Case	Output program	Method in the paper
$K \geq 3$	Score (without cc)	S0 in (2)
	Score (with cc)	S0c in (2)
Parameter L	Adjusted Wald	W3 in (2)
	Peskun	P 0 in (2)
$K=2$andparameter L with $\beta_{1} \neq-\beta_{2}$	Score (without cc)	S0 in (3)
	Score (with cc)	S0c in (3)
	Adjusted Wald (a)	W2 in (3)
	Adjusted Wald (b)	W4 in (3)
	Adjusted likelihood ratio	LR1 in (7)
$K=2$ and parameter L with $\beta_{1}=-\beta_{2}$ (difference of proportion)	Test for lambda $=0$	
	Score (without cc)	Two-tailed: ZE0 in (6) One-tailed: Z̃E0 in (11)
	Score (with cc)	Two-tailed: ZE0c in (6) One-tailed: Z̃W2 in (11)
	Adjusted Score (without cc)	Two-tailed: ZE3 in (6)
	Adjusted Score (with cc)	Two-tailed: ZE3c in (6)
	Adjusted Wald (without cc)	Two-tailed: ZW4 in (11)
	Adjusted Wald (with cc)	One-tailed: Z̃W2 in (11) $^{\text {a }}$
	Adjusted Arc Sine (a) (with cc)	Two-tailed: $\tilde{A} E 1$ in (11) One-tailed: ÃE5 in (11)
	Test for lambda $\neq 0$ or $\mathbf{C I}$ for L	
	Score (without cc)	Two-tailed: ZE0 in (6) One-tailed: ZE0 in (11)
	Score (with cc)	Two-tailed: ZE0c in (6) One-tailed: Z̃E0 in (11)
	Adjusted Arc Sine (a)	Two-tailed: AE1 in (6)
	Adjusted Arc Sine (a) (with cc)	One-tailed: ÃE5 in (11)
	Adjusted Arc Sine (b)	Two-tailed: AL1 in (7)
	Adjusted Wald	Two-tailed: ZW4 in (6)
	Peskun (b)	One-tailed: ZP'0 in (11)
	Peskun (a)	One-tailed: ZP0 in (11)
$K=2$ and parameter R (relative risk)	Test for rho = 1	
	Score (without cc)	ZE0 in (5) and (12)
	Score (with cc)	ZE0c in (5)
	Adjusted Score (without cc)	ZE3 in (5)
	Adjusted Score (with cc)	ZE3c in (5)
	Adjusted score approx.	ZA1 in (5) and (12)
	Adjusted log transfor.	LW2 in (5) and (12)
	Peskun	ZP0 in (5) and (12)
	Adjusted score Wald	ZW2 in (5) and (12)
	Test for rho $=1$ and CI for \boldsymbol{R}	
	Score (without cc)	ZE0 in (5) and (12)
	Adjusted score approx.	ZA1 in (5) and (12)
	Adjusted Wald	ZW4 in (5)
	Adjusted log transfor. Log transfor.	Two-tailed: LW1 in (5) One-tailed: LW0 in (12)
	Adjusted_1 arc sin	AE1 in (5)
	Adjusted_2 arc sin	AE2 in (5)

Case	Output program	Method in the paper	
	Peskun	ZP0 in (5) and (12)	
	Adjusted_5 arc sin	AE5 in (5) and (12)	
$K=1$	Test or CI for L		
	Score (without cc)	Two-tailed: One-tailed:	$\begin{aligned} & \text { S0 in (4) } \\ & \text { S0 in }(10) \end{aligned}$
Parameter L	Score (with cc)	Two-tailed: One-tailed:	$\begin{aligned} & \text { S0c in (4) } \\ & \text { S0c in }(10) \\ & \hline \end{aligned}$
(one proportion)	Adjusted Arc Sine (a)	Two-tailed:	A1 in (4)
	Adjusted Wald	Two-tailed: One-tailed:	$\begin{aligned} & \text { W2 in (4) } \\ & \text { W5 in (10) } \end{aligned}$
	Modified Score	Two-tailed:	MS in (9)

References

(1) Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2011). Inferences about a linear combination of proportions. Statistical Methods in Medical Research 20, 369-387. DOI: 10.1177/0962280209347953. Erratum in Statistical Methods in Medical Research 21(4), 427428, 2012. DOI: 10.1177/0962280211423597.
(2) Martín Andrés, A., Herranz Tejedor, I. and Álvarez Hernández, M. (2012). The optimal method to make inferences about a linear combination of proportions. Journal of Statistical Computation and Simulation 82 (1), 123-135. DOI: 10.1080/00949655.2010.530601.
(3) Martín Andrés, A. and Álvarez Hernández, M. (2013). Optimal method for realizing two-sided inferences about a linear combination of two proportions. Communications in Statistics Simulation and Computation 42, 327-343. DOI: 10.1080/03610918.2011. 650263.
(4) Martín Andrés, A. and Álvarez Hernández, M. (2014). Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics 41 (7), 1516-1529. DOI: 10.1080/02664763.2014. 881783.
(5) Martín Andrés, A. and Álvarez Hernández, M. (2014). Two-tailed approximate confidence intervals for the ratio of proportions. Statistics and Computing 24, 65-75 (published online: 28 September 2012). DOI: 10.1007/s11222-012-9353-5. (2015) "Erratum to: Two-tailed approximate confidence intervals for the ratio of proportions", Statistics and Computing 26(3), 743-744, 2016. DOI: 10.1007/s11222-015-9619-9.
(6) Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2012). Asymptotic twotailed confidence intervals for the difference of proportions. Journal of Applied Statistics 39 (7), 1423-1435. DOI: 10.1080/02664763.2011.650686.
(7) Álvarez Hernández, M. and Martín Andrés, A. (2017). New asymptotic inferences about the difference, ratio and linear combination of two independent proportions. Communications in Statistics - Simulation and Computation 46 (2), 1557-1568.
(8) Martín Andrés, A. and Álvarez Hernández, M. (2015). Simultaneous inferences: new method of maximum combination. Statistical Papers 56, 1099-1113. DOI: 10.1007/s00362-014-0627-1.
(9) Martín Andrés, A. and Álvarez Hernández, M. (2016). Comment on "An improved score interval with a modified midpoint for a binomial proportion". J. Stat. Comput. Simul. 86 (2), 388-393. DOI: 10.1080/00949655.2015.1015128.
(10) Álvarez Hernández, M., Martín Andrés, A. and Herranz Tejedor, I. (2016). One-sided asymptotic inferences for a proportion. Journal of Applied Statistics 43(9), 1738-1752. DOI: 10.1080/02664763.2015.1117595.
(11) Álvarez Hernández, M., Martín Andrés, A. and Herranz Tejedor, I. (2018). One-tailed asymptotic inferences for the difference of proportions: analysis of 97 methods of inference. Journal of Biopharmaceutical Statistics 28 (6), 1090-1104, DOI: 10.1080/10543406.2018. 1452028.
(12) Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2022). One-sided asymptotic inferences for the relative risk: comparison of 63 inference methods. Communications in Statistics - Theory and Methods. 51 (5), 1330-1348. DOI: 10.1080/03610926.2020.1760299.

