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Abstract

In spite of the widespread use of significance testing in empirical research, its
interpretation and researchers excessive confidence in its results have been criticized
for years. In this paper, we first describe the logic of statistical testing in the Fisher and
Neyman-Pearson approaches, review some common misinterpretations of basic
concepts behind statistical tests, and analyse the philosophical and psychological issues
that can contribute to these misinterpretations. We then revisit some frequent criticisms
against statistical tests and conclude that most of them refer not to the tests themsel ves,
but to the misuse of tests on the part of researchers. We agree with Levin (1998a) that
statistical tests should be transformed into a more intelligent process that helps
researchers in their work, and finally suggest possible ways in which statistical
education might contribute to the better understanding and application of statistical
inference.

Empiricd sciences, in generd, and particularly psychology and education, rey heavily on
edablishing the exigtence of effects using the Satistical analysis of data Statidtica inference dates
back almost 300 years, but statistica tests were systematized through the works of Fisher, Neyman,
and Pearson and today most researchers implicitly use a mixture of the logics suggested by these
authors. However, since the logic of datigticd inference is difficult to grasp, its use and interpretation
are not dways adequate and have been criticized for nearly 50 years. For example, Yates (1951)
suggested that scientists were paying too much attention to the tests' results and were forgetting the
edimates of the magnitudes of the effects they were investigating. An early extensve review of
criticlsms againg sgnificance testing can be found in Morrison and Henke (1970).

More recently, a comprehensve summary of these debates, and dternative approaches
suggested, has been provided by Harlow, Mulaik, and Steiger (1997).

This controversy has recently increased within professond organizations (Ellerton, 1996;
Levin, 1998a, 1998b; Levin & Robinson, 1999; Menon, 1993; Robinson & Levin, 1997;
Thompson, 1996; Wilkinson, 1999) which are suggesting important shifts in their editorid policies
regarding the use of datidica dgnificance testing. For example, within the American Educationd
Research Association, Thompson (1996) recommended better use of statistical language in reported
reearch, emphasizing effect-gze interpretation and evauaing result replicability. Severad
organizations have established speciad committees to study the problem, and these committees have
recommended that dtatistical tests should not be abandoned but rather supplemented by other
datistica andyses (Levin, 1998b). For example, the American Psychologica Association (APA), in
a 1994 publication manua, noted that sgnificance testing does not reflect the importance or
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megnitude of an effect and encouraged researchers to provide effect-sze information (American
Psychologica Association, 1994, p. 18). Subsequently, the Task Force on Statigtical Inference
established by the APA published an article to initiate discussion in the field prior to revisng the APA
publication manua (Wilkinson, 1999). Following a decison of the task force, this article covers
methodologica issues more generd that null hypothess ggnificance tesing. Among many
recommendations are that exact pvaues should be reported, together with effect-ze estimates
combined with interval estimates.

In spite of dl the criticiams levdled, researchers persst in rdying on Satigicd significance
despite the arguments that statistical tests are not adequate to justify scientific knowledge. Some
explanations for this persstence include inertia, conceptua confusion, lack of better dternative tools,
and psychologica mechanisms such as invadid generdization from deductive logic to inference under
uncertainty (Falk & Greenbaum, 1995). In this paper we anayse these problems and finaly suggest
possble ways in which datigticd education might contribute to the better understanding and
application of gatigtical inference.

The Logic of Satidtica Tests: An Example

In this section we first present a typica Stuation in which a researcher resorts to satistics to
support a given hypothesis concerning her field of study. We then summarize the steps and logic of
datistica testing. The example is used throughout the paper to contextualize the discussion.

Example 1. According to some learning theories, representations contribute to the construction
of meaning of mathematical objects, 0 that a richer context which facilitates change of
representations would favor learning. A researcher who accepts this theory has good reasons
to expect that usng computers will reinforce the learning of datistics, because computers
provide powerful tools and systems of representations for atistical concepts. To assess her
conjecture, suppose the researcher selects at random a sample of 80 students among al the
sudents entering a given university in agiven year. Then, she randomly assgns the 80 students
to equa groups and finds that the two groups are equivaent in their previous knowledge of

datitics. An experiment is organized where the same lecturer, usng the same materids,

teaches an introductory statistics course to both groups for a semester. Group C (the control

group) has no access to computers, while the teaching to Group E (the experimenta group) is
based on intengve use of computers.

At the end of the period, the same test is given to both groups. If the learning with the
two teaching methods is equdly effective, there should be no difference between m, the mean
test score of the theoretical population of students taught with the help of computers and m,
the mean test score of the theoretica population of students with no access to computers.
Groups E and C are consdered to be representative samples from these populations, so if
there is no differentid effectiveness in learning with the two teaching methods, the difference
between the two groups mean scores will be about zero. If the researcher finds a pogtive
difference between the two groups mean scores, can she deduce that her conjecture is
supported? It is important to remark that the researcher's interest goes beyond the two
particular samples (groups C and E); she wants to assess the effect of computers on learning in
the genera population, and through this, to find empirical support for her hypothess about the
effect of context on learning.

The above example illudrates a prototypica Stuation where satistica hypothess testing can
be used to determine whether the experimenta data (the students scoresin groups E and C) support
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a substantive hypothesis (learning is influenced by the systems of representations available) or not.
As we cannot directly test the substantive hypothesis, because it refers to theoretica entities, we
instead organize an experiment to generate data to test a derived research hypothesis - that
computers reinforce the learning of gatistics. However, we still cannot directly confirm the research
hypothes's, because learning is an unobservable congtruct that can not be directly assessed.

We then choose an instrument (the test) that is directly related to learning and produces some
observable outcomes (the students responses to the test). If the research hypothesis is true, we
expect the scores to be higher in students taught with the help of computers than in students with no
access to computers (experimental hypothesis). In any case, because of the multiple factors that
affect learning in addition to computers, some students taught without computers will perform better
than others taught with computers. Accordingly, we need a procedure that compares the whole
distributions of scoresin the two populations of students.

This comparison is usudly carried out by considering mean test scores for the two theoretica
population and speculaing about their difference. If the experimentd hypothess is true, we will
expect that this differenceis pogtive (statistical alternative hypothesis), although we cannot state a
precise vaue for the difference. Therefore, we cannot directly work with the datistical aternative
hypothesis, and we reason, ingtead, as if the two populations have the same performance, i.e. we
assume that the null hypothesis (that the difference in mean scores in the populations is zero) istrue.
(In the example, in fact, we are deding with a one-talled test, because we have specified the
direction of the departure from the null hypothess. In this case, the null hypothesisis actudly m O m
(the complement to the dternative hypothesis). From the mathematica point of view, however, we
only need to consider the case where m=m, to compute the critical value for aone-tailed test, Snce
whenever areault is sgnificant for the hypothesis m=m , it will dso be sgnificant for the hypothesis
m <m. Therefore, to Smplify the expogtion, we assume in the following that the null hypothess is
m=m).

To test this assumption, we compute a test Satistic related to the parameter of interest from
the data in our samples. Assuming that the null hypothess is true determines the digtribution of this
daidic (a T digribution with 78 d.f.). Thisis used to compute the critica value and take a decison
about whether or not we should accept our initid research hypothesis.

There are two different views of datistical tests  a) tests of significance that were introduced
by Fisher and b) tests as rules for deciding between two hypotheses, which was the view of Neyman
and Pearson. The difference does not lie in the caculations, but in the underlying reasoning.
Following Moore (1995) we first describe the typica reasoning in atest of sgnificance that would be
adequate in the example 1. The following steps will typicdly be followed:

1. Destribing the effect you are searching for in terms of one or severd population parameters
(the mean scores m, in students taught with computers is higher than m, the mean score in students
with no access to computers). The effect we suspect is true is described by the dternative

hypothesis H; © m>m

2. Establishing the null hypothesis that this effect is not present: H) © m=m  (thereis no
difference between the mean scores m, in students taught with computers and m, the mean scorein
students with no access to computers). The test of significance is designed to assess the strength of
the evidence againgt the null hypothess.

3. Computing a gatigic from the sample results (caculated gatistic). The didribution of this
datigtic is specified when we assume the null hypothesis to be true (in the case of the example, aT
digribution with 78 df). Suppose that in Example 1 we obtain the following vaues for means in the



4
two samples. ~ xe = 115.10; * X, = 101.78 and that S = 179.66 and s = 215.19 are the unbiased
estimators of the variances in the populations, the mean difference in scores in the two groups for
these datais then ~ X -~ X. = 13.32, the pooled estimate of the variance & = 202.48, and avaue of t
=4.16 is obtained using the standard formula.

The quedtion that ggnificance tegting is trying to answer isthe following.

Suppose that the null hypothess is true and that, on average, there is no difference in the mean
scores of samples drawn from the two populations, is then the sample outcome t = 4.16 extremely
large? Or could we easily get this vaue just because of chance fluctuation in sampling?

4. The probability of obtaining at vaue as extreme or more extreme than the calculated t when
the null hypothesisis true is cdled the p-value. For the example, the p-vadueis extremdy smdl (less
than .001). If the null hypothesisis true and the p-vdue is very amdl, the reauts are very unlikely and
are caled gatisicdly sgnificant. In this case, and if the data fals in the direction specified by the
dternative hypothess, we assume that our data provide evidence againg the null hypothesis (this
does not mean that we believe that the null hypothess is impossible; it is only through a program of
repested experiments which replicate our results that a hypothesis would be accepted in the scientific
community; science s built from cumulative findings).

5. Even when the gatistica null hypothesis is true, some discrepancies between the mean
scores in the experimental and control groups will be expected in Example 1, just because of the
chance fluctuation in sampling. There is no fixed rule about how low the pvaue should be for a
result to be consdered datistically sgnificant. However, it has been conventiond to adopt some
fixed vaues with which we can compare the p-vaue to decide about satistical Sgnificance. Thisis
the sgnificance level a, or maximum p-vaue admissible to consder the deta to be sgnificant, which
is used to compute the critical value. Suppose we take a = .05 in example 1. The critical vaueisthe
maximum difference that will be expected in the two samples (groups E and C) with probability .05
(@), when the two populations have the same performance. This critica vaue is obtained from the
theoretica digtribution of the Satistics in the case where the hypothesis null istrue (T digtribution with
78 d.f.).

Hypothesis Testing as a Decision Process

In example 1 we have used sgnificance testing to assess the strength of the evidence against
the null hypothess. There are, however, other Stuations where inferenceis used to Make adecision
between two possible actions.

Example 2: Suppose a secondary school wants to assess the effectiveness of a new teaching
method on their students learning of statistics. The school randomly sdlects 80 students from
dl the sudentsin the last school year and then randomly splits the 80 students into two groups
of equd size. The same teacher teaches Statistics to both groups for a semester. Group C (the
control group) is taught with the usua method in that school, while the teaching in Group E
(experimenta group) is based on the new materids. At the end of the period, the same test is
given to both groups (that were judged, using a pretest, to be initidly comparable in ahility).
The school wants to change to the new g/stem if the difference of mean scores in the two
student populations is pogtive. Here the interest aso goes beyond the two particular samples
(groups E and C), as the method chosen would be gpplied to other students.
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In Example 2, a datistical test would be used, with a different reasoning, as a procedure to
take adecison. The following steps would be followed:

1. Edablishing the null hypothess H, © m = m and the dternative hypothess H, © m>m,
asin Example 1.

2. Computing the gatigtic from the sample data, asin Example 1.

3. Decigon taking: The null hypothess will ether be rgected (and H, will be accepted) or Hy
will be not rejected.

4. The decison is made by comparing the p-vaue with the leve of Sgnificance a, that is, by
comparing the calculated t with the critical value. In Example 2 again (assuming the same
numerical data) the caculated t = 4.16 is greeter than the critical vaue t. = 1.665, and
therefore, the null hypothess will be rgected.

It is worthwhile noting that rgecting the null hypothes's does not necessarily mean that it is
fdse, as two kinds of error are possible in the decision taken as a result of the test. Fird, it is
possible that there is no red difference in the test means in the students taught with the old and the
new methods, and that, because of random variability in sampling we have obtained in our particular
groups E and C a tvaue that only happens with low probability. As we know, even when the
probability of an event islow, this does not meansthat it isimpossible. A Type | error happensif we
rgject anull hypothess, when, in fact, it is true. The probability of a Type | error is numericaly equa
to the 9gnificancelevd, a.

On the other hand, if the result is not significant, that does not imply that the two populations
perform equdly well on the test. Even when the students who are taught with the new method
perform, in generd, better, we might fal in ataning a sgnificant result in our particular samples,
because the effect of the teaching issmal or because there istoo much variability in the data. A Type
Il error occurs when the researcher accepts the null hypothess but the null hypothesis is, in fact,
fdse Since there are many different possibilities for the difference of means in the dternative
hypothesis, the probability of Type Il error, alllis variable. We are usudly interested in some
particular vaues for this probability and compute this probability for the most unfavorable case.

The complement of & is called the power of the test. It is the probability of reecting a null
hypothesswhen it isfdse and it isaso variable, as it depends on the true vaue of the parameter (the
difference of means in our example). It is important to emphasize the conditiond nature of the
probability of these two kinds of error, because it is in the interpretation of these conditiona
probabilities that most of the errors and misconceptions concerning satigtica tests can be found.

Common Errorsin Interpreting Significance Levels and p-vaues

Research into the undersanding of inferentid procedures has shown widespread
misconceptions among both univeraty students and scientists who use gatistica inference in their
daily work. These misconceptions refer mainly to the leve of Sgnificance, a, which is defined asthe
probability of rgecting a null hypothesis, given that it is true. The most common misinterpretation of
this concept congsts of switching the two terms in the conditiond probability, thet is, interpreting the
level of sgnificance as the probability that the null hypothesis is true, once the decison to rgect it has
been taken. For example, Birnbaum (1982) reported that his students found the following definition
reasonable: "A leve of significance of 5% means that, on average, 5 out of every 100 times we
rgect the null hypothesis, we will be wrong". Falk (1986) found that most of her students believed
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that a was the probability of being wrong when rgecting the null hypothesis at a Sgnificancelevd a.
Similar results were described in Pollard and Richardson (1987) in their study using researchers.

Vdlecllos (1994) gave the following items to a sample of 436 Universty students from
different backgrounds (datitics, medicine, psychology, engineering and business studies) who hed
previoudy been taught about Satistical tests:

Item 1: A leve of sgnificance of 5% means that, on average, 5 out of every 100 times we
regject the null hypothesis, we will be wrong (true /fase). Judtify your answer.

Item 2: A levd of sgnificance of 5% means that, on average, 5 out of every 100 times the null
hypothesisistrue, we will rgect it (true/ fase). Justify your answer.

In item 2, a frequentist interpretation of the level of sgnificance is presented (it is correct),
whilein item 1 the two events in the conditiond probability have been exchanged (and it isincorrect).
However, only 32% of the students in the research by Vdlecillos (1994) gave the correct response
to item 1 and 54% the correct response to item 2. From 135 students who judtified their responses,
41% gave correct arguments for both items. A prevaent misconception in al the groups of students
was exchanging the terms in the conditiond probakility, thereby judging item 1 to be true and item 2
to be fase. Interviews with a subset of the students tested showed this beief in students who
discriminated well between a conditiona probability and its inverse (Vdlecillos & Batanero, 1996).
Other students did not distinguish between the two conditiona probabilities, that is, consdered both
items to be correct.

That conditiona probabilities with the terms switched are not, in generd, equd isillustrated by
the datain Table 1, rdating to a school in which saigticsis an optiond subject. The probability of a
randomly chosen pupil being a satigtics sudent, given that pupil is a girl, and the probability of a
randomly chosen dtatistics sudent being agirl, are different.

P (datigtics student / girl) = 3/4; P (girl / gatistics student) =3/8

Table 1. Numbers of Girls and Boys in a Satistics Course

Girls Boys Total
Satidics 300 500 800
No 100 100 200
Satidics
Totd 400 600 1000

It is dso important to remark that, even though we can fix the level of sgnificance a, namdy
the probability of rgecting anull hypothesis (given that it is true) and we can compute the probability
of obtaining a vdue of the test Satidtic lying beyond a particular vaue (given that the null hypothesis
is true), the probability that the null hypothess is true when we have rgected it, and the probability
that the null hypothesis is true, given that we obtain a particular vaue of the test gatidtic, are not
knowable.

The posterior probability of the null hypothess, given a sgnificart result, depends on the prior

probability of the null hypothes's, as well as on the probabilities of having a gnificant result given the
null and the aternative hypotheses. Unfortunately, these probabilities cannot be determined.
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Moreover, a hypothess is ether true or fase, and therefore it does not make much sense to
compute its probability in a dasscd inferentid paradigm (where we give a frequestist interpretation
to objective probabilities). It is only within Bayesan inference that pogterior probability of the
hypotheses can be computed, athough these are subjective probabilities. What we can do at best,
and usng Bayesan inference, is to revise our persond degree of beief in the hypothess, in view of
the result.

Other common misinterpretations concerning the significance level and the p-vadue are:

(&) Some people bdieve that the p-vaue is the probability thet the result is due to chance. That this
is amisconception can be deduced from the fact that, even when the null hypothesisistrue (e.g.,
if there are no differences between the performance in the two student populations in Example
1), asgnificant result might be due to other factors, such as, for example, that the sudentsin the
experimental group worked harder than their counterparts to prepare for the test. Here we can
see the relevance of experimenta contral to try to ensure that al the conditions (except the type
of teaching) have been held congant in the two groups. The pvdue is the probability of
obtaining the particular result or one more extreme when the null hypothesisis true and there are
no other possble factors influencing the result. What is rgected in a gatistica test is the null
hypothesis, and therefore we cannot infer the existence of a particular cause in an experiment
from a dgnificant resuilt.

(b) Another common error is the belief in the conservation of the significance levd vaue when
successive tests are carried out on the same data set, which produces the problem of multiple
comparisons. Sometimes many significance tests are gpplied to one body of data. The meaning
of the definition of the sgnificance levd (see Item 2, above) is that if we carry out 100
comparisons on the same data set usng in dl of them aleve of sgnificance .05 it is expected that
about 5 out of the 100 tests will be significant just by chance, even when the null hypothesis is
true. Thismakesit difficult to interpret the results (M oses, 1992).

(¢) Thefrequent use of .05 and .01 levels of sgnificance isamatter of convention and is not judtified
by mathematica theory. When hypothesis testing is considered as a decision process (the view
of Neyman and Pearson), the level of significance should be specified before the experiment is
carried out and that choice determines the Sze of the critica and acceptance regions that will
lead to the decision to reject the null hypothesis or not. Neyman and Pearson gave a frequentist
interpretation to this probability: If the null hypothessis true and the experiment is repeated many
times with a .05 probability of Type | error, we will rgect the null hypothesis 5% of the times
thenitistrue.

In his book “Desgn of Experiments’, Fisher (1935) suggested selecting a significance leve of
5% as a convention to recognize significant results in experiments. In later writings, however, Fisher
consdered that every researcher should sdlect the significance level according to the circumstances,
dating that "in fact, no scientific worker has a fixed level of sgnificance a which from year to year
and in dl circumstances, he rgects hypotheses' (Fisher, 1956, p. 42). Ingtead, Fisher suggested
publishing the exact p-vaue obtained in each particular experiment which, in fact, implies establishing
the sgnificance leve after the experiment.

In spite of these recommendations, research literature shows that the common arbitrary levels
of .05, .01, .001 are dmost universaly sdlected for all type of research problems. Skipper, Guenter,
and Nass (1970) suggested that this has the consequence of differentiating research findings thet will
be published or not and warned us to choose level of sgnificance with full awareness of its
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implications for the problem under investigation. Sometimes, when the power of the test is low and
Type |l error isimportant, a higher probability of Type | error might be preferable.

(d) Mignterpretations of the Sgnificance level are linked to mignterpreting significant results, about
which there was another disagreement between Fisher and Neyman and Pearson. A significant
result, for Fisher, implied that the data provided evidence againgt the null hypothes's, while for
Neyman and Pearson it just stated the relative frequency of times that we would regject atrue null
hypothesis (the Type | error) in the long run. On the other hand, we should distinguish between
datistica and practicd sgnificance. In Example 1 we obtained a difference in mean scores
between the two groups of 13.32, which was sgnificant. However, we might have obtained a
higher level of sgnificance with a amdler experimentd effect and a larger sample sze. Practicd
sgnificance involves getistica sgnificance plus asufficiently large experimenta effect.

The Different Levels of Hypothesesin Research

The levd of sgnificance is not the only concept misunderstood in sgnificance testing. Some
research papers have dso shown confusion between the roles of the null and aternative hypotheses
(Valecillos, 1994, 1995) as well as between the datigtica aternative hypothesis and the research
hypothes's (Chow, 1996). Chow distinguishes diverse hypotheses implicated at different levels of
abgtraction in experimental research directed to confirm theories, such as that outlined in Example 1,
asfollows.

(8 Substantive hypothesis (which, in Example 1, is that learning is affected by the semictic tools
available to ded with a concept). A subgtantive hypothesis is a speculative account for a given
phenomenon. Usudly it is not possble to investigate this hypothesis directly, because it refersto
an unobsarvable condruct or mechanism. To investigate the subgstantive hypothess some
observable implication from the substantive hypothesis must be deduced.

(b) Research hypothesis (that computers will improve the learning of datigics). This is an
observable implication of the substantive hypothesis. If we do not obtain support for the research
hypothes's, the substantive hypothesis will not be supported.

(c) Often the research hypothess is not specific enough for conducting empirica research.
Therefore, it is necessary to devise a well-defined dependent variable (in Example 1, total score)
obtained from an experimenta task (the test) given to some subjects (students) in a specific
context (experimentad and control groups after the teaching experiment). On this bads, an
experimental hypothesis can be congtructed (that performance in the test will be better for the
experimenta group).

(d) An implication of the experimenta hypothess will be stated to carry out the datisticd andyss
(thet the mean score in the test will be higher in the students taught with the use of computers
than in the students who have no access to computers). This implication is the alternative
statistical hypothesis, H; © m > m, which is not identica to the experimenta hypothesis, but a
consequence of it a the statistical leve.

(e) Findly, the logica complement of the dternative statisticad hypothess is that the mean scores in
the two student populations will be the same, H, © m=m, Stating the null hypothesis servesto
specify the sampling digtribution of the test gatistic. Then we can start a chain of reasoning
(Table 3) that will lead us to accept or regject the series of hypotheses that we have described
and that are shown in Table 2.



Table 2. Different Levels of Hypotheses in Experimental Research

Hypothesis involved Example

Substantive hypothes's Learning is affected by the representations
avaladle

Research Hypothes's Computers will favor the learning of gatistics

Experimenta hypothess

Test scores are higher in students who use
computers

Alternative datistical Hi° m>m
hypothess
Null hypothesis Ho® m=m

Table 3. Chain of Reasoning Involved in Getting Support for a Substantive Hypothesis

Implication 1 If learning is affected by the representations available, then
computers will favor the learning of Satigtics
Implication 2 If computers favor the learning of Statistics, then test scores will b
higher in students who use computers
Implication 3 If test scores are higher in students who use computers, then m >
m
Implication 4 If itisnotthecasethaa m>m, thenm=m

Implication 5 If m=m, thenasgnificant vaue of * X " X ishighly unlikely

Observation " Xe- XciSSgnificant,

Concluson 5 " Xe- XcisSgnificant, therefore wergect m=m

Conclusion 4 \We rgject m=m, therefore we assumethat m> m
Concluson 3 m > m; S0 provided that there was adequate experimental
control, we assume than test scores are higher in students who usg
computers
Concluson 2 Test scores are higher in students who use computers; provided
that the test is areliable measure of learning, then computers favor
the learning of datigtics
Concluson 1 Computers favor the learning of statistics; provided the only

difference in the two teaching methods is the representations
available, then the substantive hypothesis is supported by our
data.

Following Chow (1996) we present in Table 3 the series of embedded implicative deductions
from which only the innermost one (Implication 5) is related to the process of testing for Sgnificance.
Thisis the centrd core of the whole series of implications 1 to 5 that together condtitute the process
of scientific inference to support a substantive hypothess. Therefore, the view of datisticd tests as
sgnificance testing fits naturdly with this type of research, whereas the view of datisticd tests as a
decision process would be preferable in a practica Situation where a decision should be taken, such
asin Example 2 or in qudity control.
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Implications 1 to 4 in Table 3 are not supported by datistica theory, but by theoretica
consderations from the field under study, and by an adequate experimental control that ensures that
al the rdlevant concomitant variables have been held congtant and that the test given to the sudents
isardiable and valid measure of the congtruct sudied (learning). According to Chow (1996), many
of the criticisms againg datistica testing are misdirected, as they refer, not to the statistical process
(implication 5 in Table 3), but to the other components of the inferentia procedure (implications 1 to
4). Replacing or supplementing datistica tests by other gatistical methods, such as confidence
intervals or power andyss, will not solve the problem of adequate experimental control or lack of
adequate theoretica background in a particular research study.

Some Philosophica Issues

We have now identified severd reasons for difficulties in undersanding statistica tests. On the
one hand, satigtica testsinvolve a series of concepts such as null and dternative hypotheses, Type |
and Typell erors, probability of errors, sgnificant and nonsignificant results, population and sample,
parameter and datigtics, sampling digtribution. Some of these concepts are misunderstood or
confused by students and experimental researchers. Moreover, the forma structure of Satistical tests
is superficidly smilar to that of proof by contradiction; however, there are fundamenta differences
between these two types of reasoning that are not dways well understood.

In proof by contradiction we reason in the following way:
If A implies B cannot happen
Then, if B happens, we deduce A isfdse

In gatistica testing, it istempting to apply Smilar reasoning as follows:
If A impliesB isvery unlikely to hgppen
Then, if B happens, we deduce A is very unlikely to be true

However, thiswould not be avdid concluson, and herein lies the confuson.

In addition to these difficulties, we have seen that the controversy surrounding etitica
inference involves the philosophy of inference and the logica relations between theories and facts.
Science is built from empirical observations and it is not possble to teke data from whole
populations but only from samples. We expect from datistical testing more than it can provide us,
and underlying this expectation is the philosophica problem of finding scientific criteria to judtify
inductive reasoning, as stated by Hume. Until now, the contributions made by datistica inferencein
this direction have not achieved a complete solution to this problem (Black, 1979; Burks, 1977,
Hacking, 1975; Seidenfeld, 1979).

On the other hand, there are two different views about datistical tests that sometimes are
confused or mixed. Fisher saw the ams of sgnificance testing as confronting a null hypothesis with
observations and for him a pvadue indicated the strength of the evidence againgt the hypothess
(Fisher, 1958). However, Fisher did not believe than Satistica tests provided inductive inferences
from samples to population, but, rather, a deductive inference from the population of possble
samplesto the particular sample obtained in each case.
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For Neyman (1950), the problem of testing a Statistical hypothesis occurs when circumstances
force us to make a choice between two courses of action. To accept a hypothesis means only to
decide to take one action rather than another. This does not mean that one necessarily believes that
the hypothesis is true. For Neyman and Pearson, a datistical test is a rule of inductive behaviour; a
criterion for decison-making, which alows us to accept or rgect a hypothess by assuming some
rsks.

Today, many researchers employ the statistica tools, methods, and concepts of the Neymant
Pearson theory with a different am, namely, to measure the evidence in favour of a given hypothesis
(Royd, 1997). The inner reasoning in Table 3 (Implication 5, observation and conclusion 5) can
serve to describe the usud reasoning in statistica tests today, which congds of

(& A binary decison - deciding whether the reault is ggnificant or not. This decison is made by
comparing the p-vaue with the level of sgnificance, which is stated before collecting the data.

(b) An inferentid procedure involving a conditiond syllogism (implication 5 in Table 3): If m=m
then asgnificant vaue of Xe-~ X ishighly unlikdy;” xe -~ X is Significant, therefore we rgject Hy ©
m=m.

(c) Another inferentid procedure involving a digunctive syllogism. Either m> m, or m=m; if we
rgect m=m, thenm>m.

Therefore, the current practice of atistica tests contains e ements from Neyman-Pearson (it
is a decison procedure) and from Fsher (it is an inferentid procedure, whereby data are used to
provide evidence in favor of the hypothesis), which gpply at different stages of the process.

Other features taken from Neyman-Pearson are that Hy is the hypothes's of no difference, that
the a level must be chosen before data andlysis and it must remain unchanged, and that there are
two types of error. From Fisher we preserve the suggestion that the inference is based on a
conditiona probability; the probability of obtaining the data given that H, is true, and that H, and H;
are mutudly exclusve and complementary. We should aso add that some researchers often give a
Bayesan interpretation to the result of (classca) hypothesis tedts, in spite of the fact that the view
from Bayesan qatistics is very different from the theories of ether Fisher or Neyman and Pearson.

Psychologicd Factors Contributing to the Prevalence of Common Errors

The above practice of datisticd tests has been cdled the framework of NeymanPearson
orthodoxy (Oakes, 1986) or Neyman-Pearson hybrid logic (Gingerenzer, 1993), who think it can
explain the beief that atidticd inference provides an dgorithmic solution to the problem of inductive
inference, and the consequent mechanistic behavior tha is frequently displayed in reation to
datigtica tests.

As we have described, Fisher and Neyman/ Pearson had different interpretations of dtatistica
tests, which include the way in which we should determine the leve of sgnificance, as well as the
meaning of a significant result. According to Gingerenzer et d. (1989), the dispute between these
authors has been hidden in gpplications of statistica inference in psychology and other experimenta
sciences, where it has been assumed that there is only one dSatigticd solution to inference.
Textbooks, such as that by Guilford (1942), have contributed to spreading a mixture of Fisher'slogic
of sgnificance tests with some NeymanPearson components, where Bayesian interpretations were
given to the levd of significance and related concepts. As a result, these books have aso helped to
goread the misinterpretation of Satistica tests.
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Usng an insghtful analogy, Gingerenzer et d. (1989) compare the Neyman Pearson features
within the current practice of datistica testing with the superego of statistica reasoning, because they
prescribe what should be done and do not leave freedom to researchers. They require the
specification of precise hypotheses, significance levels, and power before the data are collected, and
that the probability of errors should be interpreted in the context of repeated sampling. Fisher's
features are compared to the ego of statistica reasoning. It is convenient for researchers who want
to carry out their dissertations and get their papers published, if they can determine the leve of
significance after the experiment, establish a diffuse or no dternative hypothesis before collecting the
data, and interprete the probability of error as the probability of error in their own experiment.

The third component in the researcher's behavior described by Gingerenzer et d. (1989) isthe
Bayesan wish to assign probabilities to the hypothesis on the bass of research data (the id of the
hybrid logic). When we find a Sgnificant result, we ask ourselves whether this result may be due to
chance or whether in fact it was a result of our experimentd manipulation. Fak (1986) finds it
naturd that one interprets the level of sgnificance as the posterior probability of error, once we have
rgjected the hypothesis, because this is in fact the probability in which the researcher is interested.
Gingerenzer et d. (1989) suggest that the conflict among these three psychologica components is
what explains our misuses of Satistica inference, and the inditutionaization of the level of Sgnificance
as ameasure of research quaity in scientific journals and statitics textbooks.

On the other hand, biases in inferentid reasoning can be seen amply as examples of adults
poor reasoning in probabilistic problems, which has been extensvely studied by psychologists in
relation to other concepts, such as randomness, probability, and correation (Kahneman, Sovic, &
Tversky, 1982; Nisbett & Ross, 1980). In the specific case of misnterpreting Satidicd inference
results, Falk and Greenbaum (1995) suggest the existence of a profound psychologica mechanism
leading people to beieve that they eiminate chance and minimize uncertainty when they obtain a
sgnificant result. They describe the illusion of probabilistic proof by contradiction, or the
illusion of attaining improbability, which consists of the erroneous belief that one has rendered the
null hypothesis improbable by obtaining a sgnificant result, based on a mideading generdization from
logical reasoning to Satigtical inference (Birnbaum, 1982; Lindley, 1993). While a contradiction
definitely digproves the premise from which it is drawn, the belief that obtaining data whose
conditiona probability under a given hypothesis is low implies that the conditioning hypothesis is
improbable is a falacy. The illuson of probabilistic proof by contradiction is, however, apparently
difficult to eradicate, in spite of caificaion in many datidics textbooks. In other cases, this
misconception isimplicit in textbooks, as shown by Falk and Greenbaum (1995).

According to Falk (1986), misconceptions around the sgnificance level are dso related to
difficulties in discriminating between the two directions of conditiona probabilities, otherwise known
as the fallacy of the transposed conditional (Diaconis and Friedman, 1981), which have been
long recognized as pervasve among students and even professionds. In addition, Fak (1986)
suggests that the verba ambiguity in presenting a as P(Type | Error) may provoke confusion
between the two opposite directions of conditiona probabilities amongst students, who seem to
believe that they are dedling with the probability of a single event. Falk suggeststhat "Type | error” is
an unfortunate expresson and should not be used on its own. A "conditional event” is not alegitimate
concept, and only conditiona probabilities are unequivocaly defined, even though this confusion
sometimes appear in textbooks.

Although a is a wel defined conditiona probability, the expresson "Type | eror” is not
conditionally phrased, and does not spell out to which combination of the two events it refers. Now,
when Hy is rgected and we wish to ask ourselves which kind of error can be committed, the
concept of "Type | error” comes immediately to mind, as the crucid distinction between the two
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oppogte directions of the conditiona probahilities is blurred. This leads us to interpret the
sgnificance levd as the conjunction of the two events “the null hypothesis is true' and "the nulll
hypothesisisreected’ (Menon, 1993).

For many years, criticisms have been raised againg datistica testing, and many suggestions
have been made to diminate this procedure from academic research. However, significant results
continue to be published in research journals, and errors around Satistica tests continue to be
sporead throughout statistics courses and books, as well as in published research. Fak (1986)
uggests that researchers experience an illusory confidence in datistica tests because of the
sophidtication of mathemetical terms and formulas, which contributes to our feding thet datistical
ggnificance guarantees objectivity. An additional problem is that other dtatistical procedures
suggested to replace or complement datistica tests (such as confidence intervas, measuring the
magnitude of experimental effects, power andyss and Bayesan inference) do not solve the
philosophica and psychologica problems we have described.

Some Common Criticisms againgt Hypothes's Testing Revisted

We have andysed in detail the logic of Satigtica testing, its role in scientific inference, and the
philosophica and psychologica factors that contribute misunderstanding and misuses of datistica
tests. In this section, we revisit some frequent criticisms againgt Satistical testing.

1. What is asserted in the null hypothesis in example 1 is that there is no difference between
the two populations means. It is evident to many critics that the null hypothesis is never true and
therefore Setidtica tests are invalid, as they are based on a fase premise (that the null hypothesisis
true).

That this criticism is not pertinent can be deduced from the fact that, even when the null
hypothesisis not true, the logic of gatistical testing is not invaid. Thislogic is not affected by whether
the null hypothesis is true or fase, because what is asserted in atest is that a Sgnificant result is
improbable, given that the null hypothesis is true. This is a mathematical property of the sampling
digribution that has nothing to do with the truth or fasity of the null hypothess.

2. In practice we identify the hypothesis of interest with the Satistical aternative hypothesis.
However, the dterndive hypothess says nothing about the exact magnitude of the difference
between the population means. Statistical significance is not informative about the practica
significance of the data

When this criticiam is gpplied to sgnificance testing (Example 1) it might be due to confusion
between the different levels of hypotheses implied in the inferentia procedure shown in Tables 2 and
3. The am of experimentd research directed towards theory confirmation is providing support for
the substantive hypothesis. As we saw in example 1, the magnitude of the difference between the
population means has nothing to do with the substantive hypothesis. This difference refers to the
sampling digribution of the datistics, thet is, to the dternetive Satistical hypothess. There is not a
unique correspondence between the subgtantive hypothesis and the satistical dternative hypothess,
which is derived from a particular experiment and a particular test instrument. Theories should be
assessed with careful thinking and sound judgment (Harlow, 1977).

In the context of taking a decison (Example 2), however, the magnitude of the effect could be
relevant to the decison. In these cases, datisticd tests are dill useful in making the decision, though
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they should be complemented with power andyss and/ or estimates of the magnitude of the effects
as subordinated to research questions of interest (Levin, 1998a).

3. The choice of the level of sgnificance is arbitrary; therefore some data could be significant
a agiven leve and not a another different level.

It is true that the researcher chooses the level of significance. This arbitrariness does not,
however, mean that the procedure is invaid or unuseful. Moreover, it is dso possible, following the
gpproach of Fisher, to use the exact p-vaueto rgect the null hypothesis a different levels, thoughin
the current practice of gatidtical testing it is advisable to chose the Sgnificance level before taking the
data to give more objectivity to the decison.

4. Saidticad sgnificance is not informative as to the probability of the hypothesis being true.
Nor is gatisticd sgnificance informative of the true vaue of the parameter. For this reason many
researchers suggest replacing tests with confidence intervas.

It istrue that tests are not informative of the probability of the hypothesis being true. However,
confidence intervas are not informative of this probability ether. Confidence intervas give an interva
within which the true vaue of the parameter should be in a given percentage of samples, though they
do not ensure in which interva the parameter lies for our particular experiment. Therefore, they do
not subgtitute for, but rather complement tests of significance, and are subject to Smilar controverses
and misconceptions.

4. Typel error and Type |l errors are inversaly related. To critics, researchers seem to ignore
Type Il errors while paying undue attention to Type | error.

Though the probahilities of the two types of errors are inversdly related, there is afundamenta
difference between them. While the probability of Type | error a is a constant that can be chosen
before the experiment is done, the probability of Type Il error is afunction of the true vaue of the
parameter which is unknown. To solve this problem, power analyss assumes different possble
vaues for the parameter and computes the probability of Type Il error for these different values.
This practice is useful for some applications of inference, such as decison taking (Example 2) and
quaity control. However, we can goply the same objections as in point 2 as regards experiments
oriented towards supporting a given theoretica substantive hypothess (Example 1) in which there is
no indication about the particular Sze of particular parameters of the experimental dependent
variables. That is, the two types of errors do not play the same role in the corroboration of scientific
theories, dtough they could be equaly important in other applications of inference, such as qudity
control.

5. It is not clear what the meaning of a non-significant result is. For some critics this may be
due to the fact that the test used is not of sufficient power.

We can apply here the same reasoning & in point 4. It is dear that the null and dternative
hypothess, rgecting and accepting the null hypothess, sgnificant and nonsignificant results do not
play a symmetric role in sgnificant testing. While a gnificant result contradicts the null hypothesis
because of its low probability, a non-sgnificant result is highly likely when the null hypothessistrue,
but could aso have been produced by other factors. This can aso happen in proof by contradiction,
where we reason in the following way:

If A istrueimpliesB isfdse
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Then, if Bistrug A isfdse

If B happens, we conclude A is not possible, but when B does not happen, we can not deduce that
A isnecessaxily true; here there is dso asymmetry between the consequences of B and not-B.

Teaching and Learning Inference Concepts

In this paper we have described the logic of significance tests, their role in experimenta
research, the conceptual, psychologica and philosophical difficulties related to them and, findly, we
have revisted some frequent criticiams againg Satigticd significance testing. These criticiams cannot
be applied to the mathematical procedure in satistica testing, where there are no contradictions. On
the contrary, they are rdated to the misuses of sgnificance testing and are the consequence of
conceptud misunderstandings, and the philosophica and psychologicad problems that we have
anaysed throughout the paper.

Statidicd educators are not indifferent to these problems, as it is shown by the Invited Paper
Medting on Statisticad Education and the Significance Tests Controversy a the Internationd
Sdtidicd Inditute's Ffty-second Sesson and by the International Association for Statidtica
Education’s Round Table on “Training Researchers in the Use of Statistics’. As described by 1to
(1999), there are three different levels in the Satistical tests controversy:

(@ The disoute within statigtics itself, where different methods and various interpretations for the
same methods are recommended in the Fisher, NeymanPearson and Bayesian approaches.

(b) The controversy in the applications of datigics, where, in practice, the Sgnificance test is an
informd blending of Fisher’s originad pure sgnificance test and NeymanPearson theory with
concepts and interpretation which are not part of the latter. Moreover, journd editors and
professona societies are suggesting changes in research and publication policies as regards
satistical methods (Lecoutre, 1999).

() The teaching controversy about when, how, and to what extent we should teach about
datigtica inference.

We agree with Ito that these three different levels are in fact interrelated, because our
conceptions about Satigtica theory aso affect our gpplications and teaching of datigics. This is
particularly important, as with the increase of research in the teaching and learning of daidtics, data
handling is increesingly being introduced a school level (Shaughnessy, Garfidd, & Greer, 1997)
including dso, in many countries, the rudiments of inference (Dahl, 1999). Our view is that
hypothesis testing should not be abandoned in socid sciences and education, but rather its teaching
and practice should be changed to lead to a "meaningful process’ ( Levin, 1998b), which includes
independent replication of sudies, choosing optima sample szes, combining hypothes's testing with
confidence intervals and/or effect-9ze edimation, and specifying criteria of "success' prior to the
experimen.

It is clear, from our andysis, thet there is a conceptual complexity in satistica tests, and that
paticular atention should be paid to the teaching of inference if we want to prevent future
misunderstanding in our students similar to those described by Vdlecillos (1999). Revison of the
teaching methodology in introductory satistical courses has been suggested (Moore, 1997 and
related discussion) to change towards a congtructivist modd of learning wherein the teacher guides
hisher students to move towards specific statistica competencies and knowledge. New texts that
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change the students role from ligtening towards a more active participation in structured activities
(e.g., Rossman, 1996) facilitate such an approach.

Since computers make a variety of computations and graphica displays possble, Moore
(1997) recommends giving students the opportunity to experiment with red data and problems. In
particular, computer smulations could contribute to improving students understandings of the ideas
of sample variability, sample statistic and its ditribution, about which there are many misconceptions
(Rubin, Bruce, & Tenney, 1991, Wdl, Pollatsek, & Boyce, 1990) and that are essentia to
understanding the logic of dgnificance testing. For example, delMas, Garfield and Chance (1999)
describe the Sampling Didtribution software and ingtructional activities designed to guide studentsin
their exploration of sampling digtributions. In their experiments, the students were able to change the
shape of the theoreticd digtribution in the populatiion (normd, skewed, bimondd, uniform, U-
shaped) and smulate sampling didributions of different atigtics for various sample szes. The
activities were amed to focus the students' attention towards the Centra Limit Theorem.

However, and even when results demondrated a Sgnificant poditive change in the sudents as
a consequence of the activities, delMas et d. (1999) warn that the use of technology and activities
based on research results did not always produce effective understanding of sampling distributions.
The authors suggest that the new activities and the learning of the software might be too demanding
for some students, and the amount of new information about the sofware might interfere with the
sudents learning of sampling ditributions, whose understanding require students to integrate ideas
of distribution, average, spread, sample, and randomness. It is clear that we need more research thet
helps us to understand how technology may be used to help students in their learning process (see
BenZvi, thisissue). In particular we need to find good didactica Stuations in which students can be
confronted with their psychologica misconceptions, such as the confusion between a conditiona
probability and its inverse or their blief in the possibility of computing the probability of a hypothesis
(within a objective conception of probability).

On the other hand datidtical tedting is just a part of the more generd process of scientific
inference, as indicated in Tables 2 and 3. However, we frequently find that gatistica inference is
taught in isolation without connecting it with a more genera framework of research methodology and
experimenta design. From our point of view, it is necessary to discuss the role of daistics within
experimental research with the students and make them conscious of the possibilities and limitations
of datistics in experimental work. Moroever, we agree with Wood's (1998) suggestion to focus
introductory dtatitical courses around detistica thinking, that is, around the Plan-Do-Check-Act
learning cycle. Statistical data andysis is not a mechanical process, and therefore should neither be
taught nor applied in thisway. Since Satidtics is not away of doing, but away of thinking that helps
us to solve problems in science and everyday life, teaching statistics should begin with red problems
through which students develop ther idess, working through the different stages of solving a red
problem (planning a solution, collecting and analyzing data, checking initid hypotheses, and taking
appropriate decisons).

Finaly, we recommend that researchers should recognize the complexity of applying inference
to solving red problems and redize that they need the collaboration of professond datigticians, in

addition to using their professond knowledge to judge the extent to which their research questions
may be answered by satistica analyses.
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