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Abstract: Ideas of statistical inference are being increasingly included at various levels of 

complexity in the high school curriculum in many countries and are typically taught by 

mathematics teachers. Most of these teachers have not received a specific preparation in 

statistics and therefore could share some of the common reasoning biases and 

misconceptions about statistical inference that are widespread among both students and 

researchers. In this chapter the basic components of statistical inference, appropriate to 

school level, are analysed, and research related to these concepts is summarised. Finally, 

recommendations are made for teaching and research in this area. 

 

1. INTRODUCTION 

Statistical inference, in the simplest possible terms, is the process of assessing 

strength of evidence concerning whether or not a set of observations is consistent with a 

particular hypothesised mechanism that could have produced those observations. It is an 

essential tool in management, politics and research; however, people’s understanding of 

statistical inference is generally flawed. The application and interpretation of standard 

inference procedures is often incorrect (see, for example Harlow, Mulaik, & Steiger, 1997; 

Batanero, 2000; Cumming, Williams, & Fidler, 2004).  

Because of the relevance and importance of statistical inference, education authorities 

in some countries include a basic study of statistical inference in the curriculum of the last 

year of high school (17-18 year olds). For example, South Australian and Spanish students 

learn about statistical tests and confidence intervals for both means and proportions (Senior 
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Secondary Board of South Australia, 2002; Ministry of Education and Sciences, 2007). 

New Zealand students learn about confidence intervals, resampling and randomisation 

(Ministry of Education, 2007). 

Some of the fundamental elements of basic inference are implicitly or explicitly 

included in various middle school curricula, as well. For example, the National Council of 

Teachers of Mathematics (NCTM) Standards (2000) suggest that Grades 6–8 students 

should use observations about differences between two or more samples to make 

conjectures about the populations. NCTM further recommends that grades 9-12 should use 

simulations to explore the variability of sample statistics from a known population and to 

construct sampling distributions; they also should understand how a sample statistic reflects 

the value of a population parameter and use sampling distributions as the basis for informal 

inference. More recently, the American Statistical Association’s Guidelines for Assessment 

and Instruction in Statistics Education (GAISE; Franklin et al, 2005) highlights the need for 

students to look beyond the data when making statistical interpretations in the presence of 

variability and urges that students in middle grades recognize the feasibility of conducting 

inference and that high school students learn to make inferences both with random 

sampling from a population and with random assignment to experimental groups. 

This chapter analyses the basic elements of statistical inference and then summarises 

part of the wider research that is relevant to teaching this topic (see Vallecillos, 1999; 

Batanero, 2000 and Castro-Sotos, Vanhoof, Noortgate, & Onghena; 2007 for an expanded 

survey). The chapter finishes with some implications for teaching and research. 

 

2. STATISTICAL INFERENCE – A RICH MELTING POT 

Classical statistical inference consists primarily of two types of procedures, 

hypothesis testing and confidence intervals. These techniques build on a scheme of 

interrelated concepts including probability, random sampling, parameter, distribution of 

values of a sample statistic, confidence, null and alternative hypothesis, p-value, 

significance level, and the logic of inference (Lui & Thompson, 2009). 

Consequently, statistical inference consists of three distinct, but interacting, 

fundamental elements: (a) the reasoning process, (b) the concepts and (c) the associated 

computations. Because the computations are often easily learned by students, and can be 
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facilitated by user-friendly software, teachers of statistics must teach the three components 

and not just the mechanics of inference, because the main difficulties in understanding 

statistical inference lie within the other two elements. 

 

2.1. The reasoning process 

Garfield and Gal (1999) suggest that, across the primary, middle and high school 

years, teachers must develop students’ statistical reasoning – the processes people use to 

reason with statistical ideas and make sense of statistical information. This process is 

supported by concepts such as distribution, centre, spread, association, uncertainty, 

randomness and sampling, some of which have been analysed in other chapters in this 

book. While most students may be able to perform the calculations associated with an 

inferential process, many students hold deep misconceptions that prevent them from 

making an appropriate interpretation of the result of an inferential process (Vallecillos, 

1994; Batanero, 2000; Castro-Sotos, et al., 2007). In addition, Garfield (2002) remarks that 

some teachers do not specifically teach students how to use and apply types of reasoning 

but rather teach concepts and procedures and hope that the ability to reason will develop as 

a result. As a consequence, students reach their first inferential reasoning experience with a 

reasoning-free statistical background, giving rise to a mind-set that statistics is solely about 

the computation of numerical values. One possible reason for this unfortunate circumstance 

is that teachers responsible for teaching statistics at a high school level may have serious 

deficiencies in their knowledge that lead to inadequate understandings of inference (Liu & 

Thompson, 2009). 

 

2.2. The concepts 

Central to learning statistical inference is understanding that the variation of a given 

statistic (e.g. the mean) calculated from single random samples is described by a probability 

distribution – known as the sampling distribution of the statistic. When thinking about 

statistical inference it is necessary to be able to clearly differentiate between three 

distributions: 

• The probability distribution that models the values of a variable from the 

population/process. This distribution usually depends on some (typically unknown) 
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parameter values. For example, a normally distributed population is specified by two 

parameters - its mean and standard deviation, often denoted by µ and σ . 

• The data distribution of the values of a variable for a single random sample taken from 

the population/process. From this sample sample statistics such as the mean and 

standard deviation, often denoted by x  and s, can be used in the process of estimating 

the unknown values of the population parameters. 

• The probability distribution that models the variability in values of a statistic from ‘all’ 

potential random samples taken from the population/process, called the sampling 

distribution. One example is the sampling distribution of a sample mean, which in many 

circumstances has an approximately normal distribution with mean µ and standard 

deviation 
σ
n

, where n represents the sample size. This result provides the basis for 

much of classical statistical inference. 

 

Sampling distributions are more abstract than the distribution of a population or a 

sample and so are typically very challenging for students to understand (see section 3.2). 

One reason for this difficulty is that when thinking about both the population distribution 

and the single random sample’s distribution, the unit of analysis (case) is an individual 

object. This is in stark contrast to the sampling distribution where the case is a single 

random sample (Batanero, Godino, Vallecillos, Green, & Holmes, 1994). The object of 

interest for each distribution might be the mean, for example, but in each case the 

distribution’s mean has a different interpretation and a different behaviour. One strategy for 

helping students to understand these distinctions is to engage in activities that involve 

repeatedly taking random samples from a population. When working with such activities, 

high school students often struggle with moving between the various levels of imagery 

(Saldahna & Thompson, 2002). Proper application and interpretation of statistical inference 

requires mastery of the knowledge and techniques specific to each distribution and 

understanding of the rich links among these distributions. 
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3. DIFFICULTIES IN UNDERSTANDING STATISTICAL INFERENCE 

Research reviewed in this section deals with understanding sampling and the 

sampling distribution, hypothesis tests and confidence intervals. 

 

3.1. Understanding sampling 

Research on inferential reasoning started with the heuristics and biases programme of 

research in psychology (Kahneman, Slovic, & Tversky, 1982), which established that most 

people do not follow the normative mathematical rules that guide formal scientific 

inference when they make a decision under uncertainty. Instead, people tend to use simple 

judgmental heuristics that sometimes cause serious and systematic errors, and such errors 

are resistant to change. For example in the representativeness heuristics, people tend to 

estimate the likelihood for an event based on how well it represents some aspects of the 

parent population. An associated fallacy that has been termed belief in the Law of Small 

Numbers is the belief that even small samples should exactly reflect all the characteristics 

in the population distribution. 

Most curricula at a high school level include some instruction on random sampling, 

which is mostly theoretical and includes descriptions of different methods of random 

sampling. The core message of such instruction is that if a sample is chosen in a suitable 

random manner and is sufficiently big, it will be representative of the population from 

which it has been drawn. Students therefore learn to think about a random sample as a mini-

me of the population and that the purpose of drawing a random sample is to ensure 

representativeness in order to gain knowledge about the population from the sample. This 

conception constrains students’ thinking to a single random sample only and provides no 

avenue to appreciate the range of possible samples that might have been drawn and the 

variability across that range. 

Understanding the purpose of drawing a single random sample in the context of 

hypothesis tests and confidence intervals, requires the assimilation of “two apparently 

antagonistic ideas: sample representativeness and (sampling) variability” (Batanero et al, 

1994). In these situations the purpose of drawing a single sample is to quantify that 

sample’s level-of-unusualness relative to the many other samples that could have been 

drawn. Saldahna and Thompson (2002) observed that, without a suitable sense of the 
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variation across many possible samples, which extends to the notion of the distribution of a 

statistic, 11th and 12th grade students tended to judge a sample’s representativeness only in 

relation to the population parameter. Hence, when required to decide how rare a sample 

was, these students did so based on how different they thought it was to the underlying 

population parameter and not “on how it might compare to a clustering of the statistic’s 

values” (Saldanha & Thompson, 2002). 

 

3.2. Understanding sampling distributions 

Reasoning about sampling distributions requires students to integrate several 

statistical concepts and to be able to reason about the hypothetical behaviour of many 

samples – an intangible thought process for many students (Chance, Delmas & Garfield, 

2004). According to these authors, many students fail to develop a deep understanding of 

the sampling distribution concept and as a result can only manage a mechanical knowledge 

of statistical inference, leaving such tasks as interpreting a p-value well beyond those 

students.  

Saldahna and Thompson (2002) studied the understandings of high school students 

when engaged in activities that used computer applets to simulate repeated random 

sampling from a population. The activity required students to randomly draw a sample from 

a population, compute a sample proportion and then repeat this process over and over. They 

found that most students had extreme difficulty in conceiving of repeated sampling in terms 

of three distinct levels: population, sample, collection of sample statistics. These difficulties 

led many students to misinterpret a simulation’s result as a percentage of people rather than 

a percentage of sample proportions. 

Chance et al. (2004) found that while students were able to observe behaviours and 

notice patterns in the behaviour (e.g. larger the sample size smaller the variation) shown by 

random sampling applets, they did not understand why the behaviour occurred. The authors 

noted that, after exposure to applets, students were unable to suggest plausible distributions 

of samples for a given sample size and agreed with Saldahna and Thompson that students 

did not have a clear distinction between the distribution of one sample of data and the 

distribution of means of samples. Simply being exposed to the applets was not sufficient to 

render a learning gain. The authors concluded that: (a) students need to become more 
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familiar with the process of sampling, (b) activities associated with applets need to be both 

structured and unstructured, and (c) students need to discuss their observations after an 

activity so they could become focussed on what observations are most important, what 

important observations they did not make and how the important observations are 

connected. 

 

3.3. Understanding the null and alternative hypotheses 

Errors and misinterpretations in hypothesis tests can lead to a paradoxical situation, 

where, on one hand, a significant result is often required to get a paper published in many 

journals and, on the other hand, significant results are misinterpreted in these publications 

(Falk & Greenbaum, 1995). There is confusion between the roles of the null and alternative 

hypotheses as well as between the statistical alternative hypothesis and the research 

hypothesis (Chow, 1996). Vallecillos (1994) reported that many students in her research, 

including 6 out of 31 pre-service mathematics teachers, believed that correctly carrying out 

a test proved the truth of the null hypothesis, as in the case of a deductive procedure. 

Vallecillos (1999) described four different conceptions regarding the type of proof that 

hypotheses tests provide: (a) as a decision-making rule, (b) as a procedure for obtaining 

empirical support for the hypothesis being researched, (c) as a probabilistic proof of the 

hypotheses, and (d) as a mathematical proof of the truth of the hypothesis. While the two 

first conceptions are correct, many students in her research, including some pre-service 

teachers, held either conception (c) or (d).  

Belief that rejecting a null hypothesis means that one has proven it to be wrong was 

also found in the research by Lui and Thompson (2009) when interviewing 8 high school 

statistics teachers, who seemed not to understand the purpose of statistical tests as 

mechanisms to carry out statistical inferences. 

 

3.4. Understanding statistical significance and p-values 

Two particularly misunderstood concepts are the significance level and the p-value. 

The significance level is defined as the probability of falsely rejecting a null hypothesis. 

The p-value is defined as the probability of observing the empirical value of the statistics or 

a more extreme value, given that the null hypothesis is true. The most common 



8 
 

misinterpretation of these concepts consists of switching the two terms in the conditional 

probability: interpreting the level of significance as the probability that the null hypothesis 

is true once the decision has been made to reject it or interpreting the p-value as the 

probability that the null hypothesis is true, given the observed data. For example, Birnbaum 

(1982) reported that his students found the following definition reasonable: "A level of 

significance of 5% means that, on average, 5 out of every 100 times we reject the null 

hypothesis, we will be wrong". Falk (1986) found that most of her students believed that α 

was the probability of being wrong when rejecting the null hypothesis at a significance 

level α. Similar results were found by Krauss and Wassner (2002) in university lecturers 

involved in the teaching of research methods. More specifically they found that 4 out of 

every 5 methodology instructors have misconceptions about the concept of significance, 

just like their students. Vallecillos (1994) carried out extensive research on students 

misconceptions related to statistical tests (n=436 students from different backgrounds) that 

included 31 pre-service mathematics teachers (students graduating in mathematics), 13 of 

whom interpreted the level of significance as the probability that the null hypothesis is true, 

once the decision to reject it has been made. 

Lui and Thompson (2009) remark that the ideas of probability and unusualness are 

central to the logic of hypothesis testing, where one rejects a null hypothesis when a sample 

from this population is judged to be sufficiently unusual in light of the null hypothesis. 

However, they found that teachers “conceptions of probability (or unusualness) were not 

grounded in a conception of distribution and thus did not support thinking about 

distributions of sample statistics and the fraction of the time that a statistic’s value is in a 

particular range (p. 16).” While a single random sample is a critical part of statistical 

inference, probably more important is an appreciation of the "could-have-been" – all the 

other random samples that could have been drawn but were not. “Sampling has not been 

characterized in the literature as a scheme of interrelated ideas entailing repeated random 

selection, variability, and distribution.” (Saldahna & Thompson, 2002, p. 258). 

 

3.5. Understanding confidence intervals 

Fiddler and Cumming (2005) asked a sample of 55 undergraduates and postgraduate 

science students to interpret statistically non-significant results and gave the results in two 
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different ways (first as p values and then as confidence intervals or vice versa). Students 

were asked to indicate whether the results provided support for the null hypothesis 

(considered as a misconception), provided support against the null hypothesis, or neither. 

The authors found that students misinterpreted p-values twice as often as they mis-

interpreted confidence intervals. There was also evidence that students who were given the 

confidence interval results first gave the correct answer on the p value presentation more 

often than students who were given the p value results first. The author concluded there are 

benefits of teaching inference via confidence intervals rather than hypothesis tests. 

Cumminget al. (2004) reported an internet study in which researchers were given 

results from an experiment (simulated in an applet) and were asked to show where they 

thought the 10 means from 10 ‘new’ samples could plausibly fall. The results suggested 

that a majority of the researchers held a misconception that a r% confidence interval will, 

on average, capture r% of the means of the ‘new’ samples. 

 

4. IMPLICATIONS FOR TEACHING AND RESEARCH 

Castro-Sotos (2009) reported slightly lower percentages of students with certain 

misconceptions related to hypothesis testing when compared to similar studies from years 

before. The author suggests that innovation in statistics education in the last decade may be 

resulting in some level of improved understanding of statistical inference. While this is 

merely conjecture, it highlights the idea that students must develop an understanding of 

many challenging probabilistic and statistical concepts and the relationships between them 

before meeting statistical inference. Given the difficulty learners have integrating the 

concepts involved in statistical inference, it makes sense that the underpinning ideas need to 

be developed over years, not weeks. 

 

4.1. Inference-friendly views of a sample 

Statistical inference is applied to a wide variety of situations. However, understanding 

why it can be validly applied to one situation does not mean learners will understand why it 

can (or cannot) be validly applied to another, e.g. a situation involving the mean of a finite 

population compared to a situation involving measurement error (where a population does 

not exist, but a true value of the measurement does). Students need to hold multiple views 
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of a sample, appreciating the source(s) of the variability that give rise to the samples 

characteristics, to deeply understand statistical inference and its many applications. Context 

is clearly critical in supporting a student to develop different views of a sample. Konold and 

Lehrer (2008) discuss three contexts from which samples are produced: measurement error, 

manufacturing processes and natural variation. 

A critical view of a sample is as the result of a target-error process, which aims to 

consistently produce a single value but fails due to the unavoidable variation in the process 

(e.g. the machine process that aims to cut fruit bars to be exactly 7 cm long). This can be 

referred to as the target-error-view of sample. Opportunities to develop this view are rarely, 

if ever, provided at a school level. Natural variation contexts (e.g. the weight of all female 

quokkas on Rottnest Island) are the most common contexts students meet at school but do 

not help in developing this critical view of a sample.  

Students also need opportunities, over a period of years, to develop a view of a 

sample as a single instantiation of the random sampling process from a population and to 

develop the appreciation that each possible random sample carries with it an associated 

level of unusualness (the probability of being drawn). This is referred to as the population-

view of a sample. While this is the most common view, and current school curricula attempt 

to develop this using contexts associated with natural variation, it is possible that the target-

error-view of a sample should be developed prior the population-sample view. Konold, 

Harradine, and Kazak (2007) describe activities in which middle school students build data 

factories with the aim of assisting in the development of the target-error-view. Their 

approach also develops the notion that data result from chance based processes and as such 

make explicit the relationship between data and chance; a relationship critical to 

understanding statistical inference and that has been lost (or was never present) in many 

current school curricula (Konold & Kazak, 2007). Without such views of sample, it is 

difficult to develop a deep understanding of, and validly apply, statistical inference. 

 

4.2. Developing an understanding of the population-view of a sample 

Many interactive applets are now available that provide dynamic, visual 

environments within which students can engage in the construction of sampling 

distributions. Chance et al. (2004) reported on a series of studies that investigated the 
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impact that interacting with such applets had on students’ understanding when learning 

about sampling distributions. In the first studies, students tended to look for rules when 

answering test items and did not understand the underlying relationships that caused the 

visible patterns they noticed as a result of using the applets. In later studies, the authors 

asked the students to make predictions about sampling distributions of means before using 

the applets to validate their predictions. This strategy proved to be useful in improving the 

students' reasoning about sampling distributions. 

 

4.3. Alternative ways to introduce statistical inference 

Most students’ first introduction to statistical inference is via a first course in classical 

statistical inference. In recent years the literature has included thinking about what is 

termed informal inference. While informal inference, as a concept, is not yet universally 

agreed upon, a consistent feature of informal inference is that suggested activities engage 

students in the reasoning process of statistical inference without relying on probability 

distributions and formulas. 

Some see informal inference as the collection of the fundamental ideas that underpin 

the understanding of classical statistical inference. These fundamentals include 

discriminating between signal and noise in aggregates, understanding sources of variability, 

recognizing the effect of sample size, and being able to identify tendencies and sources of 

bias (Rubin, Hammerman, & Konold, 2006). Other views of informal inference include 

(Zieffler, Garfield, Delmas, & Reading, 2008): (a) reasoning about possible characteristics 

of a population from a sample of data, (b) reasoning about possible differences between 

two populations from observed differences between two samples of data and, (c) reasoning 

about whether or not a particular sample statistic is likely or unlikely given a particular 

expectation about the population. 

Cobb (2007) proposes teaching the logic of inference with randomisation tests rather 

than using normal distributions as approximate models for sampling distributions, noting 

that such an approach is what Ronald Aylmer Fisher advocated, but which was not realistic 

in his day due to the absence of computers. Rossman (2008) claims that teachers could use 

randomisation tests to connect the randomness that students perceive in the process of 

collecting data to the inference to be drawn. He provides examples of how such a 
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randomization-based approach might be implemented, while Scheaffer and Tabor (2007) 

propose such an approach for the secondary curriculum and provide relevant examples. 

 

4.4. Teacher knowledge 

Research results summarised in this chapter primarily concern students’ 

misconceptions and difficulties in learning about statistical inference. The little research 

available about teachers’ understanding of statistical inference (Vallecillos, 1994; 1999; 

Krauss & Wassner, 2002; Lui & Thompson, 2009) indicates it is possible that some 

teachers share the same misconceptions as the students. In addition, teachers who have not 

studied statistical inference prior to having to teach it are likely to have the same difficulties 

in learning the concepts as students do. If this is the case and the situation is not addressed, 

then it is unlikely that widespread improvement in student understanding will be seen any 

time soon. 

 

4.5. Some research priorities 

The valid application of statistical inference is of critical importance in a broad range 

of human endeavours. Areas in which research attention is needed include: 

• The creation and critical evaluation of a curriculum that systematically develops the 

key ideas that underpin statistical inference across a number of years in the middle and 

high school years, so a proper foundation is laid for the formal instruction of statistical 

inference. 

• The study of the current level of understanding and professional knowledge, both at a 

school and university level, of those teachers charged with teaching statistical 

inference. 

• The critical evaluation of the use of alternative methods (e.g. randomisation tests) 

when first introducing statistical inference. Great care should be taken in this area 

given the widespread and long-term use of classical statistical inference. 
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