Dunford-Pettis properties in projective tensor products

Antonio M. Peralta

Departamento de Análisis Matemático
Universidad de Granada

Workshop on Functional Analysis on the occasion of the 60th birthday of Andreas Defant
Valencia, June 2013

Let me begin with a widely studied property whose name motivates the title of this talk. The Dunford-Pettis property was named by A. Grothendieck after N. Dunford and B.J. Pettis, and is defined as follows:

Let me begin with a widely studied property whose name motivates the title of this talk. The Dunford-Pettis property was named by A. Grothendieck after N. Dunford and B.J. Pettis, and is defined as follows:

[Dunford-Pettis'1940, Grothendieck'1953]

A Banach space X satisfies the Dunford-Pettis property (DPP) if every weakly compact operator T from X to another Banach space is completely continuous, that is, T maps weakly Cauchy sequences into norm convergent sequences.

Let me begin with a widely studied property whose name motivates the title of this talk. The Dunford-Pettis property was named by A. Grothendieck after N. Dunford and B.J. Pettis, and is defined as follows:
[Dunford-Pettis'1940, Grothendieck'1953]
A Banach space X satisfies the Dunford-Pettis property (DPP) if every weakly compact operator T from X to another Banach space is completely continuous, that is, T maps weakly Cauchy sequences into norm convergent sequences.
[Dunford-Pettis, Trans. Amer. Math. Soc.'1940]
The space $L^{1}(\mu)$ satisfies the DPP.

As usually, given a compact Hausdorff space K, the symbol $C(K)$ (resp., $C(K, \mathbb{R})$) will denote the Banach space of all complex (resp., real) valued continuous functions on K equipped with the supremum norm.

As usually, given a compact Hausdorff space K, the symbol $C(K)$ (resp., $C(K, \mathbb{R})$) will denote the Banach space of all complex (resp., real) valued continuous functions on K equipped with the supremum norm.

[Grothendieck'1953]

The space $C(K)$ satisfies the DPP.

As usually, given a compact Hausdorff space K, the symbol $C(K)$ (resp., $C(K, \mathbb{R})$) will denote the Banach space of all complex (resp., real) valued continuous functions on K equipped with the supremum norm.

[Grothendieck'1953]

The space $C(K)$ satisfies the DPP.
In the same paper...

As usually, given a compact Hausdorff space K, the symbol $C(K)$ (resp., $C(K, \mathbb{R})$) will denote the Banach space of all complex (resp., real) valued continuous functions on K equipped with the supremum norm.
[Grothendieck'1953]
The space $C(K)$ satisfies the DPP.
In the same paper...
[Grothendieck, Canad. J. Math.'1953]
A Banach space X has the Dunford-Pettis property if, and only if, for any weakly null sequences $\left(x_{n}\right)$ in X and $\left(\varphi_{n}\right)$ in X^{*}, it holds $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

As usually, given a compact Hausdorff space K, the symbol $C(K)$ (resp., $C(K, \mathbb{R})$) will denote the Banach space of all complex (resp., real) valued continuous functions on K equipped with the supremum norm.
[Grothendieck'1953]
The space $C(K)$ satisfies the DPP.
In the same paper. . .
[Grothendieck, Canad. J. Math.'1953]
A Banach space X has the Dunford-Pettis property if, and only if, for any weakly null sequences $\left(x_{n}\right)$ in X and $\left(\varphi_{n}\right)$ in X^{*}, it holds $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.
ℓ_{p} and $L^{p}(\mu)$ do not satisfy the DPP, for every $1<p<\infty$.

As usually, given a compact Hausdorff space K, the symbol $C(K)$ (resp., $C(K, \mathbb{R})$) will denote the Banach space of all complex (resp., real) valued continuous functions on K equipped with the supremum norm.
[Grothendieck'1953]
The space $C(K)$ satisfies the DPP.
In the same paper. . .
[Grothendieck, Canad. J. Math.'1953]
A Banach space X has the Dunford-Pettis property if, and only if, for any weakly null sequences $\left(x_{n}\right)$ in X and $\left(\varphi_{n}\right)$ in X^{*}, it holds $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.
ℓ_{p} and $L^{p}(\mu)$ do not satisfy the DPP, for every $1<p<\infty$. X^{*} has the DPP $\Rightarrow X$ has the DPP.

DPP \& projective tensor products

The DPP has been widely and intensively studied and developed in many classes of Banach spaces. In 1980, J. Diestel wrote an interesting survey on the basic results on the DPP.

DPP \& projective tensor products

The DPP has been widely and intensively studied and developed in many classes of Banach spaces. In 1980, J. Diestel wrote an interesting survey on the basic results on the DPP.

Despite of early contributions by N. Dunford, B.J. Pettis, A. Grothendieck, S. Kakutani, K. Yosida, M. Talagrand, J. Bourgain and several others, the Dunford-Pettis property is not completely understood. An irritating example is the projective tensor product of Banach spaces satisfying the DPP.

DPP \& projective tensor products

The DPP has been widely and intensively studied and developed in many classes of Banach spaces. In 1980, J. Diestel wrote an interesting survey on the basic results on the DPP.

Despite of early contributions by N. Dunford, B.J. Pettis, A. Grothendieck, S. Kakutani, K. Yosida, M. Talagrand, J. Bourgain and several others, the Dunford-Pettis property is not completely understood. An irritating example is the projective tensor product of Banach spaces satisfying the DPP.

Necessary Conditions: Since the DPP is inherited by complemented subspaces, it follows that X and Y satisfy the DPP whenever $X \hat{\otimes}_{\pi} Y$ has this property.

A negative answer:

A negative answer:
[M. Talagrand, Israel J. Math.'1983]
There exists a Banach space X such that X^{*} has the Schur property and $X^{*} \hat{\otimes}_{\pi} L^{1}[0,1]$ does not satisfy the DPP.

A negative answer:

[M. Talagrand, Israel J. Math.'1983]
There exists a Banach space X such that X^{*} has the Schur property and $X^{*} \hat{\otimes}_{\pi} L^{1}[0,1]$ does not satisfy the DPP.

A negative answer:
[M. Talagrand, Israel J. Math.'1983]
There exists a Banach space X such that X^{*} has the Schur property and $X^{*} \hat{\otimes}_{\pi} L^{1}[0,1]$ does not satisfy the DPP.

Positive answers:

A negative answer:

[M. Talagrand, Israel J. Math.'1983]

There exists a Banach space X such that X^{*} has the Schur property and $X^{*} \hat{\otimes}_{\pi} L^{1}[0,1]$ does not satisfy the DPP.

Positive answers:

[R. Ryan, Bull. Polish Acad. Sci. Math.'1987]

The projective tensor product $X \hat{\otimes}_{\pi} Y$ satisfies the DPP and contains no copies of ℓ_{1} whenever X and Y have both properties.

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b)

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) K_{1} and K_{2} both are scattered.

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ contain no copies of ℓ_{1}.

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ contain no copies of ℓ_{1}.

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ contain no copies of ℓ_{1}.

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:
[J. Becerra, A.M. Peralta, Math. Z.'2005]
Let X and Y be two infinite-dimensional Banach spaces satisfying DPP and property (V). Then $X \hat{\otimes}_{\pi} Y$ fails DPP whenever X or Y contains a copy of ℓ_{1}.

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ contain no copies of ℓ_{1}.

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:
[J. Becerra, A.M. Peralta, Math. Z.'2005]
Let X and Y be Banach spaces. The following are equivalent:

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ contain no copies of ℓ_{1}.

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:
[J. Becerra, A.M. Peralta, Math. Z.'2005]
Let X and Y be Banach spaces. The following are equivalent:
(a) $X \hat{\otimes}_{\pi} Y$ satisfies DPP and Pelczyński's property (V);

F. Bombal, I. Villanueva, Proc. Amer. Math. Soc.'2001

Let K_{1} and K_{2} be two infinite compact Hausdorff spaces. The following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ contain no copies of ℓ_{1}.

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:
[J. Becerra, A.M. Peralta, Math. Z.'2005]
Let X and Y be Banach spaces. The following are equivalent:
(a) $X \hat{\otimes}_{\pi} Y$ satisfies DPP and Pelczyński's property (V);
(b) X and Y have both properties and contain no copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:
[J. Becerra, A.M. Peralta, Math. Z.'2005]
Let A and B be two C^{*}-algebras. The following statements are equivalent:
(a) $A \hat{\otimes}_{\pi} B$ satisfies DPP
(b) A and B satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

Becerra, A.M. Peralta, Math. Z.'2005]

A and B be two C^{*}-algebras. The following statements are equivalent:
$A \hat{\otimes}_{\pi} B$ satisfies DPP
A and B satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

ra, A.M. Peralta, Math. Z.'2005]

B be two C^{*}-algebras. The following statements are equivalent:

3 satisfies DPP

B satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

M. Peralta, Math. Z.'2005]

two C*-algebras. The following statements are equivalent: fies DPP
tisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

alta, Math. Z.'2005]

*-algebras. The following statements are equivalent:
PP
PP and do not contain copies of ℓ_{1}.
tatements are equivalent:

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

Math. Z.'2005]

bras. The following statements are equivalent:
id do not contain copies of ℓ_{1}.
ving statements are equivalent:
ain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

Z.'2005]

The following statements are equivalent:
following statements are equivalent:
t contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:
llowing statements are equivalent:
. The following statements are equivalent:

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

a, Math. Z.'2005]

triples. The following statements are equivalent:

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:
ments are equivalent:
of ℓ_{1}.

eralta, Math. Z.'2005]

JB*-triples. The following statements are equivalent:
DPP
DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:
are equivalent:

A.M. Peralta, Math. Z.'2005]

e two JB*-triples. The following statements are equivalent:
tisfies DPP
satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

rra, A.M. Peralta, Math. Z.'2005]

d F be two JB^{*}-triples. The following statements are equivalent:
${ }_{\pi} F$ satisfies DPP
nd F satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

Becerra, A.M. Peralta, Math. Z.'2005]

E and F be two JB^{*}-triples. The following statements are equivalent:
$E \hat{\otimes}_{\pi} F$ satisfies DPP
E and F satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let E and F be two JB*-triples. The following statements are equivalent:
(a) $E \hat{\otimes}_{\pi} F$ satisfies DPP
(b) E and F satisfy DPP and do not contain copies of ℓ_{1}.

When particularized to the classes of C^{*}-algebras and JB^{*}-triples (a wide class of complex Banach spaces defined by the "good" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let E and F be two JB*-triples. The following statements are equivalent:
(a) $E \hat{\otimes}_{\pi} F$ satisfies DPP
(b) E and F satisfy DPP and do not contain copies of ℓ_{1}.

Alternative Dunford-Pettis

Alternative Dunford-Pettis

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the alternative Dunford-Pettis property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_{n} \rightarrow x$ weakly in X, with $\left\|x_{n}\right\|=\|x\|=1$, and $\varphi_{n} \rightarrow 0$ weakly in X^{*}, we have $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

Alternative Dunford-Pettis

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the alternative Dunford-Pettis property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_{n} \rightarrow x$ weakly in X, with $\left\|x_{n}\right\|=\|x\|=1$, and $\varphi_{n} \rightarrow 0$ weakly in X^{*}, we have $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom.

Alternative Dunford-Pettis

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the alternative Dunford-Pettis property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_{n} \rightarrow x$ weakly in X, with $\left\|x_{n}\right\|=\|x\|=1$, and $\varphi_{n} \rightarrow 0$ weakly in X^{*}, we have $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant.

Alternative Dunford-Pettis

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the alternative Dunford-Pettis property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_{n} \rightarrow x$ weakly in X, with $\left\|x_{n}\right\|=\|x\|=1$, and $\varphi_{n} \rightarrow 0$ weakly in X^{*}, we have $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant. X^{*} DP1 $\nRightarrow X$ DP1.

Alternative Dunford-Pettis

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the alternative Dunford-Pettis property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_{n} \rightarrow x$ weakly in X, with $\left\|x_{n}\right\|=\|x\|=1$, and $\varphi_{n} \rightarrow 0$ weakly in X^{*}, we have $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant. X^{*} DP1 $\nRightarrow X$ DP1.

A similar philosophy leads us from the Schur property to the Kadec-Klee property (KKP)

Alternative Dunford-Pettis

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the alternative Dunford-Pettis property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_{n} \rightarrow x$ weakly in X, with $\left\|x_{n}\right\|=\|x\|=1$, and $\varphi_{n} \rightarrow 0$ weakly in X^{*}, we have $\varphi_{n}\left(x_{n}\right) \rightarrow 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant. X^{*} DP1 $\nRightarrow X$ DP1.

A similar philosophy leads us from the Schur property to the Kadec-Klee property (KKP)

> A Banach space satisfies the KKP if weak sequential convergence in the unit sphere of X implies norm convergence

Map of relations:

Dunford-Pettis property

Map of relations:

Dunford-Pettis property

Clear

Map of relations:

Dunford-Pettis property

Kadec-Klee property

Map of relations:

Hilbert spaces

Dunford-Pettis property

Kadec-Klee property

Map of relations:

Dunford-Pettis property

Kadec-Klee property

[W. Freedman, Studia Math.'1997]

When X is reflexive, X satisfies DP1 if and only if X has KKP.

[W. Freedman, Studia Math.'1997]

When X is reflexive, X satisfies DP1 if and only if X has KKP.
Moreover:
[W. Freedman, Studia Math.'1997]
DPP and DP1 are equivalent for von Neumann algebras.

[W. Freedman, Studia Math.'1997]

When X is reflexive, X satisfies DP1 if and only if X has KKP.

Moreover:

[W. Freedman, Studia Math.'1997]
DPP and DP1 are equivalent for von Neumann algebras.

A von Neumann algebra is a C^{*}-algebra which is also a dual Banach space.

[W. Freedman, Studia Math.'1997]
 When X is reflexive, X satisfies DP1 if and only if X has KKP.

Moreover:
[W. Freedman, Studia Math.'1997]
DPP and DP1 are equivalent for von Neumann algebras.

Question:

Is the above statement true for C^{*}-algebras?

```
[W. Freedman, Studia Math.'1997]
When \(X\) is reflexive, \(X\) satisfies DP1 if and only if \(X\) has KKP.
```

Moreover:
[W. Freedman, Studia Math.'1997]
DPP and DP1 are equivalent for von Neumann algebras.

Question:

Is the above statement true for C^{*}-algebras?
[L. Bunce, A.M. Peralta, Proc. Amer. Math. Soc.'2003]
DPP and DP1 are equivalent for general C*-algebras.

[W. Freedman, Studia'1997, M.D. Acosta, A.M. Peralta, Quart. J. Math.'2001, L. Bunce, A.M. Peralta, Studia Math.'2004]
A JB*-triple satisfies the KKP if and only if it is reflexive. In particular, every C^{*}-algebra satisfying the KKP is finite dimensional.

[W. Freedman, Studia'1997, M.D. Acosta, A.M. Peralta, Quart. J. Math.'2001, L. Bunce, A.M. Peralta, Studia Math.'2004]

A JB*-triple satisfies the KKP if and only if it is reflexive. In particular, every C^{*}-algebra satisfying the KKP is finite dimensional.

Once the first and basic results to understand the DP1 are given, it seemed more and more natural to explore the DP1 on projective tensor products of Banach spaces, and in particular of C*-algebras and JB*-triples.

[W. Freedman, Studia'1997, M.D. Acosta, A.M. Peralta, Quart. J. Math.'2001, L. Bunce, A.M. Peralta, Studia Math.'2004]

A JB*-triple satisfies the KKP if and only if it is reflexive. In particular, every C^{*}-algebra satisfying the KKP is finite dimensional.

Once the first and basic results to understand the DP1 are given, it seemed more and more natural to explore the DP1 on projective tensor products of Banach spaces, and in particular of C*-algebras and JB*-triples.

By confining the DP condition to the unit sphere of norm one elements the class of Banach spaces DP1 is strictly wider but we impose a metric condition which makes harder the study on projective tensor products.

The inspiration: Complemented copies of ℓ_{2} in projective tensor products

The inspiration: Complemented copies of ℓ_{2} in projective tensor products

"Unexpected subspaces of tensor products"
[F. Cabello, D. Pérez-García, I. Villanueva, J. London Math. Soc.'2006]
When the projective tensor product of two infinite dimensional $C(K)$-spaces fails the DPP it also fails a weaker property, that is, in such a case it contains a complemented copy of ℓ_{2}.

The inspiration: Complemented copies of ℓ_{2} in projective tensor products

"Unexpected subspaces of tensor products"
[F. Cabello, D. Pérez-García, I. Villanueva, J. London Math. Soc.'2006]
When the projective tensor product of two infinite dimensional $C(K)$-spaces fails the DPP it also fails a weaker property, that is, in such a case it contains a complemented copy of ℓ_{2}.
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be Banach spaces such that E contains c_{0} and F contains a $C(K)$ space G containing ℓ_{1}. Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_{2}.

For our purposes:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be JB*-triples such that E is not reflexive and F contains ℓ_{1}. Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_{2}.

For our purposes:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be JB*-triples such that E is not reflexive and F contains ℓ_{1}. Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_{2}.

For our purposes:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be JB*-triples such that E is not reflexive and F contains ℓ_{1}. Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_{2}.

For our purposes:

Peralta, I. Villanueva, Math. Z.'2006]

E, F be JB^{*}-triples such that E is not reflexive and F contains ℓ_{1}. Then F contains a complemented copy of ℓ_{2}.

For our purposes:
ta, I. Villanueva, Math. Z.'2006]
JB^{*}-triples such that E is not reflexive and F contains ℓ_{1}. Then ains a complemented copy of ℓ_{2}.

For our purposes:

Ilanueva, Math. Z.'2006]
oles such that E is not reflexive and F contains ℓ_{1}. Then omplemented copy of ℓ_{2}.

For our purposes:
va, Math. Z.'2006]
ch that E is not reflexive and F contains ℓ_{1}. Then mented copy of ℓ_{2}.
-algebras such that B contains ℓ_{1}. Then of ℓ_{2}.

For our purposes:

h. Z.'2006]
E is not reflexive and F contains ℓ_{1}. Then copy of ℓ_{2}.
h. Z.'2006]
al C^{*}-algebras such that B contains ℓ_{1}. Then copy of ℓ_{2}.

For our purposes:
006]
t reflexive and F contains ℓ_{1}. Then f ℓ_{2}.

a, Math. Z.'2006]

ensional C^{*}-algebras such that B contains ℓ_{1}. Then ented copy of ℓ_{2}.

For our purposes:

ive and F contains ℓ_{1}. Then
nueva, Math. Z.'2006]
e dimensional C^{*}-algebras such that B contains ℓ_{1}. Then nplemented copy of ℓ_{2}.

For our purposes:

F contains ℓ_{1}. Then

. Villanueva, Math. Z.'2006]

infinite dimensional C^{*}-algebras such that B contains ℓ_{1}. Then a complemented copy of ℓ_{2}.

For our purposes:

tains ℓ_{1}. Then
alta, I. Villanueva, Math. Z.'2006]
e two infinite dimensional C^{*}-algebras such that B contains ℓ_{1}. Then ntains a complemented copy of ℓ_{2}.

For our purposes:
A, B be two infinite dimensional C^{*}-algebras such that B contains ℓ_{1}. Then ${ }_{\pi} B$ contains a complemented copy of ℓ_{2}.

For our purposes:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let A, B be two infinite dimensional C^{*}-algebras such that B contains ℓ_{1}. Then $A \hat{\otimes}_{\pi} B$ contains a complemented copy of ℓ_{2}.

For our purposes:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let A, B be two infinite dimensional C^{*}-algebras such that B contains ℓ_{1}. Then $A \hat{\otimes}_{\pi} B$ contains a complemented copy of ℓ_{2}.

For our purposes:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let A, B be two infinite dimensional C^{*}-algebras such that B contains ℓ_{1}. Then $A \hat{\otimes}_{\pi} B$ contains a complemented copy of ℓ_{2}.

Key tool:

$\ell_{2} \otimes^{\infty} \ell_{2}$ does not satisfy the DP1.

Complemented subspaces of the projective tensor product take us to our goal:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be two Banach spaces such that E contains an isometric copy of c_{0} and F contains and isometric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Complemented subspaces of the projective tensor product take us to our goal:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be two Banach spaces such that E contains an isometric copy of c_{0} and F contains and isometric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Complemented subspaces of the projective tensor product take us to our goal:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let E, F be two Banach spaces such that E contains an isometric copy of c_{0} and F contains and isometric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Complemented subspaces of the projective tensor product take us to our goal:

Peralta, I. Villanueva, Math. Z.'2006]

E, F be two Banach spaces such that E contains an isometric copy of c_{0} F contains and isometric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Complemented subspaces of the projective tensor product take us to our goal: ta, I. Villanueva, Math. Z.'2006]
two Banach spaces such that E contains an isometric copy of c_{0} ins and isometric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Complemented subspaces of the projective tensor product take us to our goal:

Ilanueva, Math. Z.'2006]

nach spaces such that E contains an isometric copy of c_{0} d isometric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Then the following are

Complemented subspaces of the projective tensor product take us to our goal:

va, Math. Z.'2006]

paces such that E contains an isometric copy of c_{0} tric copy of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.
bras. Then the following are
ntain ℓ_{1};

Complemented subspaces of the projective tensor product take us to our goal:

h. Z.'2006]

such that E contains an isometric copy of c_{0} py of $C[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

.'2006]

;*-algebras. Then the following are
not contain ℓ_{1};

Complemented subspaces of the projective tensor product take us to our goal:

006

at E contains an isometric copy of c_{0} $[0,1]$. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

lath. Z.'2006]

ional C*-algebras. Then the following are
and do not contain ℓ_{1};

Complemented subspaces of the projective tensor product take us to our goal:

ntains an isometric copy of c_{0} hen $E \hat{\otimes}_{\pi} F$ does not have DP1.
eva, Math. Z.'2006]
limensional C*-algebras. Then the following are

DP1;
DPP and do not contain ℓ_{1};
DPP;

Complemented subspaces of the projective tensor product take us to our goal:

an isometric copy of c_{0}

 $\hat{\otimes}_{\pi} F$ does not have DP1.
/illanueva, Math. Z.'2006]

finite dimensional C^{*}-algebras. Then the following are
es the DP1;
fy the DPP and do not contain ℓ_{1};
es the DPP;

Complemented subspaces of the projective tensor product take us to our goal:
netric copy of c_{0} es not have DP1.

Ita, I. Villanueva, Math. Z.'2006]

3 be infinite dimensional C^{\star}-algebras. Then the following are
satisfies the DP1;
B satisfy the DPP and do not contain ℓ_{1};
satisfies the DPP;

Complemented subspaces of the projective tensor product take us to our goal:

Peralta, I. Villanueva, Math. Z.'2006]

B and B be infinite dimensional C^{*}-algebras. Then the following are valent:
$A \hat{\otimes}_{\pi} B$ satisfies the DP1;
A and B satisfy the DPP and do not contain ℓ_{1};
$A \hat{\otimes}_{\pi} B$ satisfies the DPP;

Complemented subspaces of the projective tensor product take us to our goal:

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let A and B be infinite dimensional C^{*}-algebras. Then the following are equivalent:
(a) $A \hat{\otimes}_{\pi} B$ satisfies the DP1;
(b) A and B satisfy the DPP and do not contain ℓ_{1};
(c) $A \hat{\otimes}_{\pi} B$ satisfies the DPP;

Complemented subspaces of the projective tensor product take us to our goal:
[A.M. Peralta, I. Villanueva, Math. Z.'2006]
Let A and B be infinite dimensional C^{*}-algebras. Then the following are equivalent:
(a) $A \hat{\otimes}_{\pi} B$ satisfies the DP1;
(b) A and B satisfy the DPP and do not contain ℓ_{1};
(c) $A \hat{\otimes}_{\pi} B$ satisfies the DPP;

Corollary

Let K_{1} and K_{2} be infinite compact Hausdorff spaces. Then the following are equivalent:
(a) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DP1;
(b) $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ satisfy the DPP and do not contain ℓ_{1};
(c) $C\left(K_{1}\right) \hat{\otimes}_{\pi} C\left(K_{2}\right)$ satisfies the DPP.

Finally...

Finally...

On behalf of those mathematicians (like me) who learnt from your contributions and will continue doing so ... Many thanks Andreas!!

