Dunford-Pettis properties in projective tensor products

Antonio M. Peralta

Departamento de Análisis Matemático Universidad de Granada

Universidad de Granada

Workshop on Functional Analysis on the occasion of the 60th birthday of Andreas Defant Valencia, June 2013 Let me begin with a widely studied property whose name motivates the title of this talk. The Dunford-Pettis property was named by A. Grothendieck after N. Dunford and B.J. Pettis, and is defined as follows:

Let me begin with a widely studied property whose name motivates the title of this talk. The Dunford-Pettis property was named by A. Grothendieck after N. Dunford and B.J. Pettis, and is defined as follows:

[Dunford-Pettis'1940, Grothendieck'1953]

A Banach space X satisfies the *Dunford-Pettis property* (DPP) if every weakly compact operator T from X to another Banach space is completely continuous, that is, T maps weakly Cauchy sequences into norm convergent sequences.

Let me begin with a widely studied property whose name motivates the title of this talk. The Dunford-Pettis property was named by A. Grothendieck after N. Dunford and B.J. Pettis, and is defined as follows:

[Dunford-Pettis'1940, Grothendieck'1953]

A Banach space X satisfies the *Dunford-Pettis property* (DPP) if every weakly compact operator T from X to another Banach space is completely continuous, that is, T maps weakly Cauchy sequences into norm convergent sequences.

[Dunford-Pettis, Trans. Amer. Math. Soc.'1940]

The space $L^1(\mu)$ satisfies the DPP.

[Grothendieck'1953]

The space C(K) satisfies the DPP.

[Grothendieck'1953]

The space C(K) satisfies the DPP.

In the same paper...

[Grothendieck'1953]

The space C(K) satisfies the DPP.

In the same paper...

[Grothendieck, Canad. J. Math.'1953]

A Banach space X has the Dunford-Pettis property if, and only if, for any weakly null sequences (x_n) in X and (φ_n) in X^* , it holds $\varphi_n(x_n) \to 0$.

[Grothendieck'1953]

The space C(K) satisfies the DPP.

In the same paper...

[Grothendieck, Canad. J. Math.'1953]

A Banach space X has the Dunford-Pettis property if, and only if, for any weakly null sequences (x_n) in X and (φ_n) in X^* , it holds $\varphi_n(x_n) \to 0$.

 ℓ_p and $L^p(\mu)$ do not satisfy the DPP, for every 1 .

[Grothendieck'1953]

The space C(K) satisfies the DPP.

In the same paper...

[Grothendieck, Canad. J. Math.'1953]

A Banach space X has the Dunford-Pettis property if, and only if, for any weakly null sequences (x_n) in X and (φ_n) in X^* , it holds $\varphi_n(x_n) \to 0$.

 ℓ_p and $L^p(\mu)$ do not satisfy the DPP, for every 1 . $X* has the DPP <math>\Rightarrow$ X has the DPP.

DPP & projective tensor products

The DPP has been widely and intensively studied and developed in many classes of Banach spaces. In 1980, J. Diestel wrote an interesting survey on the basic results on the DPP.

DPP & projective tensor products

The DPP has been widely and intensively studied and developed in many classes of Banach spaces. In 1980, J. Diestel wrote an interesting survey on the basic results on the DPP.

Despite of early contributions by N. Dunford, B.J. Pettis, A. Grothendieck, S. Kakutani, K. Yosida, M. Talagrand, J. Bourgain and several others, the Dunford-Pettis property is not completely understood. An irritating example is the projective tensor product of Banach spaces satisfying the DPP.

DPP & projective tensor products

The DPP has been widely and intensively studied and developed in many classes of Banach spaces. In 1980, J. Diestel wrote an interesting survey on the basic results on the DPP.

Despite of early contributions by N. Dunford, B.J. Pettis, A. Grothendieck, S. Kakutani, K. Yosida, M. Talagrand, J. Bourgain and several others, the Dunford-Pettis property is not completely understood. An irritating example is the projective tensor product of Banach spaces satisfying the DPP.

Necessary Conditions: Since the DPP is inherited by complemented subspaces, it follows that X and Y satisfy the DPP whenever $X \hat{\otimes}_{\pi} Y$ has this property.

A negative answer:

[M. Talagrand, Israel J. Math.'1983]

There exists a Banach space X such that X^* has the Schur property and $X^* \hat{\otimes}_{\pi} L^1[0, 1]$ does not satisfy the DPP.

i.e., weak convergence of sequences entails convergence in norm

A negative answer:

[M. Talagrand, Israel J. Math.'1983]

There exists a Banach space X such that X^* has the Schur property and $X^* \hat{\otimes}_{\pi} L^1[0, 1]$ does not satisfy the DPP.

A negative answer:

[M. Talagrand, Israel J. Math.'1983]

There exists a Banach space X such that X^* has the Schur property and $X^* \hat{\otimes}_{\pi} L^1[0, 1]$ does not satisfy the DPP.

A negative answer:

[M. Talagrand, Israel J. Math.'1983]

There exists a Banach space X such that X^* has the Schur property and $X^* \hat{\otimes}_{\pi} L^1[0, 1]$ does not satisfy the DPP.

Positive answers:

[R. Ryan, Bull. Polish Acad. Sci. Math.'1987]

The projective tensor product $X \hat{\otimes}_{\pi} Y$ satisfies the DPP and contains no copies of ℓ_1 whenever X and Y have both properties.

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

(a) $C(K_1)\hat{\otimes}_{\pi}C(K_2)$ satisfies the DPP;

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

```
(a) C(K_1)\hat{\otimes}_{\pi}C(K_2) satisfies the DPP;
(b)
```


Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

- (a) $C(K_1)\hat{\otimes}_{\pi}C(K_2)$ satisfies the DPP;
- (b) K_1 and K_2 both are scattered.

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

(a) $C(K_1)\hat{\otimes}_{\pi}C(K_2)$ satisfies the DPP;

(b) $C(K_1)$ and $C(K_2)$ contain no copies of ℓ_1 .

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

(a) $C(K_1)\hat{\otimes}_{\pi}C(K_2)$ satisfies the DPP;

(b) $C(K_1)$ and $C(K_2)$ contain no copies of ℓ_1 .

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

- (a) $C(K_1) \hat{\otimes}_{\pi} C(K_2)$ satisfies the DPP;
- (b) $C(K_1)$ and $C(K_2)$ contain no copies of ℓ_1 .

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let *X* and *Y* be two infinite-dimensional Banach spaces satisfying DPP and property (*V*). Then $X \hat{\otimes}_{\pi} Y$ fails DPP whenever *X* or *Y* contains a copy of ℓ_1 .

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

(a) $C(K_1) \hat{\otimes}_{\pi} C(K_2)$ satisfies the DPP;

(b) $C(K_1)$ and $C(K_2)$ contain no copies of ℓ_1 .

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let X and Y be Banach spaces. The following are equivalent:

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

(a) $C(K_1) \hat{\otimes}_{\pi} C(K_2)$ satisfies the DPP;

(b) $C(K_1)$ and $C(K_2)$ contain no copies of ℓ_1 .

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let X and Y be Banach spaces. The following are equivalent:

(a) $X \hat{\otimes}_{\pi} Y$ satisfies DPP and Pelczyński's property (V);

Let K_1 and K_2 be two infinite compact Hausdorff spaces. The following are equivalent:

(a) $C(K_1) \hat{\otimes}_{\pi} C(K_2)$ satisfies the DPP;

(b) $C(K_1)$ and $C(K_2)$ contain no copies of ℓ_1 .

Combining some of the above ideas with the study, conducted by G. Emmanuele and W. Hense (1995), on Pelczyński's property (V) for projective tensor products of Banach spaces we have:

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let X and Y be Banach spaces. The following are equivalent:

- (a) $X \hat{\otimes}_{\pi} Y$ satisfies DPP and Pelczyński's property (V);
- (b) X and Y have both properties and contain no copies of ℓ_1 .

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let A and B be two C^* -algebras. The following statements are equivalent: (a) $A \hat{\otimes}_{\pi} B$ satisfies DPP

(b) A and B satisfy DPP and do not contain copies of ℓ_1 .

- When particularized to the classes of C*-algebras and JB*-triples (a wide class of complex Banach spaces defined by the "*good*" holomorphic properties of their open unit balls), and recalling that these spaces satisfy property (V), we have:
- Becerra, A.M. Peralta, Math. Z.'2005]
- A and B be two C*-algebras. The following statements are equivalent:
- $A \hat{\otimes}_{\pi} B$ satisfies DPP
- A and B satisfy DPP and do not contain copies of ℓ_1 .

quivalent:

ra, A.M. Peralta, Math. Z.'2005]

B be two C*-algebras. The following statements are equivalent: B satisfies DPP

d *B* satisfy DPP and do not contain copies of ℓ_1 .

M. Peralta, Math. Z.'2005]

two C*-algebras. The following statements are equivalent: fies DPP

tisfy DPP and do not contain copies of ℓ_1 .

ents are equivalent:

of ℓ_1

alta, Math. Z.'2005]

*-algebras. The following statements are equivalent: PP

PP and do not contain copies of ℓ_1 .

tatements are equivalent:

opies of ℓ_1 .

Math. Z.'2005]

bras. The following statements are equivalent:

nd do not contain copies of ℓ_1 .

l

ving statements are equivalent:

tain copies of ℓ_1 .

Z.'2005]

The following statements are equivalent:

not contain copies of ℓ_1 .

2005]

following statements are equivalent:

t contain copies of ℓ_1 .
5]

llowing statements are equivalent:

ntain copies of ℓ_1 .

th. Z.'2005]

. The following statements are equivalent:

```
do not contain copies of \ell_1.
```

g statements are equivalent:

copies of ℓ_1 .

a, Math. Z.'2005]

triples. The following statements are equivalent:

P and do not contain copies of ℓ_1 .

ements are equivalent:

of ℓ_1 .

Peralta, Math. Z.'2005]

JB*-triples. The following statements are equivalent:

/ DPP and do not contain copies of ℓ_1 .

are equivalent:

A.M. Peralta, Math. Z.'2005]

e two JB*-triples. The following statements are equivalent:

tisfies DPP

satisfy DPP and do not contain copies of ℓ_1 .

equivalent:

rra, A.M. Peralta, Math. Z.'2005]

d F be two JB*-triples. The following statements are equivalent:

_πF satisfies DPP

nd *F* satisfy DPP and do not contain copies of ℓ_1 .

Becerra, A.M. Peralta, Math. Z.'2005]

E and F be two JB*-triples. The following statements are equivalent:

- $E \hat{\otimes}_{\pi} F$ satisfies DPP
-) *E* and *F* satisfy DPP and do not contain copies of ℓ_1 .

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let E and F be two JB*-triples. The following statements are equivalent:

(a) $E \hat{\otimes}_{\pi} F$ satisfies DPP

(b) E and F satisfy DPP and do not contain copies of ℓ_1 .

[J. Becerra, A.M. Peralta, Math. Z.'2005]

Let E and F be two JB*-triples. The following statements are equivalent:

(a) $E \hat{\otimes}_{\pi} F$ satisfies DPP

(b) E and F satisfy DPP and do not contain copies of ℓ_1 .

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the *alternative Dunford-Pettis* property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_n \to x$ weakly in X, with $||x_n|| = ||x|| = 1$, and $\varphi_n \to 0$ weakly in X*, we have $\varphi_n(x_n) \to 0$.

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the *alternative Dunford-Pettis* property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_n \to x$ weakly in X, with $||x_n|| = ||x|| = 1$, and $\varphi_n \to 0$ weakly in X*, we have $\varphi_n(x_n) \to 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom.

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the *alternative Dunford-Pettis* property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_n \to x$ weakly in X, with $||x_n|| = ||x|| = 1$, and $\varphi_n \to 0$ weakly in X*, we have $\varphi_n(x_n) \to 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant.

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the *alternative Dunford-Pettis* property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_n \to x$ weakly in X, with $||x_n|| = ||x|| = 1$, and $\varphi_n \to 0$ weakly in X*, we have $\varphi_n(x_n) \to 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant. X^* DP1 $\Rightarrow X$ DP1.

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the *alternative Dunford-Pettis* property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_n \to x$ weakly in X, with $||x_n|| = ||x|| = 1$, and $\varphi_n \to 0$ weakly in X*, we have $\varphi_n(x_n) \to 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant. X^* DP1 \Rightarrow X DP1.

A similar philosophy leads us from the Schur property to the *Kadec-Klee* property (KKP)

In 1997, W. Freedman introduced a strictly weaker version of the DPP, called the *alternative Dunford-Pettis* property.

[W. Freedman, Studia Math.'1997]

A Banach space X has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever $x_n \to x$ weakly in X, with $||x_n|| = ||x|| = 1$, and $\varphi_n \to 0$ weakly in X*, we have $\varphi_n(x_n) \to 0$.

By confining the DP condition to the unit sphere of norm one elements, the DP1 allows greater freedom. In contrast to the DP, the DP1 is not isomorphism invariant. X^* DP1 \Rightarrow X DP1.

A similar philosophy leads us from the Schur property to the *Kadec-Klee* property (KKP)

A Banach space satisfies the KKP if weak sequential convergence in the unit sphere of X implies norm convergence

Map of relations:

Dunford-Pettis property

Map of relations:

Map of relations:

When X is reflexive, X satisfies DP1 if and only if X has KKP.

When X is reflexive, X satisfies DP1 if and only if X has KKP.

Moreover:

[W. Freedman, Studia Math.'1997]

DPP and DP1 are equivalent for von Neumann algebras.

When X is reflexive, X satisfies DP1 if and only if X has KKP.

Moreover:

[W. Freedman, Studia Math.'1997]

DPP and DP1 are equivalent for von Neumann algebras.

A von Neumann algebra is a C*-algebra which is also a dual Banach space.

When X is reflexive, X satisfies DP1 if and only if X has KKP.

Moreover:

[W. Freedman, Studia Math.'1997]

DPP and DP1 are equivalent for von Neumann algebras.

Question:

Is the above statement true for C*-algebras?

When X is reflexive, X satisfies DP1 if and only if X has KKP.

Moreover:

[W. Freedman, Studia Math.'1997]

DPP and DP1 are equivalent for von Neumann algebras.

Question:

Is the above statement true for C*-algebras?

[L. Bunce, A.M. Peralta, Proc. Amer. Math. Soc.'2003]

DPP and DP1 are equivalent for general C*-algebras.

[W. Freedman, Studia'1997, M.D. Acosta, A.M. Peralta, Quart. J. Math.'2001, L. Bunce, A.M. Peralta, Studia Math.'2004]

A JB*-triple satisfies the KKP if and only if it is reflexive. In particular, every C*-algebra satisfying the KKP is finite dimensional.

[W. Freedman, Studia'1997, M.D. Acosta, A.M. Peralta, Quart. J. Math.'2001, L. Bunce, A.M. Peralta, Studia Math.'2004]

A JB*-triple satisfies the KKP if and only if it is reflexive. In particular, every C*-algebra satisfying the KKP is finite dimensional.

Once the first and basic results to understand the DP1 are given, it seemed more and more natural to explore the DP1 on projective tensor products of Banach spaces, and in particular of C*-algebras and JB*-triples.

[W. Freedman, Studia'1997, M.D. Acosta, A.M. Peralta, Quart. J. Math.'2001, L. Bunce, A.M. Peralta, Studia Math.'2004]

A JB*-triple satisfies the KKP if and only if it is reflexive. In particular, every C*-algebra satisfying the KKP is finite dimensional.

Once the first and basic results to understand the DP1 are given, it seemed more and more natural to explore the DP1 on projective tensor products of Banach spaces, and in particular of C*-algebras and JB*-triples.

By confining the DP condition to the unit sphere of norm one elements the class of Banach spaces DP1 is strictly wider but we impose a metric condition which makes harder the study on projective tensor products.

The inspiration: Complemented copies of ℓ_2 in projective tensor products

The inspiration: Complemented copies of ℓ_2 in projective tensor products

"Unexpected subspaces of tensor products"

[F. Cabello, D. Pérez-García, I. Villanueva, J. London Math. Soc.'2006]

When the projective tensor product of two infinite dimensional C(K)-spaces fails the DPP it also fails a weaker property, that is, in such a case it contains a complemented copy of ℓ_2 .

The inspiration: Complemented copies of ℓ_2 in projective tensor products

"Unexpected subspaces of tensor products"

[F. Cabello, D. Pérez-García, I. Villanueva, J. London Math. Soc.'2006]

When the projective tensor product of two infinite dimensional C(K)-spaces fails the DPP it also fails a weaker property, that is, in such a case it contains a complemented copy of ℓ_2 .

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be Banach spaces such that *E* contains c_0 and *F* contains a *C*(*K*) space *G* containing ℓ_1 . Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_2 .

For our purposes:

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be JB*-triples such that *E* is not reflexive and *F* contains ℓ_1 . Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_2 .

For our purposes:

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be JB*-triples such that *E* is not reflexive and *F* contains ℓ_1 . Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_2 .

For our purposes:

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be JB*-triples such that *E* is not reflexive and *F* contains ℓ_1 . Then $E \hat{\otimes}_{\pi} F$ contains a complemented copy of ℓ_2 .

. Peralta, I. Villanueva, Math. Z.'2006]

E, F be JB*-triples such that E is not reflexive and F contains ℓ_1 . Then F contains a complemented copy of ℓ_2 .

ta, I. Villanueva, Math. Z.'2006]

JB*-triples such that *E* is not reflexive and *F* contains ℓ_1 . Then ains a complemented copy of ℓ_2 .

ich that *B* contains ℓ_1 . Then

Ilanueva, Math. Z.'2006]

bles such that *E* is not reflexive and *F* contains ℓ_1 . Then complemented copy of ℓ_2 .

ras such that *B* contains ℓ_1 . Then

va, Math. Z.'2006]

ch that *E* is not reflexive and *F* contains ℓ_1 . Then mented copy of ℓ_2 .

2006]

algebras such that *B* contains ℓ_1 . Then of ℓ_2 .

th. Z.'2006]

E is not reflexive and *F* contains ℓ_1 . Then copy of ℓ_2 .

h. Z.'2006]

al C*-algebras such that *B* contains ℓ_1 . Then copy of ℓ_2 .

006]

t reflexive and F contains ℓ_1 . Then of ℓ_2 .

a, Math. Z.'2006]

ensional C*-algebras such that *B* contains ℓ_1 . Then ented copy of ℓ_2 .

ive and *F* contains ℓ_1 . Then

nueva, Math. Z.'2006]

e dimensional C*-algebras such that *B* contains ℓ_1 . Then plemented copy of ℓ_2 .

. Villanueva, Math. Z.'2006]

infinite dimensional C*-algebras such that *B* contains ℓ_1 . Then a complemented copy of ℓ_2 .

tains ℓ_1 . Then

alta, I. Villanueva, Math. Z.'2006]

be two infinite dimensional C*-algebras such that *B* contains ℓ_1 . Then nations a complemented copy of ℓ_2 .

. Then

M. Peralta, I. Villanueva, Math. Z.'2006]

A, *B* be two infinite dimensional C*-algebras such that *B* contains ℓ_1 . Then $_{\tau}B$ contains a complemented copy of ℓ_2 .

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *A*, *B* be two infinite dimensional C*-algebras such that *B* contains ℓ_1 . Then $A \hat{\otimes}_{\pi} B$ contains a complemented copy of ℓ_2 .

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *A*, *B* be two infinite dimensional C*-algebras such that *B* contains ℓ_1 . Then $A \hat{\otimes}_{\pi} B$ contains a complemented copy of ℓ_2 .

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *A*, *B* be two infinite dimensional C*-algebras such that *B* contains ℓ_1 . Then $A \hat{\otimes}_{\pi} B$ contains a complemented copy of ℓ_2 .

Key tool:

 $\ell_2 \otimes^{\infty} \ell_2$ does not satisfy the DP1.

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be two Banach spaces such that *E* contains an isometric copy of c_0 and *F* contains and isometric copy of C[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be two Banach spaces such that *E* contains an isometric copy of c_0 and *F* contains and isometric copy of C[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *E*, *F* be two Banach spaces such that *E* contains an isometric copy of c_0 and *F* contains and isometric copy of C[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

. Peralta, I. Villanueva, Math. Z.'2006]

E, *F* be two Banach spaces such that *E* contains an isometric copy of c_0 *F* contains and isometric copy of C[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

ta, I. Villanueva, Math. Z.'2006]

two Banach spaces such that *E* contains an isometric copy of c_0 ains and isometric copy of C[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Ilanueva, Math. Z.'2006]

nach spaces such that *E* contains an isometric copy of c_0 d isometric copy of C[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

Then the following are

15

va, Math. Z.'2006]

paces such that *E* contains an isometric copy of c_0 etric copy of *C*[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

bras. Then the following are

ntain ℓ_1 ;

th. Z.'2006]

such that *E* contains an isometric copy of c_0 by of *C*[0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

.'2006]

*-algebras. Then the following are

not contain ℓ_1 ;

006]

at *E* contains an isometric copy of c_0 [0, 1]. Then $E \hat{\otimes}_{\pi} F$ does not have DP1.

lath. Z.'2006]

ional C*-algebras. Then the following are

and do not contain ℓ_1 ;

ntains an isometric copy of c_0 hen $E\hat{\otimes}_{\pi}F$ does not have DP1.

eva, Math. Z.'2006]

limensional C*-algebras. Then the following are

DP1;

DPP and do not contain ℓ_1 ;

DPP;

an isometric copy of c_0 $\hat{\otimes}_{\pi} F$ does not have DP1.

/illanueva, Math. Z.'2006]

finite dimensional C*-algebras. Then the following are

es the DP1;

sfy the DPP and do not contain ℓ_1 ;

es the DPP;

netric copy of *c*₀ les not have DP1.

Ita, I. Villanueva, Math. Z.'2006]

3 be infinite dimensional C*-algebras. Then the following are

satisfies the DP1;

B satisfy the DPP and do not contain ℓ_1 ;

satisfies the DPP;

opy of *c*0 have DP1

. Peralta, I. Villanueva, Math. Z.'2006]

A and *B* be infinite dimensional C*-algebras. Then the following are valent:

- $A \hat{\otimes}_{\pi} B$ satisfies the DP1;
- A and B satisfy the DPP and do not contain ℓ_1 ;
- $A \hat{\otimes}_{\pi} B$ satisfies the DPP;

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let A and B be infinite dimensional C*-algebras. Then the following are equivalent:

- (a) $A \hat{\otimes}_{\pi} B$ satisfies the DP1;
- (b) A and B satisfy the DPP and do not contain ℓ_1 ;
- (c) $A \hat{\otimes}_{\pi} B$ satisfies the DPP;

[A.M. Peralta, I. Villanueva, Math. Z.'2006]

Let *A* and *B* be infinite dimensional C*-algebras. Then the following are equivalent:

- (a) $A \hat{\otimes}_{\pi} B$ satisfies the DP1;
- (b) A and B satisfy the DPP and do not contain ℓ_1 ;
- (c) $A \hat{\otimes}_{\pi} B$ satisfies the DPP;

Corollary

Let K_1 and K_2 be infinite compact Hausdorff spaces. Then the following are equivalent:

- (a) $C(K_1)\hat{\otimes}_{\pi}C(K_2)$ satisfies the DP1;
- (b) $C(K_1)$ and $C(K_2)$ satisfy the DPP and do not contain ℓ_1 ;
- (c) $C(K_1)\hat{\otimes}_{\pi}C(K_2)$ satisfies the DPP.

On behalf of those mathematicians (like me) who learnt from your contributions and will continue doing so ... Many thanks Andreas!!

Finally...

