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Abstract

Given a commutative ring A there are different approaches to understand its structure; one

is consider ideals and their arithmetic (multiplicative theory), and another one is to consider

modules over A (module theory); in this work we shall mix both; on one hand we shall study

ideals; in particular prime ideals, and on the other we shall use categories of modules and

functors between them. Recall that the spectrum of A, endowed with Zariski topology, is

a bridge between Algebra and Geometry. In this approach we shall consider subsets of the

spectrum of A and chain conditions and presheaf constructions on them.

Indeed, given a ring A we shall consider a subsetK ⊆ Spec(A) closed under generalizations,

and the associated hereditary torsion theoryσK , or, more generally we shall consider a hereditary

torsion theory σ on Mod– A, and define chain conditions relative to σ such that we extend the

range of examples we may study. The behaviour of these constructions is acceptable from a

categorical point of view, so we can construct new categories and functors and so on. The

simplest example is provided by a multiplicative set S ⊆ A for which we have the fraction ring

S−1A, and the category of S−1A modules. A general hereditary torsion theory σ has a similar

description whenever A is a σ–noetherian ring; in fact, it is determined by a multiplicative set

of finitely generated ideals rather than principal ones.

In both cases we obtain a categorical framework which is useful for some developments;

however, a more arithmetic approach might be of interest. For instance, an A–module M is

σ–torsion when for each element m ∈ M there exists an ideal hm ∈ L (σ) such that mhm = 0;

a common ideal h ∈ L (σ) should be the best choice to work more effectively; this occurs

when M is finitely generated; that is, if M is σ–torsion and finitely generated, there exists an

ideal h ∈ L (σ) such that Mh= 0.

With this new approach we have three different notions for noetherian module:
• M is noetherian whenever the lattice of all submodules of M is noetherian.
• M is σ–noetherian whenever the lattice of all σ–closed submodules is noetherian, and

the third one for which we have no categorical description is:
• M is totally σ–noetherian whenever for any ascending chain of submodules {Ni | i ∈ I}

there is an ideal h ∈ L (σ), and an element j ∈ I such that Nih ⊆ N j .

This notion of totallyσ–noetherian was introduced by Anderson and Dumitrescu as S–finite



for a multiplicative set S ⊆ A, which coincides with our definition of totally σS–noetherian.

This more arithmetical approach to chain conditions has the advantage of allowing effective

computation, and the disadvantage of losing several categorical and functorial constructions.

The following is a brief description of the content of this dissertation. Chapters one and

two are introductory to the theory. In chapter three, we study σ–finitely generated modules,

consider the spectrum of a hereditary torsion theory and define the σ–radical. As we noted

earlier, if A is a totally σ–noetherian ring, then σ is a finite type hereditary torsion theory,

which shows that we are extending the theory of multiplicative sets to multiplicative sets of

finitely generated ideals. In particular, we study noetherian spaces and its relationship with

chains of totally radical ideals. Finally we include some examples to illustrate the theory.

In chapter four, we consider totally prime submodules as a generalization of prime ideals;

our first aim is to show that for every σ–closed prime ideal p ⊆ A there exists a plethora

of totally σ–prime ideals defined by p, and that not all of them have the form ph for some

h ∈ L (σ). In particular we show that under the totally σ–noetherian condition the ideals of

A are closely related to totally σ–prime ideals. The behaviour with respect to a ring map is

also considered, and finally we show that for totally σ–finitely generated modules the prime

spectrum contains relevant information about the modules.

In chapter five, we study ring extensions, focussing on idealization, pullback constructions,

amalgamated extensions, and how we can induce hereditary torsion theories between them, and

what properties are preserved. A problem appears when studying idealization; we know that if

A is a PIR, in general the idealization is not a PIR, except in very few cases. To show that this

also happens if we consider this notion relative to a hereditary torsion theory σ we develop

the structure theory of totally σ–PIRs, showing that every totally σ–PIR is up to the torsion

submodule a direct product of indecomposable totally σ–PIRs; this will be of application

in the case of S–principal ideal rings. In particular, we show that only in very few cases

an idealization is totally PIR. To complete the presentation, we collect some collections of

examples to clarify the theory.



1 Introduction

In Commutative Algebra, the study of chain conditions has been a useful tool for classifying

rings and establishing properties of rings through their modules, as has been in the develop of their

applications. In this theory a prominent role has been played first by prime ideal and later by prime

submodules; in fact, they are the link between algebraic and geometric properties of the rings.

We focus our attention on chain conditions: noetherian, artinian, or PIR, and show how

prime ideals contain the necessary information to characterize rings and modules satisfying these

properties.

There are several level in this study. On the one hand, we can study lattices of ideals, L (A),

or submodules,L (M); they are modular, bounded and upper–continuous lattices; other properties

on these lattices give different classes of ring and modules. For instance, if L (A) is distributive,

the ring A is arithmetic (if, in addition, A is an integral domain, then it is a Prüfer domain). If

L (A) = {0, A}, then A is a field, and so on.

In this process, the relationships between rings is the cornerstone of the theory. Thus, if

f : A−→ B is a ring map, then we are interested when we can obtain information of B from A. If f

is a surjective map, there exists an ideal Ker( f ) ⊆ A, and an isomorphism B ∼= A/Ker( f ) that allows

to identify L (B) with the sublattice {a ⊆ A | a ⊇ Ker( f )}. If B is finitely generated as A–module

many properties of A pass to properties of B. If B is finitely generated as A–algebra, we can also

study properties of B from the same properties of A; this is the case of the polynomial ring in

finitely many indeterminates. If every element of B is a fraction of two elements of A, we also have

that many properties of B are determined by properties of A; for any multiplicative set Σ ⊆ A, being

B = Σ−1A, there exists a lattice isomorphism between Spec(B) and {p ∈ Spec(A) | p ∩Σ = ∅}.

Further examples of this situation can be shown as the formally power series ring A⟦X⟧, which is

the completion of A[X ] with respect to a linear topology. The same situation applies for modules.

To organize all this information we shall use categories and functors associated to rings and

modules. Thus, for any ring map f : A−→ B we have a functor U f : Mod– B −→Mod– A which

is right adjoint to − ⊗A B : Mod– A −→ Mod– B; or for every prime ideal p ⊆ A the ring map

1



λp : A−→ Ap defines a functor Lp : Mod– A−→Mod– Ap as Lp(M) = Mp = M ⊗A Ap.

As we point out before, there exists a bridge between algebra and geometry. To any commutative

ring A, a geometrical object appears: the prime spectrum Spec(A), with the Zariski topology. The

closed subsets are {V (a) | a ∈ L (A)}, where V (a) = {p ∈ Spec(A) | p ⊇ a}.

For each prime ideal p ∈ Spec(A) we have a ring Ap, which has only a maximal ideal. All

these local rings acting together give us a great deal of information on A and its modules. For

instance, a module map g : M −→ N is surjective (resp. injective) if, and only if, gp : Mp −→ Np is

surjective (resp. injective) for every prime ideal p ∈ Spec(A); a local property. On the other hand,

for any basic open subset X (a) ⊆ Spec(A), being X (a) = {p ∈ Spec(A) | a /∈ p} for any a ∈ A, we

have a ring Aa = Σ−1
a A, where Σa = {an ∈ A | n ∈ N}, and a presheaf of rings on the topological

space Spec(A), whose fiber at the point p ∈ Spec(A) is exactly Ap.

In this process some parts of the spectrum become more and more relevant; for this reason,

it is necessary to study the localization not in single prime ideal, but in a set of prime ideals:

this is the case of Aa mentioned above. Thus appears the notion of hereditary torsion theory;

for any hereditary torsion theory σ in Mod– A we build a ring Aσ, a module category Mod– Aσ,

and functors. In the development a problem appears: in general, for any A-module M we have

two Aσ–modules: Mσ, and M ⊗A Aσ. As we saw before, in the case of the localization at p they

are isomorphic, but in the general case they are not. Therefore, we have three categories: Mod– A,

Mod– Aσ, and the category of all modules Mσ, where M ∈Mod– A, and we denote by Mod– (A,σ).

Since for any prime ideal p ∈ Spec(A) we have a hereditary torsion theory σA\p, and MσA\p
∼= Mp,

then Mod– (A,σA\p)≃Mod– Ap.

To continue this theory, it is necessary to develop an arithmetic of the hereditary torsion

theories, as well as a lattice theory.

Once hereditary torsion theories are well understood, we model their applications to rings

and modules with applications to finitely generated and noetherian modules; obtaining that if A is

a noetherian ring relative to a hereditary torsion theory, then σ can be described through prime

ideals; indeed, σ = ∧{σA\p | p ∈ K (σ)}. As we see, we are always very close to the localization

in prime ideals; moreover, the Gabriel filter L (σ) has a cofinal set of finitely generated ideals
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(In this sense remember that each filter L (σA\p) has a cofinal set of principal ideals. With this

background other chain conditions have been explored: artinian, PIR, and so on).

For any module M we haveL (M), the lattice of all submodules of M ; if we take a hereditary

torsion theory σ, we have another lattice: C(M ,σ), which is defined by a closure operator:

ClM
σ
(−); in the sense that M is σ–noetherian (resp. σ–artinian) whenever C(M ,σ) is a noetherian

(resp. artinian) lattice, and characterizes when M is σ–noetherian in terms of the localization at

prime ideals belonging toK (σ).

The relationship between the lattices L (M) and C(M ,σ) yields new examples of ring and

modules satisfying chain conditions (remember that any noetherian module is σ–noetherian for

any hereditary torsion theoryσ). With the drawback that we cannot control efficiently the elements:

for example, if M is σ–torsion, for any element m ∈ M there exists an ideal hm ∈ L (σ) such that

mhm = 0. But we can simply consider an ideal h ∈ L (σ) such that Mh= 0 whenever M is finitely

generated, and extend this to a general definition: a module M is totally σ–torsion whenever there

exists an ideal h ∈ L (σ) such that Mh = 0. We gain in description and lose in categorical

properties, since now we do not have an associated lattice to study chain conditions.

In this dissertation we study totallyσ–torsion modules and properties derived from them. The

origin of the theory we shall develop lies in the notion of almost principal ideal domain, introduced

by Hamann–Houston–Johnson in [26]. The authors study the problem of determining the structure

of the polynomial ring D[X ], over an integral domain D with field of fractions K , looking for the

structure of the Euclidean domain K[X ]. In particular, an ideal a ⊆ D[X ] is said to be almost

principal whenever there exist a polynomial F ∈ a, of positive degree, and an element 0 ̸= s ∈ D

such that as ⊆ F D[X ] ⊆ a. The integral domain D is an almost principal domain whenever every

ideal a ⊆ D[X ], which extends properly to K[X ], is almost principal. Noetherian and integrally

closed domains are examples of almost principal domains.

This was later extended by Anderson–Kwak–Zafrullah in [6] to consider almost noetherian

rings, showing that for an integral domain D the polynomial ring D[X ] is almost noetherian if, and

only if, D[X ] is almost PID.
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It was in 2002 when Anderson and Dumitrescu, in [5] abstracted this notion to introduce

S–noetherian rings, for a given multiplicative set S ⊆ A.

The authors extend this notion to non–necessarily integral domains by defining, for a given

multiplicatively closed subset S ⊆ A of a ring A, an ideal a ⊆ A to be S–finite if there exist a

finitely generated ideal a′ ⊆ a, and an element s ∈ S, such that as ⊆ a′. They define a ring

A to be S–noetherian whenever every ideal a ⊆ A is S–finite. Many authors have worked on

S–noetherian rings and related notions, and shown relevant results on its structure. For instance,

see [12, 19, 27, 31, 40, 41, 51, 55].

Continuing the abstraction process, in 2021, Jara, in [31], introduced totally σ–noetherian

rings. One may think that S–noetherian rings are related to a multiplication set S ⊆ A, while

totally σ–noetherian ring are related to a multiplicative set S ⊆ L (A) of finitely generated ideals

covering a wider range of examples.

Allow us to give a brief description of the contents of this dissertation.

This thesis is organized in chapters. This is chapter (1); in chapter (2), we start with recalling

the main concepts and facts that will be frequently used in our study. In it A will be a commutative

ring and σ be a hereditary torsion theory in Mod– A. We introduce some notions of rings and

modules using the hereditary torsion theory.

In chapter (3), we introduce the extension of S–noetherian spectrum property. That is; for a

multiplicatively closed subset S of a commutative ring A, there were several S–noetherian spectrum

properties. In our study, for any commutative ring A, we introduce generalizations of them using a

hereditary torsion theory σ instead of a multiplicative closed subset S.

Our interest shall be to study the prime spectrum, Spec(A), of a ring A through S–finite ideals,

taking into account that for any multiplicative subset S ⊆ A, the prime spectrum has a partition in

two subsets: the prime ideals p such that p∩ S ̸=∅, and the prime ideals p such that p∩ S =∅.

In [27], the author study the S–noetherian spectrum property of a ring A, this means

that every ideal a ⊆ A is radically S–finite, i.e., there exist a finitely generated ideal a′ ⊆ a,

and s ∈ S such that as ⊆ rad(a′), and study when this property is inherited by the polynomial
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ring. A different approach appears in [19], where the author consider rings with a new notion

of S–noetherian spectrum, i.e., the ascending chain condition on S–radical ideals holds, defines

the prime S–radical of an ideal a ⊆ A as the intersections of the prime ideals in the following

set: {p ∈ Spec(A) | a ⊆ p and p ∩ S = ∅}, and gives several characterization of rings with

S–noetherian spectrum. In this respect, our aim is to show that these two theories are part of

a more general theory involving hereditary torsion theories. In particular, we show that totally

noetherian σ–radical and Spec–noetherian are characterized through prime ideals.

Hence, in section (3.1) we introduce the main subject: totally σ–finitely generated modules

and the lattice of σ–closed submodules. After that, in section (3.2), following [19], we consider

the spectrum of a hereditary torsion theoryK (σ), and define the primeσ–radical. The main aim is

to characterize when it is a noetherian space. In particular, we show that if the ring A is noetherian

σ–radical, then we can consider that σ is of finite type. A different approach to noetherian spaces

associated to a ring is developed, following [27], in section (3.6). This is not a lattice approach,

but we show that a ring A is totally noetherian σ–radical if, and only if, every increasing chain of

radical ideals is totally σ–stable. Both approaches to noetherian spaces have in common that they

are preserved by polynomial ring constructions, see Theorems (3.25.) and (3.43.), and they can be

characterized by prime ideals. Most of these results appear in [34].

The main aim of chapter (4) is to provide new notions of prime ideals and submodules relative

to totally torsion with respect to a hereditary torsion theory. This theory extends the developments

made in [5], [28] and [50]; also [34], and since these prime objects are established with respect to

a hereditary torsion theory, hence it will be of general application.

We begin introducing the basic notions relative to torsion theories, and we address to [25] and

[52] as main references for that.

Our main object of studying will be prime ideals and submodules. We shall use three different

notions of prime: prime ideal, totallyσ–prime ideal andσ–prime ideal, and similarly for submodules.

Which is of interest, with respect to prime submodules, is that if N ⊆ M is a prime submodule,

then M/N is a either σ–torsion or σ–torsionfree. Therefore, every hereditary torsion theory

produces a partition of the prime spectrum (the set of all prime submodules) of any A–module
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M . We have: Spec(M) = Z (M ,σ) ∪K (M ,σ), being Z (M ,σ) (resp. K (M ,σ)) the set of all

σ–dense (resp. σ–closed) prime submodules. In the particular case in which M = A, i.e., it is the

ring, we shall represent Z (A,σ) (resp. K (A,σ)), simply as Z (σ) (resp. K (σ)).

There is a natural way of extending prime ideals to prime ideals relative to a hereditary torsion

theory: σ–prime ideals, i.e., ideals a ⊆ A such that ClA
σ
(a) ̸= a and a= ClA

σ
(a) ⊆ A is a prime ideal.

The theory of σ–prime submodules is useful, but we have no control on the extension a ⊆ a. In

addition, if N ⊆ M is a σ–prime submodule, not necessarily the ideal (N : M) ⊆ A is σ–prime,

contrary to what happens in the prime submodule case.

To fix this malfunction, we introduce totally σ–prime ideals and submodules: an ideal a ⊆ A

is totally σ-prime if a /∈ L (σ), and there exists h ∈ L (σ) such that a = (a : h) ⊆ A is prime; or

equivalently, see Proposition (4.5.), if a /∈ L (σ) and there exists h ∈ L (σ) such that for every

a, b ∈ A, if ab ∈ a, then either ah ⊆ a or bh ⊆ a, and, in a similar way, we define totally σ–prime

submodules. Which is important with this notion is that (1) every totally σ–prime submodule is a

σ–prime submodule, and (2) if N ⊆ M is totally σ–prime, then (N : M) ⊆ A is totally σ–prime.

As happens with σ–prime, the behaviour of totally σ–prime ideals and submodules is closely

linked to prime ideals; hence, for every σ–closed prime ideal p ∈ K (σ), and every ideal h ∈

L (σ), if a is an ideal such that ph ⊆ a ⊆ p, then a ⊆ A is totally σ–prime. Totally σ–prime ideals

satisfy the usual theorems for prime ideals: avoidance theorem, Cohen’s theorem, etc. Thus, a

totally σ–finitely generated A–module is totally σ–noetherian, see [31] and [32], if, and only if,

every prime σ–closed submodule is totally σ–finitely generated, or equivalently, if, and only if,

every totally σ–prime submodule is totally σ–finitely generated.

We want to point out that, since σ–prime ideals and submodules have a better behaviour with

respect to categorical properties, totallyσ–prime ideals and submodules are closer to the arithmetic

of rings and modules than σ–primes.

The contents of this chapter are distributed in sections. In section (4.1) we introduce the

different kinds of prime ideals, and its general properties, and show that for every σ–closed prime

ideal p ⊆ A there exists a plethora of totally σ–prime ideals defined by p, and that not all of them

have the shape ph for some h ∈ L (σ). In section (4.2) we deal with the existence of totally
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σ–prime ideals, and show that they exist whenever A is σ–noetherian; in particular, whenever it

is totally σ–noetherian. Ring extensions are studied in section (4.3); given two rings A and B,

and a ring map f : A −→ B, we know that every hereditary torsion theory σ in Mod– A induces a

hereditary torsion theoryσ in Mod– B, and show that there exists a correspondence between totally

σ–prime ideals of B and totally σ–prime ideals of A, which is a bijection, whenever f is surjective,

between totally σ–prime ideals of B and totally σ–prime ideals of A containing Ker( f ). Avoidance

theorem is proved. In section (4.4) we study totally σ–prime submodules N ⊆ M , and characterize

them through the totally σ–prime ideal (N : M) ⊆ A. In particular, for a general hereditary torsion

theory, Cohen’s theorem is proved when M is totally σ–finitely generated; and a new version of

this theorem is established when σ is of finite type, in this case relative to totally σ–prime ideals

instead of submodules. In section (4.5) we study the relationship with the localization at prime

ideals. Most of these results appear in [33].

Finally, in chapter (5), we study the behaviour of hereditary torsion theories in ring extensions

and ring maps, focussing on idealization, pullback constructions, amalgamated extensions, etc.

For a commutative ring A with unity, and an A–module M . The idealization of M with respect

to A is B = M ⋊A= {(m, a) | m ∈ M , a ∈ A} with sum component-wise, and multiplication given

by (m1, a1)(m2, a2) = (m1a2+m2a1, a1a2). Also, it is called the trivial extension of A by M . Note

that A naturally embeds into M ⋊ A via a 7→ (0, a). If N is a submodule of M , then N ⋊ {0} is

an ideal of M ⋊ A. (This is why the construction is called idealization).(M ⋊ {0})2 = (0, 0) and

hence M ⋊A is non-reduced for any ring A and any non-zero A-module M . While we do not know

who first constructed an example using idealization, the idea of using idealization to extend results

concerning ideals to modules is due to Nagata [46]. Nagata in his famous book, Local Rings [46],

presented a principle, called the principle of idealization. By this principle, modules become ideals.

Idealization is advantageous for working on ideal instead of submodules, generalizing results from

rings to modules, and illustrate examples on commutative rings with zero divisors. For more about

Nagata idealization, we refer the reader to [1, 2, 7, 37, 38, 46].

In section (5.1) we identify the hereditary torsion theory of the idealization depending on the

hereditary torsion theory σ in Mod– A, which is f (σ) in Mod– M ⋊ A, whose Gabriel filter is:
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L ( f (σ)) = {b ⊆ M ⋊ A | f −1(b) ∈ L (σ)}. We continue with considering σ is of finite type

and provide examples. Idealization and principal ideal rings are studied in section (5.1), beginning

with the definition of principal ideal rings and the related notions of it, then, constructing theorems

according to the hereditary torsion theory, and determine when the idealization is either a Principle

ideal ring or a Euclidean ring.

Section (5.2) is devoted to principal ideal domains (PIDs) which constitute an important class

of rings, mainly because abelian groups have Z, the ring of integer numbers, as ground ring, and

because many other examples are of common use: the polynomial ring in one indeterminate with

coefficients in a field, several rings of algebraic numbers, or serial rings. In addition, the structure

of finitely generated modules over a PID is also well known, and an important tool in other theories.

PIDs have many generalizations, on the one hand: Bezout domains in which finitely generated

ideals are principal, on the other hand: principal ideal rings (PIRs), in which the integral domain

condition was removed, and so on. Other generalizations of PIDs concerning various objects

related to the ring such as, for instance, a multiplicative set S ⊆ A. Thus, in 1988, Hamann,

Houston and Johnson, in [26], introduce the notion of almost principal ideal and almost PID. If D

is an integral domain with field of fractions K , an ideal a ⊆ A[X ] is almost principal if there exist

F(X ) ∈ a, of positive degree, and s ∈ D \ {0} such that as ⊆ F(X )D[X ]; and the integral domain D

is almost PID whenever every ideal a ⊆ D[X ], with proper extension to K[X ], is almost principal.

Later, in 2002, Anderson and Dumitrescu, in [5], introduce the notion of S–PIR. In this more

abstract framework they perform a study, parallel to the classical one, of PIDs, but relative to a

multiplicative set S ⊆ A. Many others works on S–PID and S–PIR are realized in the past years,

see [5, 8, 10, 11, 13, 32, 39].

Because of the definition of S–PIR involving single elements of A, their theory focuses on

arithmetics properties; i.e., an ideal a ⊆ A is S–principal whenever there exist elements a ∈ a and

s ∈ S such that as ⊆ aA, and A is an S–PIR whenever every ideal a ⊆ A, such that a ∩ S = ∅, is

S–principal. From the very beginning, classical results, such as Kaplansky’s lemma, as well as the

the spectrum of A relative to S were considered in this new framework.

Recently, in 2023, Jara, in [32], introduced an extension in the notion of PIR, proving some
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of the classical results mentioned above. This new view is based on considering hereditary torsion

theories, σ, instead of multiplicative sets, becoming the S–PIRs examples by considering the

hereditary torsion theory σS defined by S.

With this new tool, and point of view, some results are seen from a different perspective, and

the use of categories and functor and other categorical tools help in obtaining new results. Thus, in

this work, using the torsion submodule, we realize an even closer approximation to prime ideals,

by determining the exact elements that appear in their definition and description, see [31] and [32].

Having stated the necessary and appropriate background, we address with the characterization

of PIR relative to a hereditary torsion theory σ: totally σ–PIR, and its relationship with chain

conditions. It is clear that every totally σ–PIR is totally σ–noetherian, but not necessarily totally

σ–artinian; nevertheless, non-trivial quotients of totally σ–PIR are always totally σ–artinian,

Theorem (5.30.).

Our main aim in this section is to establish a structure theorem for totally σ–PIRs, and

hence of S–PIRs. To do so we first study those totally σ–PIRs that have only one prime ideal

minimal in K (σ), and those who have only a prime ideal maximal in K (σ) (indecomposable

and local totally σ–PIR, respectively); the latter as a tool and the former as a brick to build totally

σ–PIRs. In the absence of a primary decomposition theory we deal with the set K (σ) of prime

ideals and its lattice structure, and decompose it in subsets which are closed under generalizations

and specializations, yielding a partition of K (σ), and finally a lattice decomposition of A/σA,

following the development done in [23] and [24]. Most of these results will appear in [35].

Section (5.3) deal with another important example of extension are Dorroh extensions. In

order to define Dorroh extension, we first define algebras. Given a ring A, an A–algebra is an

abelian group B satisfying: (1) B is an A–module, (2) B is a ring, not necessarily with unity nor

commutative, and (3) the action of A satisfies: a(b1 b2) = (ab1)b2 = b1(ab2), for any a ∈ A and

b1, b2 ∈ B. See [3].

Hence, if A is a ring and B is A–algebra; a new A–algebra can be build as follows: B ⋊ A =

{(b, a) | b ∈ B and a ∈ A} being the multiplication (b1, a1)(b2, a2) = (b1 b2 + b1a2 + b2a1, a1a2).

The A–algebra B ⋊ A is called the Dorroh extension of B by A, and it may be denoted also by

9



B1. Dorroh [18] first used this construction, with A = Z , (the ring of integers), as a means of

embedding a (non–unitary) ring A without unity into a ring with unity. In ring theory, Dorroh

extension has become an important method for constructing new rings and investing properties of

rings. Many ring constructions can be regarded as Dorroh extensions of rings, for instance, the

trivial extension of a ring and the amalgamated algebras along an ideal, being the homomorphic

image of the Dorroh extension. Furthermore, properties of Dorroh extensions of rings are referred

to [3, 14, 17, 21, 44, 53].

Then, in section (5.3) in order to give the structure of B–module, we introduce the Universal

property of the Dorroh extension, Lemma (5.45.). Using an A–algebra map, we see that to give a

structure of B–module on M is equivalent to give a structure of B⋊A–module. In consequence, we

define the B–submodule and then cyclic submodule. That is, given a B–module M , for any element

x ∈ M there is a smallest B–submodule 〈x〉 containing x : the intersection of all B–submodules

containing x , and it is called the cyclic submodule generated by x . So, for any subset S ⊆ A, the

B–submodule generated by S is the smallest B–submodule containing S; it is denoted as 〈S〉.

We continue by considering the finiteness conditions on algebras, and see when the A–algebra

B ⋊ A is noetherian. The result is in Theorem (5.47.); Let A be a ring and B an A–algebra. If

B ⋊ A is noetherian, then A is a noetherian ring and B is a noetherian A–algebra. Also, if A is a

noetherian ring and B a noetherian A–algebra, then B⋊A is noetherian. Using the same procedure,

we obtain that B ⋊ A is artinian if, and only if, A is artinian and B is an artinian B–algebra. As a

generalization of that, we define the hereditary torsion theory on Dorroh extension by setting the

Gabriel filters then study the noetherian and artinian notions according to hereditary torsion theory.

See Theorems (5.50.) and (5.51.). Besides that, we see the behaviour of chain conditions relative

to totally torsion of the A–algebra extension, Theorems (5.52.) and (5.53.).

In category theory, pullbacks play an important tool in the commutative algebra because of

their use in producing many examples. One of these examples is Nagata’s idealization. Therefore,

in section (5.4), we mention the definition of the Pullback construction and some properties of it,

That is, if A, B and C are commutative rings with unities, if α : A→ C and β : B → C are ring

homomorphisms, the set D := {(a, b) ∈ A× B| α(a) = β(b)} of A× B is called the pullback
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of α and β , see section (5.4). There are many types of pullbacks according to type of maps be

used. We are interested in the type of pullbacks as in Proposition (5.55.). See the proposition

below. After that, we construct theorems about noetherian and totally noetherian of the pullbacks,

using the hereditary torsion theory defined on them in Remark (5.57.). Finally, in this section, we

explain the pullbacks properties. The first one is related to the kernel of the opposite maps. A

second property is related with that factorization of homomorphisms and the third one says that

two pullback squares produces a pullback square.

In order to set up a more general setting of the idealization, D’Anna and Fontana in 2007

introduced and studied the amalgamated duplication using Dorroh extension [17]. Then in 2009,

D’Anna, Finocchiaro and Fontana provided a generalization of the amalgamated duplication which

depends on H ⋊ A as follows.

Let f : A→ S be a ring homomorphism and b an ideal of S. Then in view of the equation

a. j = f (a) j for any a ∈ A and j ∈ b, then b has the A-module structure. Now, let b ⋊ A be the

Dorroh extension considered above. Then the amalgamation of the A-algebra S along b with

respect to f is defined to be: A ▷◁ f b := f ▷◁(b⋊A) = {(a, f (a)+ j) | a ∈ A, j ∈ b} ⊆ A× S, where

the multiplication is componentwise. See [16]. They also showed that the amalgamation algebra

can be realized as a pullback [16, Proposition 4.7]. Indeed, the amalgamation construction takes

its importance from several aspects, namely:

1. It generalizes the Nagata idealization. Let S = M ⋊ A and f : A ,→ M ⋊ A be the canonical

ring embedding that assigns to a the element (a, 0). Then viewing M (M ∼= M ⋊ 0) as

an ideal of M ⋊ A, the idealization of M in A is canonically isomorphic to A ▷◁ f M . (i.e.

M ⋊ A∼= A ▷◁ f M).

2. It generalizes the D + M construction. Let M be a maximal ideal of a ring T and let D be

a subring of T such that M ∩ D = (0). The ring D + M := {x + m | x ∈ D, m ∈ M} is

canonically isomorphic to D ▷◁ f M , where f : D ,→ T is the natural embedding.

3. The amalgamation like any construction has several applications in solving open questions;

see for example the main results of [16, 17], and also is useful in providing new counter

examples.
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In consequence, in section (5.5) we define the amalgamated algebra, build the diagram of

pullback of the amalgamated algebras, and construct the hereditary torsion theories through the

Gabriel filter. Continuing with noetherian and totally noetherian properties on this construction

and study the noetherian notion through the prime ideals.
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2 Preliminaries

Hereditary torsion theories

In this chapter we recall some basic concepts and facts that will be frequently used throughout

this thesis.

Let A be a commutative ring with unity 1 ∈ A; an A–module M is an abelian group together a

right action β : A−→ End(M), denoted β(a)(m) = ma, for any m ∈ M and a ∈ A.

The category of all modules Mod– A has as objects the A–modules and morphisms the

module maps; i.e., maps f : M1 −→ M2 such that f (x + y) = f (x) + f (y) and f (xa) = f (x)a,

for any x , y ∈ M1 and a ∈ A.

A hereditary torsion theory σ is Mod– A is given by one of the following objects:

• A class T of A–modules which is closed under submodules, quotient modules, direct sums

and group–extensions.

• A classF of A–modules closed under submodules, essential extensions, direct products and

group–extensions.

• A left exact subfunctor of the identity σ.

• A filter of ideals L satisfying: if for any a ⊆ A there exists an ideal b ∈ L such that

(a : b) ∈ L , for any b ∈ b, then a ∈ L .

The relationships between these objects are the following:

(1) Given σ, the radical torsion, we have:

• T = {M ∈Mod– A | σM = M};
• F = {M ∈Mod– A | σM = 0};
• L = {a ⊆ A | σ(A/a) = A/a}

In this case we denote T by Tσ; F by Fσ, and L by L (σ).

(2) Given T , the torsion class, we have:

• F = {X ∈Mod– A | HomA(T, X ) = 0 for any T ∈ T };
• σ(M) =
∑

{N ⊆ M | N ∈ T }, for any A–module M ;
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• L = {a ⊆ A | A/a ∈ T }.

(3) Given F , the torsionfree class, we have:

• T = {X ∈Mod– A | HomA(X , F) = 0 for any F ∈ F};
• σ(M) = ∩{N ⊆ M | M/N ∈ F}, for any M ∈Mod– A.

(4) Given L , the Gabriel filter, we have:

• σ(M) = {x ∈ M | Ann(x) ∈ L}, for any M ∈ Mod– A and, in the lattice L (M) of

all submodules of M , there is a closure operator, ClM
σ
(−), defined, for any submodule

N ⊆ M , by the equation: ClM
σ
(N)/N = σ(M/N).

For any hereditary torsion theory σ, an elementary property ofL (σ) is that it is closed under

multiplication. Indeed, if a,b ∈ L (σ) and we consider the short exact sequence

0 −→
a

ab
−→

A
ab
−→

A
a
−→ 0

Since a/ab, A/a ∈ Tσ, then A/ab ∈ Tσ, and ab ∈ L (σ).

Given a hereditary torsion theory σ in Mod– A several results and definitions are necessary to

develop the theory.

(1) Let N ⊆ M be a submodule, we say:

• N ⊆ M is σ–dense, and write N ⊆σ M whenever M/N is σ–torsion. We denote by

L (M ,σ) the set of all σ–dense submodules of M .
• N ⊆ M is σ–closed, whenever M/N is σ–torsionfree. We denote by C(M ,σ) the set of

all σ–closed submodules of M .

(2) For every submodule N of an A–module M the σ–closure of N in M is ClM
σ
(N).

(3) For any prime ideal p ⊆ A we have either A/p is σ–torsion or A/p is σ–torsionfree. We denote

by

• K (σ) = {p ∈ Spec(A) | A/p is σ–torsionfree},
• Z (σ) = {p ∈ Spec(A) | A/p is σ–torsion}, and
• C (σ) the set of all maximal elements inK (σ).
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(4) K (σ) is closed under generalizations; i.e., for any p,q ∈ Spec(A), if p ⊆ q and q ∈ K (σ),

then p ∈ K (σ), and Z (σ) is closed under specializations; i.e., for any p,q ∈ Spec(A), if

p ⊆ q and p ∈ Z (σ), then q ∈ Z (σ).

In the set of all hereditary torsion theories on Mod– A we consider a partial order as follows:

(1) If σ1,σ2 are hereditary torsion theories in Mod– A, we say σ1 ≤ σ2 whenever Tσ1
⊆ Tσ2

, or

equivalently if Fσ2
⊆Fσ1

.

(2) For any family {σi | i ∈ I} of hereditary torsion theories in Mod– A the infimum, ∧iσ1, is

defined as

T∧iσi
= ∩iTσi

and L (∧iσi) = ∩iL (σi).

(3) The supremum of the family {σi | i ∈ I} is the hereditary torsion theory ∨iσi, defined

F∨iσi
= ∩iFσi

.

Let us to introduce some examples of hereditary torsion theories.
Examples. 2.1.

(1) For any ring A the hereditary torsion theory σ1 = id such that Tσ1
=Mod– A is known as the

total hereditary torsion theory, and the hereditary torsion theory σ0 = 0 such that Tσ0
= {0}

is the trivial hereditary torsion theory, and satisfies L (σ0) = {A}.

(2) For any multiplicatively closed subset Σ ⊆ A the filter

L (σΣ) = {a ⊆ A | a∩Σ ̸=∅}

is a Gabriel filter for a principal hereditary torsion theory σΣ. Conversely, if σ is a principal,

hereditary torsion theory, see below, and we define

Σσ = {s ∈ A | sA∈ L (σ)},

then it is multiplicative and σΣσ = σ. Besides, Σ= ΣσΣ for any multiplicative subset Σ ⊆ A.
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(3) For any prime ideal p ⊆ A we have that A \ p is a multiplicative subset, hence associated to p

we have a hereditary torsion theory σA\p.

If {pi | i ∈ I} is a family of prime ideals then σ = ∧{σA\pi
| i ∈ I} is a hereditary torsion

theory

(4) For any hereditary torsion theory σ and any prime ideal p ∈ K (σ), we have σ ≤ σA\p. In

particular, we have: σ ≤ ∧{σA\p | p ∈K (σ)}.

Observe that if p1 ⊆ p2 are prime ideals, then σA\p1
≤ σA\p2

.

A hereditary torsion theory σ is called half–centered whenever we have the equality; i.e.,

σ = ∧{σA\p | p ∈K (σ)}.

For any multiplicatively closed subsetΣ ⊆ A, the hereditary torsion theoryσΣ is half–centered.

Let us now study some particular kind of hereditary torsion theories. A hereditary torsion

theory σ is

• of finite type whenever L (σ) has a cofinal subset of finitely generated ideals, and

• principal whenever it has a cofinal subset of principal ideals.

Principal hereditary torsion theories

The principal hereditary torsion theories are of interest because they are parameterized by

multiplicative subsets.

For any multiplicative subset Σ we obtain σΣ = σΣ, being Σ the saturation of Σ. In

consequence, we may assume Σ = Σ is a saturated multiplicative subset (for any s, t ∈ A if

st ∈ Σ, then either s ∈ Σ or t ∈ Σ).

Therefore, there is a family of prime ideals, say {pi | i ∈ I} such that A\Σ= ∪ipi. The set of

ideals {pi | i ∈ I} can be taken closed in the following sense: if p ⊆ ∪ipi, hence p ∈ {pi | i ∈ I}, for

any prime ideal p, a kind of avoidance property. In this way we may associate to any saturated

multiplicative subset Σ the set of all prime ideal

K (Σ) = {p ∈ Spec(A) | p∩Σ=∅}= {p ∈ Spec(A) | p ⊆ A\Σ}.
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We have thatK (Σ) satisfies the avoidance property.

It is obvious that if a set of prime ideals P satisfies the avoidance property, it is generically

closed.

As we mention before, if Σ ⊆ A is a multiplicative subset, then σΣ is a principal hereditary

torsion theory. The converse also holds. In this sense, for any ring A there is a bijective correspondence

between principal hereditary torsion theories and saturated multiplicative subsets; this bijective

correspondence can be extended to sets of prime ideals satisfying the avoidance property by the

correspondence σ 7→ K (σ), because every principal hereditary torsion theory is half–centered.

Lemma. 2.2.

Let Σ ⊆ A be a multiplicative subset, then σΣ = ∧{σA\p | p ∩Σ = ∅} = ∧{σA\p | p ∈ K (σΣ)}.

Therefore, σΣ is half–centered.

Sometimes, if Σ ⊆ A is a multiplicatively closed subset the σΣ–closure of N in M was also

called the Σ–saturation of N in M and was denoted by SatM
Σ
(N); if p ⊆ A is a prime ideal and

Σ= A\ p, we write SatM
p
(N).

Finite type hereditary torsion theories

If σ is a finite type hereditary torsion theory and we define

Gσ =L f (σ) = {a ⊆ A | a ∈ L (σ) is finitely generated},

then Gσ is a multiplicative set of finitely generated ideals.

For any multiplicative set of finitely generated ideals G , the filter

L (σG ) = {a ⊆ A | there exists b ∈ G such that b ⊆ a}

is a Gabriel filter for a finite type hereditary torsion theory. Furthermore, G ⊆ GσG for any

multiplicative set G of finitely generated ideals, and σGσ = σ.

We may extend this to any set, S , of finitely generated ideals. We may consider

L (S ) =L (σS ) = {a ⊆ A | there exist s1, . . . , st ∈ S such that s1 · · · st ⊆ a}.
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Lemma. 2.3.

With the above notation L (S ) is a Gabriel filter.

Let us denote by σS the hereditary torsion theory it defines.

Proof. Let a ⊆ A be an ideal such that there exists h ∈ L (S ) satisfying (a : h) ∈ L (S ),

for every h ∈ h. We may consider h finitely generated with generators h1, . . . , hs. For any index i

there exist si,1, . . . , si,t i
∈ S such that hisi,1 · · · si,t i

⊆ a; hence we obtain h
∏

i(si,1 · · · si,t i
) ⊆ a, and

a ∈ L (S ). □

There is a correspondence between finite type hereditary torsion theories and multiplicative

sets of finitely generated ideals. To any hereditary torsion theory σ we associate L f (σ), and to

any set of finitely generated ideals S the hereditary torsion theory σS . It will be a bijection if we

consider saturated sets of finitely generated ideals.

The setL f (σ) is a filter in the posetL f (A), of all finitely generated ideals of A and in addition

it satisfies the Gabriel condition: for any a ∈ L f (A) such that there exists h ∈ L f (σ) satisfying

for any h ∈ b there exists bh ∈ L f (σ) such that hbh ⊆ a, we have a ∈ L f (σ). Let us name a

Gabriel sets those sets of finitely generated ideals satisfying this property. On the other hand, for

any multiplicative set of finitely generated ideals S we have L f (σS ) ⊇ S is a Gabriel set. In

consequence, the above correspondence is bijective between finite type hereditary torsion theories

and Gabriel sets of finitely generated ideals.

The following results are presented without proof.

Proposition. 2.4.

Every finite type hereditary torsion theory is half–centered.

It is possible to characterize finite type hereditary torsion theories analysing the set K (σ) ⊆

Spec(A).

Proposition. 2.5.

Let σ be a hereditary torsion theory in Mod– A, the following statements are equivalent:

(a) σ is of finite type.
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(b) σ is half–centered andK (σ) ⊆ Spec(A) is quasi–compact.

References for unexplained terms should be [25] and [52].

In the following, we assume A will be a commutative ring, Mod– A be the category of A–modules

and σ be a hereditary torsion theory on Mod– A. Modules are represented by Latin letters: M , N ,

N1, . . . , and ideals by Gothics letters: a, b, b1, . . . Different hereditary torsion theories will be

represented by Greek letters: σ, τ, σ1, . . . , and induced hereditary torsion theories by adorned

Greek letters: σ′, τ, . . .
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3 Totally noetherian spectrum property

3.1 Totally finitely generated modules

For any σ–torsion finitely generated A–module M , if M = m1A+ · · ·+mtA, since (0 : mi) ∈

L (σ), for any i = 1, . . . , t, then h := ∩t
i=1(0 : mi) ∈ L (σ), and it satisfies Mh = 0. In general,

this result does not hold for σ–torsion non–finitely generated A–modules. Therefore, we shall

define an A–module M to be totally σ–torsion whenever there exists an ideal h ∈ L (σ) such that

Mh= 0. The notion of totally torsion appears, for instance, in [36, page 462].

For any ideal a ⊆ A there are two different notions of finitely generated ideals relative to σ:

• a ⊆ A is σ–finitely generated whenever there exists a finitely generated ideal a′ ⊆ A such

that ClA
σ
(a) = ClA

σ
(a′). In the case in which a′ ⊆ a, we have a′/a is σ–torsion.

• a ⊆ A is totally σ–finitely generated whenever there exists a finitely generated ideal a′ ⊆ a

such that a/a′ is totally σ–torsion.

In the same way, see [32], for any ring A there are two different notions of noetherian ring

relative to σ:

• A is σ–noetherian if every ideal is σ–finitely generated.

• A is totally σ–noetherian whenever every ideal is totally σ–finitely generated.

Examples. 3.1.

(1) Every finitely generated ideal is totallyσ–finitely generated and every totallyσ–finitely generated

ideal is σ–finitely generated.

(2) Let S ⊆ A be a multiplicatively closed subset, an ideal a ⊆ A is S–finite if, and only if, it is

totally σS–finitely generated. The ring A is S–noetherian, see [5], if, and only if, A is totally

σS–noetherian.

The notions of σ–noetherian and totally σ–noetherian ring can be extended to A–modules in

an easy way.

Totally σ–torsion modules are the trivial examples of totally σ–noetherian modules. Also

every noetherian module is totally σ–noetherian for every hereditary torsion theory σ.
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Observe that these two notions of torsion, and the derived notions from them, are completely

different in its behaviour and categorical properties. For instance, due to the definition, for any

A–module M there exists a maximum submodule belonging to Tσ, the submodule: σM , and it

satisfies M/σM ∈ Fσ. On the contrary, in the totally σ–torsion case we can not assure the

existence of a maximal totally σ–torsion submodule. The existence of a maximum σ–torsion

submodule allows us to build new concepts relative toσ as lattices, closure operators and localization;

concepts that we have not in the totally σ–torsion case; for instance, the ring A is σ–noetherian if,

and only if, the lattice C(A,σ) = {a | A/a ∈ Fσ} is noetherian. Nevertheless, the totally σ–torsion

case allows us study arithmetic properties of rings and modules which are hidden with the use of

σ–torsion, and these properties are those which we are interested in.

As we point out before, the σ–torsion allows, for any A–module M , to define a lattice

C(M ,σ) = {N ⊆ M | M/N ∈ Fσ},

and in L (M), the lattice of all submodules of M , a closure operator

ClM
σ
(−) :L (M) −→ C(M ,σ) ⊆L (M).

The lattice operations in C(M ,σ), for any N1, N2 ∈ C(M ,σ), are defined by

N1 ∧ N2 = N1 ∩ N2,

N1 ∨ N2 = ClM
σ
(N1 + N2).

Using the lattice C(M ,σ), and, in a parallel way to noetherian modules, for an A–module M

we may define:

• M is σ–artinian whenever C(M ,σ) is an artinian lattice; that is, it satisfies the decreasing

chain condition.

• M is totally σ–artinian if every decreasing chain {Ni | i ∈ I} is totally σ–stable; that is,

there exists an ideal h ∈ L (σ), and an index j ∈ I such that for any i ∈ I we have N jh ⊆ Ni;

i.e., N jh ⊆ (∩iNi).

The ring A is σ–artinian (resp. totally σ–artinian) if it is as module.
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3.2 The spectrum of a hereditary torsion theory

A σ–closed submodule N ⊆ M is

• σ–minimal whenever N is minimal in C(M ,σ) \ {σM}, and

• σ–maximal or σ–critical whenever N is maximal in C(M ,σ) \ {M}.

One may extend these notions to non–necessarily σ–closed submodules: A submodule N ⊆

M is

• σ–minimal whenever ClM
σ
(N) is σ–minimal.

• σ–maximal whenever ClM
σ
(N) is σ–maximal.

An A–module M isσ–simple if C(M ,σ) = {σM , M}, this meansσM ̸= M ; andσ–cocritical

whenever it is σ–simple and σ–torsionfree.

The following results are easy consequences of the definitions.

Lemma. 3.2.

Let N ⊆ M be a submodule, the following statements are equivalent:

(a) N ⊆ M is σ–maximal.

(b) M/N is σ–simple.

In particular, N ⊆ M is σ–critical if, and only if, M/N is σ–cocritical.

Lemma. 3.3.

Let f : M1 −→ M2 be a module map between σ–cocritical A–modules, then either f = 0 or f is a

monomorphism.

Lemma. 3.4.

Every non–zero submodule of a σ–cocritical A–module is σ–cocritical.

Let M be an A–module, a submodule N ⊆ M is prime whenever N ̸= M , and for any m ∈

M \ N and a ∈ A, if ma ∈ N , then Ma ⊆ N . The set of all prime submodules of M will be denoted

as Spec(M), and called the spectrum of M .

Let K (M ,σ) be the class of all prime σ–closed submodules of M , and Z (M ,σ) be the

class of all prime σ–dense submodules of M . In particular, {K (M ,σ),Z (M ,σ)} is a partition of
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Spec(M), the prime spectrum of M . Of particular interest is the case in which M = A because we

have that Spec(A) ̸= ∅. In this case we write K (σ) and Z (σ) instead of K (A,σ) and Z (A,σ),

respectively; and denote by C (σ) the set of all maximal elements in K (σ). By similarity, we

denote by C (M ,σ) the set of all maximal elements in C(M ,σ); it satisfies C (M ,σ) ⊆K (M ,σ).

It is worth noting the difference between C(M ,σ) and C (M ,σ), see next proposition.

Proposition. 3.5.

Let M be an A–module, the following statements hold:

(1) If N ⊆ M is a σ–critical submodule, then N ⊆ M is a prime submodule.

(2) If N ⊆ M is a prime submodule, then either ClM
σ
(N) = M , i.e., N ⊆σ M , or ClM

σ
(N) = N , i.e.,

N ⊆ M is σ–closed.

(3) A submodule N ⊆ M is σ–critical if, and only if, N ∈ C (M ,σ).

(4) A prime submodule N ⊆ M is σ–critical if, and only if, N ⊆ M is irreducible and (N : M) ∈

C (σ) whenever σ is half—centered.

Proof. (1). Let ma ∈ N . If m /∈ N then N $ N +mA⊆ M , and N +mA⊆σ M , and the only

homomorphism from M/(N + mA) to M/N is the zero one. Since h : M/(N + mA) −→ M/N ,

defined f (x + (N +mA)) = xa is a module map, it is zero, hence Ma ⊆ N .

(2). Let us assume ClM
σ
(N) ̸= N , and let m ∈ ClM

σ
(N) \ N . There exists h ∈ L (σ) such that

mh ⊆ N ; hence Mh ⊆ N , and ClM
σ
(N) = M .

(3). It is already clear that N is σ-critical if and only if the lattice of closed submodules of

M/N is {0, M/N}, which is equivalent to N belonging to C (M ,σ).

(4). The necessary condition is clear. If a prime irreducible submodule N ⊆ M that satisfies

(N : M) ∈ C (σ), and we call p = (N : M), then N ⊆ M is σA\p–critical. Otherwise, for every

q ∈ C (σ) such that q ̸= p we have that M/N is σA\q–dense. In consequence, for every N $ H ⊆ M

we have: M/H is σA\p–torsion because N ⊆ M is σA\p–critical, and σA\q-torsion, because M/N

is. Therefore, since σ = ∧{σA\q | q ∈ C (σ)}, then N ⊆ M is a σ–critical submodule. □

In this case, for every prime submodule N ⊆ M , we also have χ(M/N) = χ(A/(N : M)).

Where, for any A-module X we denote by χ(X ) is the largest hereditary torsion theory such that

the A–module X is torsionfree.
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Lemma. 3.6.

Let σ ≤ τ be hereditary torsion theories. If M is a σ–cocritical A–module, and τ–torsionfree

A–module then M is τ–cocritical.
Lemma. 3.7.

If σ ≤ τ are hereditary torsion theories, M is a σ–simple A–module, then M is τ–simple.

3.3 The prime radical

If M is an A–module, if N ⊆ M is a submodule, the prime σ–radical of N in M is

radσ(N) = ∩{H | N ⊆ H ⊆ M , H ∈K (M ,σ)}.

Lemma. 3.8.

Let σ be a hereditary torsion theory, M an A–module, N , N1, N2, N3 ⊆ M submodules, and h ∈

L (σ), the following statements hold.

(1) If N1 ⊆σ N2, then ClM
σ
(N1) = ClM

σ
(N2).

(2) If N1 ⊆σ N2 ⊆σ N3, then N1 ⊆σ N3.

(3) ClM
σ
(Nh) = ClM

σ
(N).

Proof. (1). If N1 ⊆σ N2, then ClM
σ
(N1) ⊆ ClM

σ
(N2). Moreover, N2/N1 is σ–torsion, hence

N2/N1 ⊆ σ (M/N1) = ClM
σ
(N1)/N1, and N2 ⊆ ClM

σ
(N1), hence and we have ClM

σ
(N1) = ClM

σ
(N2).

(2) and (3) are straightforward. □

Proposition. 3.9.

Let σ be a finite type hereditary torsion theory and M be a σ–finitely generated A–module. For

any submodule N ⊆ M which is not σ–dense, there exists a σ–critical submodule H ⊆ M such

that N ⊆ H .

Proof. Let Γ = {H | H ⊆ M such that N ⊆ H and H ⊆ M is not σ–dense}. If {Hi}i is a

chain in Γ , then H = ∪iHi belongs to Γ . Indeed, if H ⊆σ M , since M is σ–finitely generated,

there exists F ⊆σ M , finitely generated. Since H, F ⊆ M are σ–dense, there exists h ∈ L (σ),

finitely generated, such that Fh ⊆ H , then there exists an index i such that Fh ⊆ Hi, which is a

contradiction. □
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A σ–closed submodule N ⊆ M is called σ–radical whenever N = radσ(N), and finite

σ–radical if there exists a finitely generated submodule F ⊆ N such that radσ(N) = radσ(F). In

this sense, for every σ–dense submodule N ⊆ M we have radσ(N) = M , and every σ–dense ideal

a ⊆ A is finite σ–radical.

The σ–radical and the closure operator, defined by σ, are compatible. This and other results

on the σ–radical are collected in the following, whose proofs are omitted.
Lemma. 3.10.

(1) For every submodule N ⊆ M we have N ⊆ radσ(N) = radσ(ClM
σ
(N)).

(2) For every submodule N ⊆ M we have radσ radσ(N) = radσ(N).

(3) For every submodules N1, N2 ⊆ M such that N1 ⊆ N2 we have: radσ(N1) ⊆ radσ(N2).

(4) For every submodules N1, N2 ⊆ M such that N1 ⊆σ N2 we have: radσ(N1) = radσ(N2).

Corollary. 3.11.

For every submodule N ⊆ M we have radσ(N) = M if, and only if, either N ⊆σ M or {H ∈

K (M ,σ) | N ⊆ H} is empty.

Lemma. 3.12.

For every submodule N ⊆ M we have rad(N) ⊆ radσ(N) = ClM
σ
(rad(N)).

Lemma. 3.13.

Ifσ ≤ τ are hereditary torsion theories, for every submodule N ⊆ M we have radσ(N) ⊆ radτ(N).

In particular, we have: radσ(radτ(N)) = radτ(N).

Proof. Since radσ(N) ⊆ radτ(N), taking radτ(N) instead of N , we have

radσ radτ(N) ⊆ radτ radτ(N) = radτ(N) ⊆ radσ radτ(N).

Therefore, radσ radτ(N) = radτ(N), for any submodule N ⊆ M . □

Lemma. 3.14.

Let a,b ⊆ A be ideals, we have: radσ(ab) = radσ(a∩ b) = radσ(a)∩ radσ(b).

In consequence, radσ(an) = radσ(a).
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3.4 Noetherian spaces

Let us recall, from [9], the definition and elementary properties of noetherian topological

spaces.

A topological space X is noetherian whenever every chain of open subsets is stationary (ACC

on open subsets).

Proposition. 3.15. ([9])

Let X be a topological space. The following statements are equivalent:

(a) X is noetherian

(b) Every subspace is noetherian.

(c) X satisfies the maximal condition (every non–empty family of open subsets has maximal

elements).

(d) Every open subset is quasi–compact.

(e) Every subset is quasi–compact.

(f) X satisfies the descending chain condition on closed subsets.

(g) X satisfies the minimal condition on closed subsets.

A closed subset Z ⊆ X is irreducible whenever Z = Z1 ∪ Z2, for closed subsets Z1, Z2 ⊆ Z ,

we have either Z = Z1 or Z = Z2.

Proposition. 3.16. ([9])

Let X be a noetherian topological space, then X is a finite union of irreducible closed subsets.

Corollary. 3.17. ([9])

Every noetherian space is a finite union of irreducible closed subsets.

3.5 The spectrum of a hereditary torsion theory

The subset K (σ) ⊆ Spec(A), it is closed under generalizations, i.e., for every q,p ⊆

Spec(A), if q ⊆ p and p ∈K (σ), then q ∈K (σ).

A hereditary torsion theory σ is Spec–noetherian if K (σ) is a noetherian space. Also we

can say that A is noetherian σ–radical.
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An open subset Y ⊆K (σ) is the trace of an open subset in Spec(A), hence there exists a ⊆ A

such that Y ′ = X (a) = {p | a ⊈ p}, and Y = Y ′ ∩K (σ). Also we have rad(a) = ∩{p | p ∈ V (a)},

and Y ′ = X (rad(a)). It is well known that there is a correspondence between open subsets in

Spec(A) and radical ideals.

Y ′ ↔ ∩{p | p /∈ Y ′}.

If Y ⊆ K (σ) is an open subset and consider aY = ∩{p ∈ K (σ) | p /∈ Y }, then X (aY ) ∩

K (σ) = Y , and aY is named a σ–radical ideal. The map Y 7→ aY establishes a correspondence

between open subsets ofK (σ) and σ–radical ideals.

Thus we have:
Proposition. 3.18.

Let σ be a hereditary torsion theory in Mod– A, the following statements are equivalent:

(a) K (σ) is a topological noetherian space.

(b) A satisfies the ACC on σ–radical ideals.

Proposition. 3.19.

Letσ be a half–centered hereditary torsion theory in Mod– A, the following statements are equivalent:

(a) K (σ) is a topological noetherian space.

(b) Every half–centered hereditary torsion theory τ≥ σ is of finite type.

This is a direct consequence of the well known fact σ is of finite type if, and only if, σ is

half–centered andK (σ) is quasi–compact, and Proposition (3.15.).

Corollary. 3.20.

If σ is half–centered andK (σ) is noetherian, then σ is of finite type.

The converse does not necessarily hold.

Remark. 3.21.

Let σ be a hereditary torsion theory, then K (σ) is generically closed, and defines a hereditary

torsion theoryσ′ = ∩{σA\p | p ∈K (σ)} satisfyingK (σ) =K (σ′), radσ(a) = radσ′(a) for every

ideal a ⊆ A, etc. In addition, σ′ is of finite type if, and only if,K (σ) ⊆ Spec(A) is quasi–compact.
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Hence σ′ is the smallest finite type hereditary torsion theory bigger than σ. In the same way, σ is

Spec–noetherian if, and only if, σ′ is.

For that reason, in the study of noetherian spaces, we may restrict ourselves to consider only

finite type hereditary torsion theories.

Lemma. 3.22.

If σ1 ≤ σ2 are hereditary torsion theories and σ1 is Spec–noetherian, then σ2 is Spec–noetherian.

Remember, an ideal a ⊆ A is finite σ–radical if there are finitely many elements, a1, . . . , at ∈

ClA
σ
(a), such that radσ(a) = radσ(a1, . . . , at).

Proposition. 3.23.

Let σ be a hereditary torsion theory, the following statements are equivalent:

(a) A has noetherian σ–radical (σ is Spec–noetherian).

(b) A satisfies the ACC for σ–radical ideals.

(c) Every ideal is finite σ–radical.

(d) Every prime ideal inK (σ) is finite σ–radical.

(e) K (σ) satisfies the ACC for prime ideals and min(V (a)∩K (σ)) is finite for every ideal a ⊆ A.

(f) K (σ) satisfies the ACC for prime ideals and min(V (a) ∩ K (σ)) is finite for every finitely

generated ideal a ⊆ A.

Proof. (a)⇔ (b). It is Proposition (3.18.)

(c)⇒ (a). Let {ai | i ∈ I} be a chain of σ–radical ideals. If a = ∪iai, then a is radical ideal,

hence σ–radical. By the hypothesis, a = radσ(b) for some b ⊆ a, finitely generated. Therefore,

there exists an index i ∈ I such that b ⊆ ai, and the chain stabilizes.

(d)⇒ (c). We define Γ = {a ⊆ A | a is σ–radical and is not finite σ–radical}. If Γ ̸=∅, since

it is inductive, by Zorn’s lemma, there exists a ∈ Γ , maximal. We claim a is prime. In the contrary,

there are a1,a2 % a such that a1a2 ⊆ a. Since

radσ(a) ⊆ radσ(a1)∩ radσ(a2) = radσ(a1a2) ⊆ radσ(a) = a,
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then radσ(a1), radσ(a2) ̸= A. If we take a1 = radσ(a1), then a1,a2 are finite σ–radical. Hence

a = radσ(a) = radσ(a1a2) is finite σ–radical, which is a contradiction. In consequence, Γ = ∅,

and every σ–radical ideal is finite σ–radical.

(f)⇒ (d). Let 0 ̸= p ∈ K (σ). If p is not finite σ–radical, let 0 ̸= a ∈ p, and a1 = aA, then

min(V (a)∩K (σ)) is finite. If every q ∈min(V (a1)∩K (σ)) satisfies p ⊆ q, then

p ⊆ ∩q= radσ(aA) ⊆ radσ(p) = p,

and p is finite σ–radical, which is a contradiction. Hence there exists q ∈ min(V (aA) ∩K (σ))

such that p ⊈ q. We write min(V (a1)∩K (σ)) = {p1,1, . . . ,p1,r1
} ∪ {q1,1, . . . ,q1,s1

}, being p ⊆ p1,∗

and p ⊈ q1,∗.

For any ideal q1, j we take b1, j ∈ p\q1, j. Thus, we have a finite set of elements {b1,1, . . . , b1,s1
}.

We define a2 = a1 + 〈b1,1 . . . , b1,s1
〉. Since min(V (a2) ∩K (σ)) is finite, and not every q in

min(V (a2)∩K (σ)) satisfies the condition p ⊆ q. We may write

min(V (a2)∩K (σ)) = {p2,1, . . . ,p2,r2
} ∪ {q2,1, . . . ,q2,s2

},

being p ⊆ p2,∗ and p ⊈ q2,∗.

For every such ideal q2, j, we take b2, j ∈ p\q2, j. Hence, there exists a finite set {b2,1, . . . , b2,s2
}.

Since
�

∩ip1,i

�

∩
�

∩ jq1, j

�

= radσ(a1) ⊆ radσ(a2) =
�

∩ip2,i

�

∩
�

∩ jq2, j

�

⊆ q2, j,

there exists q1,h such that q1,h ⊆ q2, j.

In this way we build finitely generated ideals an ⊆ p, for n ≥ 1, and prime ideals qn,∗. For

any q1, j there exists a chain starting at q1, j. Since there are infinitely many ideals, there is a infinite

chain starting at one of the q1, j, which is a contradiction. See [49].

(e)⇒ (f). It is immediate.

(a) ⇒ (e). First we have that every chain of prime ideals in K (σ) is a chain of σ–radical

ideals, hence stationary. On the other hand, if min(V (a)∩K (σ)) is infinite, we may assume a is

σ–radical, and consider the family Γ = {a ⊆ A | a is σ–radical and min(V (a)∩K (σ)) is infinite}.
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By (1), Γ has maximal elements. If a ∈ Γ is maximal, then it is not prime, and there are ideals

a1,a2 % a such that a1a2 ⊆ a. Since

radσ(a) ⊆ radσ(a1)∩ radσ(a2) = radσ(a1a2) ⊆ radσ(a) = a,

and radσ(ai) has finitely many minimal ideal in V (ai) ∩K (σ), for i = 1, 2. Then V (a) ∩K (σ)

has finitely many minimal ideals, which is a contradiction. □

If σ = σΣ, the hereditary torsion theory defined by a multiplicative subset Σ ⊆ A, then we

have [19, Theorem 3.6].

Corollary. 3.24.

Let σ be a hereditary torsion theory in Mod– A, b ⊆ A an ideal and σ the hereditary torsion theory

induced by σ in Mod– (A/b). If A is noetherian σ–radical, then A/b is noetherian σ–radical.

Proof. First we observe that for any ideal b ⊆ a ⊆ A we have: ClA
σ
(a)/b = ClA/b

σ
(a/b), and

second that K (σ) = {p/b | b ⊆ p, p ∈ K (σ)}. Therefore, for any ideal a/b ⊆ A/b, we may

assume a = ClA
σ
(a) there exists a′ ⊆ a, finitely generated, such that radσ(a) = radσ(a′), hence

radσ(a/b) = radσ((a′ + b)/b), and a/b has a finite σ–radical. □

The following result holds precisely because σ can be taken of finite type whenever A is

noetherian σ–radical.
Theorem. 3.25.

Let A be a ring, σ be a hereditary torsion theory in Mod– A, and σ be the hereditary torsion theory

induced by σ in Mod– A[X ], the following statements are equivalent:

(a) A is noetherian σ–radical.

(b) A[X ] is noetherian σ–radical.

Proof. (a) ⇒ (b). Let us assume there are σ–closed ideals which are not finite σ–radical,

hence in the family of them there are maximal elements, and each maximal element is a prime

ideal. For any prime ideal q ⊆ A[X ] which is maximal in the set of σ–closed and non finite

σ–radical ideals, the contraction q∩ A⊆ A is prime and finite radical. Then we consider A/(q∩ A)
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and A[X ]/q = (A/(q∩ A)) [X ]. Therefore, we may assume A is an integral domain and q ⊆ A[X ]

satisfies q∩ A= 0.

Let K be the field of fractions of A. In K[X ] the ideal qK[X ] is generated by a polynomial, say

F ∈ q, of degree m, and let a be the leader coefficient of F . The ideal q+ (a) contains properly q,

hence it has finite σ–radical, because of the maximality of q. Say rad(q+ (a)) = rad(F1, . . . , Fs),

for some F1, . . . , Fs ∈ ClA
σ
(q + (a)). Since σ is of finite type, there exists h ∈ L (σ), finitely

generated, such that (F1, . . . , Fs)h ⊆ q+ (a), and there are a′ ⊆ q, a′′ ⊆ A[X ], finitely generated,

such that (F1, . . . , Fs)h ⊆ a′ + aa′′ ⊆ q+ (a). Therefore,

q ⊆ radσ(q+ (a)) = radσ(F1, . . . , Fs) = radσ((F1, . . . , Fs)h) ⊆ radσ(a
′ + aa′′) ⊆ radσ(q+ (a)).

Consider the localized Aa, of A at {an | n ∈ N}. We claim, qAa = FAa, hence it is finite

radical. Indeed, if G ∈ qAa ⊆ qK[X ], there exists H ∈ K[X ] such that G = FH , hence H ∈ Aa[X ],

and we have the equality.

We have a + (F) ⊆ q, hence radσ(a′ + (F)) ⊆ q. Otherwise, if q′ ⊇ a + (F), there are two

possibilities:

(1). a ∈ q′, hence q ⊆ radσ(q+ (a)) = radσ(a′ + aa′′) ⊆ q′.

(2). a /∈ q′, hence q′Aa[X ] is prime and F ∈ q′Aa[X ], hence qAa[X ] = FAa[X ] ⊆ qAa[X ], and

q ⊆ q′.

In both cases we obtain q ⊆ q′, and q ⊆ radσ(a′ + (F)).

(b)⇒ (a). We shall use Corollary (3.24.) applied to the map A[X ] −→ A[X ]/(X ). Observe that

we have three hereditary torsion theories: σ in Mod– A,σ in Mod– A[X ], andσ in Mod– A[X ]/(X ) =

Mod– A. We only need to show that σ = σ. Indeed, we have: L (σ) = {h′/(X ) | h′ ∈ L (σ)} =

{h′/(X ) | h′ ∩ A∈ L (σ)}=L (σ). □

If σ = 0, i.e., if L (σ) = {A}, then we obtain [48, Theorem 2.5].
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3.6 Totally noetherian radical rings

There is another approach to associate a like noetherian space to a hereditary torsion theory.

This approach follows the work of A. Hamed in [27]. Our aim in this section is to show that

hereditary torsion theories provide a useful tool which allows to improve some of the results in

[27].

Let a ⊆ A be an ideal and σ a hereditary torsion theory in Mod– A, the σ–radical of a is

radσ(a) = ∩{p ∈ K (σ) | a ⊆ p}. An ideal a ⊆ A is finite σ–radical whenever there exists

a finitely generated ideal a′ ⊆ ClA
σ
(a) such that radσ(a′) = radσ(a). We may assume a′ ⊆ a

whenever σ is of finite type.

We say a ⊆ A is totally finite σ–radical if there exists a finitely generated ideal a′ ⊆ a and

h ∈ L (σ) such that ah ⊆ rad(a′) ⊆ rad(a).

Lemma. 3.26.

Let a ⊆ A be a totally finite σ–radical, then it is finite σ–radical.

Proof. If a is totally finite σ–radical, there exist a′ ⊆ a, finitely generated, and h ∈ L (σ)

such that ah ⊆ rad(a′) ⊆ rad(a), then radσ(ah) ⊆ radσ(rad(a′)) ⊆ radσ(rad(a)), and we have

radσ(a) = radσ(ah) ⊆ radσ(a′) ⊆ radσ(a), hence radσ(a′) = radσ(a). □

A ring A is totally noetherianσ–radical whenever every ideal a ⊆ A is totally finiteσ–radical.

Example. 3.27.

Let S ⊆ A be a multiplicatively closed subset of A, an ideal a ⊆ A is radically S–finite, see [27],

if, and only if, a is totally finite σS–radical, and the ring A satisfies the S–noetherian spectrum

property if, and only if, it is totally noetherian σS–radical.

In consequence, we have:

Proposition. 3.28.

Let σ be a hereditary torsion theory in Mod– A. If A is totally noetherian σ–radical then it is

noetherian σ–radical (σ is Spec–noetherian), i.e.,K (σ) ⊆ Spec(A) is a noetherian space with the

induced topology.
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Contrary to noetherian σ–radical rings, which can be characterized by the lattice K (σ),

totally noetherian σ–radical is not directly a lattice property.

Lemma. 3.29.

Let σ be a perfect hereditary torsion theory in Mod– A. If A is totally noetherian σ–radical, then

Aσ, the localization ring of A with respect to σ, has noetherian spectrum.

Proof. Let b ⊆ Aσ, there exists a ⊆ A such that b = aσ = aAσ, and a finitely generated ideal

a′ ⊆ a, and h ∈ L (σ) such that ah ⊆ rad(a′) ⊆ rad(a), then

b= aσ = (ah)σ ⊆ rad(a′)σ = radσ(a
′) = rad(a′

σ
) ⊆ rad(a)σ = radσ(a) = rad(aσ),

and Aσ has noetherian spectrum. □

The converse does not necessarily hold.

Example. 3.30.

Consider a field K and the polynomial ring A= K[Xn | n ∈ N], and σ = σA\{0} the usual hereditary

torsion theory in an integral domain. If we take a= (X 2
n | n ∈ N), then rad(a) = (Xn | n ∈ N), and

for any h ∈ L (σ), we have ah is not contained in the radical of a finitely generated ideal a′ ⊆ a.

Lemma. 3.31.

Let a1,a2 ⊆ A be totally finite σ–radical ideals, then a1a2 and a1 ∩ a2 are totally σ–radical ideals.

Proof. We have rad(a1a2) = rad(a1∩a2) = rad(a1)∩rad(a2). By the hypothesis there exists

a′i ⊆ a1, finitely generated, and h ∈ L (σ) such that aih ⊆ rad(a′i), hence

a1a2h
2 ⊆ rad(a′1) rad(a′2) ⊆ rad(a′1a

′
2) ⊆ rad(a1a2).

Otherwise,

(a1 ∩ a2)h ⊆ rad(a′1)∩ rad(a′2) = rad(a′1 ∩ a
′
2) ⊆ rad(a1 ∩ a2).

□

An increasing chain {an | n ∈ N} is totally σ–stable whenever there exist b ∈ L (σ) and an

index m such that akb ⊆ am for every k ≥ m.
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Let Σ= {s1, . . . , st} be a finite multiplicative subset, and s = s1 · · · st . We haveL (σΣ) = {a ⊆

A | sA⊆ a}. In addition, sA is idempotent, hence, it is generated by an idempotent element e ∈ sA,

because it is finitely generated, and σ = σ{1,e}. The localization of A at σ is Aσ = eA. This is the

case of jansian finite type hereditary torsion theories. In particular we have:

Lemma. 3.32.

Letσ be a jansian finite type hereditary torsion theory generated by a finitely generated idempotent

ideal h, then

(1) a ⊆ A is totally finite σ–radical if, and only if, there exists a′ ⊆ a such that ah ⊆ rad(a′).

(2) An increasing chain {an | n ∈ N} is totally σ–stable if, and only is, there exists an index m

such that akh ⊆ am for every k ≥ m.

Theorem. 3.33.

Let σ be a hereditary torsion theory in Mod– A. Consider the following statements:

(1) A is a totally noetherian σ–radical.

(2) Every increasing chain of radical ideals is totally σ–stable.

(A). Then (1)⇒ (2).

(B). Let us assume L (σ) satisfies the property:

(†) There exists a strict decreasing chain with infinitely many elements in L (σ).

In this case, if every increasing chain of radical ideals is totally σ–stable, then A is a totally

noetherian σ–radical ring.

(C). Since if a hereditary torsion theory σ not satisfying (†) is jansian, and for every jansian

hereditary torsion theory, σ statements (1) and (2) are equivalent, then (1) and (2) are equivalent

for every hereditary torsion theory σ.

Proof. (A). (1) ⇒ (2). Let {an | n ∈ N} be an increasing chain of radical ideals, then a =

∪nan is radical, and there exist a′ ⊆ a, finitely generated, and h ∈ L (σ) such that ah ⊆ rad(a′) ⊆

rad(a) = a. There exists an index m such that a′ ⊆ rad(am), hence ah ⊆ rad(a′) ⊆ rad(am) = am.

Hence, for every k ≥ m we have akh ⊆ am.
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(B). Let us assume that every increasing chain of radical ideals is totally σ–stable and A is

not totally noetherian σ–radical, hence there exists an ideal a such that for every non–zero finitely

generated ideal a′ ⊆ a and if we take every h ∈ L (σ) we have ah ⊈ rad(a′).

If {hn | n ∈ N} is a strict decreasing chain of ideals in L (σ), and 0 ̸= a0 ∈ a, since

aAh0 ⊈ rad(a0A), and aAh1 ⊈ rad(a0A), there exist a1,0, a1,1 ∈ a such that a1,0h0, a1,1h1 ⊈ rad(a0A).

Define b0 = rad(a0A), and b1 = rad(a0, a1,0, a1,1). Then we have: ah0,ah1 ⊈ b1, and, by

the hypothesis, ah2 ⊈ rad(b1). As before, there exists a2,i ∈ a such that a2,ihi ⊈ rad(b2), for any

i = 0, 1,2. Define b2 = rad(a0, a1,0, a1,1, a2,0, a2,1, a2,2). We can continue in this way to build a

strict increasing chain of radical ideals: {bn | n ∈ N}, which is a contradiction.

(C). If σ does not satisfy condition (†), then L (σ) has a minimal element j which is an

idempotent ideal. Let L (σ) = {h | h ⊇ j}. We claim (2)⇒ (1). Indeed, for any ideal a ⊆ A we

define

Γ = {rad(a′) | a′ ⊆ a is finitely generated}.

By the hypothesis, any increasing chain {bn | n ∈ N}, of elements in Γ , if σ–stable. i.e., there

exists an index m such that bkj ⊆ bm, for every k ≥ m. This implies that, Γ contains σ–maximal

elements. An element b ∈ Γ is σ–maximal whenever for any b′ ∈ Γ such that b ⊆ b′ we have

b′j ⊆ b. Let b= rad(a′) ∈ Γ be aσ–maximal element in Γ . For any x ∈ a\b we have b= rad(a′) $
rad(a′ + xA) ∈ Γ , hence we have rad(a′ + xA)j ⊆ b, i.e., x j ⊆ b. In conclusion, aj ⊆ b = rad(a′),

and a is totally finite σ–radical. □

Compare with Theorem 2.1 in [27].

We can show a Cohen’s theorem like for totally noetherian σ–radical rings. First we prove a

technical lemma.
Lemma. 3.34.

Let A be a ring and Γ = {b ⊆ A | b is radical and is non totally finite σ–radical}. If Γ ̸= ∅, then it

has maximal elements, and every maximal element of Γ is a prime ideal.

Proof. By Zorn’s lemma, to show that Γ has maximal elements we only need to show that

every ascending chain in Γ is bounded. Let {bn | n ∈ N} be an increasing chain in Γ , and
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define b = ∪nbn, then b is radical and if b is totally finite σ–radical there exist b′ ⊆ b, finitely

generated, and h ∈ L (σ) such that bh ⊆ rad(b′). There exists an index m such that b′ ⊆ bm,

hence bmh ⊆ bh ⊆ rad(b′) ⊆ rad(bm), and bm /∈ Γ , which is a contradiction. In consequence, Γ has

maximal elements.

Let b ∈ Γ be a maximal element, and a1,a2 be ideals such that a1a2 ⊆ b and a1,a2 % b.

We may assume a1,a2 are radical ideal, hence they are not totally finite σ–radical, and there are,

finitely generated ideals a′i ⊆ ai, i = 1, 2, and h ∈ L (σ) such that aih ⊆ rad(a′i). Therefore, a′1a
′
2 ⊆

a1a2 ⊆ b is finitely generated, and bh ⊆ aih ⊆ rad(a′i), hence bh ⊆ rad(a′1)∩ rad(a′2) = rad(a′1a
′
2),

and b is totally finite σ–radical, which is a contradiction. □

Now we have the theorem that characterizes totally noetherian σ–radical rings in terms of

prime ideals.

Theorem. 3.35.

Let A be a ring, the following statements are equivalent:
(a) A is totally noetherian σ–radical.

(b) Every ideal is totally finite σ–radical.

(c) Every prime ideal is totally finite σ–radical.

Proof. We know that (a) ⇒ (b) ⇒ (c). To show (c) ⇒ (b), if there exists a radical ideal

which is not totally finite σ–radical, the set Γ in Lemma (3.34.) is non–empty, hence it contains a

maximal element which is a prime ideal, and this is a contradiction.

(b)⇒ (a). Let a ⊆ A be an ideal, by the hypothesis b= rad(a) is totally finiteσ–radical, hence

there exist b′ ⊆ b, finitely generated, and h ∈ L (σ) such that bh ⊆ rad(b). Since b′ ⊆ b = rad(a)

is finitely generated, there exists n ∈ N such that (b′)n ⊆ a, hence we have: ah ⊆ bh ⊆ rad(b′) =

rad((b′)n) ⊆ rad(a), and a is totally finite σ–radical. □

Our aim now is to show, similarly to Theorem (3.25.), that if A is totally noetherian σ–radical,

then A[X ] is totally noetherianσ–radical, beingσ the induced hereditary torsion theory in Mod– A[X ].

Lemma. 3.36.

Let a ⊆ b ⊆ A be ideals. If b ⊆ A is totally finite σ–radical, then b/a ⊆ A/a is totally finite

σ–radical.
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Proof. By the hypothesis, there exist a finitely generated ideal b′ ⊆ b and h ∈ L (σ) such

that bh ⊆ rad(b′). Hence,
b+ a

a

h+ a

a
=

bh+ a

a
⊆

b′ + a

a
,

and b/a is totally finite σ–radical. □

Corollary. 3.37.

Let A be a totally noetherian σ–radical ring, for any ideal a ⊆ A we have that A/a is totally

noetherian σ–radical.
Lemma. 3.38.

Let a ⊆ b ⊆ A be ideals. If a ⊆ A is totally finite σ–radical and b/a ⊆ A/a is totally finite σ–radical,

then b ⊆ A is totally finite σ–radical.

Proof. There exist a′ ⊆ a, finitely generated, and h1 ⊆ L (σ) such that ah1 ⊆ rad(a′), and

there exist b′ ⊆ b, finitely generated, and h2 ∈ L (σ) such that
b

a

h+ a

a
⊆ rad
�

b′

a

�

. We can take

h1 = h2 = h, and the finitely generated ideal a′ + b′ ⊆ b, then we have:
b

a

h+ a

a
⊆ rad
�

b′

a

�

, hence

bh+ a ⊆ b′ + a, and bh ⊆ b′ + a. Therefore, bhh ⊆ (b′ + a)h ⊆ b′ + rad(a′) ⊆ rad(b′ + a′). □

Lemma. 3.39.

Let a ⊆ A be an ideal and σ1 ≤ σ2 hereditary torsion theories. If a is totally finite σ1–radical, then

it is totally finite σ2–radical.

Lemma. 3.40.

Let a ⊆ A be an ideal and a ∈ A be a regular element. If a+ aA⊆ A is totally finite σ–radical and

aAa ⊆ Aa is totally σ–radical, then a ⊆ A is totally σ–radical.

We denote by Aa the ring of fractions of A with respect to the multiplicative subset {an | n ∈

N}.

Proof. Since a + aA ⊆ A is totally finite σ–radical, there exist a′ ⊆ a and a′′ ⊆ A, finitely

generated, and h ∈ L (σ) such that ah ⊆ rad(a′ + aa′′). Otherwise, since aAa ⊆ Aa is totally

finite σ–radical, there exists b′ ⊆ a, finitely generated, and h ∈ L (σ) such that ahA0 ⊆ rad(a′A0).

In consequence, a′ + b′ ⊆ a is finitely generated. Otherwise, for every prime ideal p ⊇ a′ + b′,

38



If a ∈ p, then ah rad(a′ + aa′′) ⊆ rad(p) = p. If a /∈ p, then p ∩ {an | n ∈ N} = ∅, and

ahAa ⊆ rad(b′Aa) ⊆ pAa. In particular, ah ⊆ pAa ∩ A= p. Therefore, ah ⊆ rad(a′ + b′). □

Lemma. 3.41.

Let a ⊆ A be a totally finite σ–radical ideal, then a[X ] ⊆ A[X ] is totally finite σ–radical.

Proof. Let a′ ⊆ a, finitely generated, and h ∈ L (σ) such that ah ⊆ rad(a′), hence a[X ]h[X ] ⊆

ah[X ] ⊆ rad(a′)[X ] ⊆ rad(a′[X ]), and a[X ] is totally finite σ–radical, because a′[X ] ⊆ A[X ] is

finitely generated. □

Lemma. 3.42.

Let D be an integral domain with field of fractions K and F ∈ D[X ], with leader coefficient a ̸= 0.

If G ∈ K[X ] satisfies FG ∈ D[X ], then G ∈ Da[X ].

Proof. Let F =
∑n

i=0 aiX
i, G =
∑m

i=0 biX
i, and an = a ̸= 0. Since an bm ∈ D, then bm ∈ Da.

If we assume bm, bm−1, . . . , bt−1 ∈ Da, since an bt + · · ·+ an−m+t bm ∈ D, then bt ∈ Da. □

Theorem. 3.43.

Let A be a ring, σ be a hereditary torsion theory in Mod– A, and σ be the hereditary torsion theory

induced by σ in Mod– A[X ], the following statements are equivalent:

(a) A is totally noetherian σ–radical.

(b) A[X ] is totally noetherian σ–radical.

Proof. (a) ⇒ (b). Consider that the family Γ = {a | a is non totally σ–radical}. If Γ ̸= ∅,

there exists an ideal q0, maximal in Γ , hence a prime ideal. If p = q0 ∩ A, then (A/p)[X ] =

A[X ]/p[X ]. Thus, we have a totally noetherian σ–radical integral domain D = A/p, a polynomial

ring D[X ], and a prime ideal q= q0/p[X ] such that q∩ D = 0. We assume q ̸= 0.

Let K be the field of fractions of D, there exists F ∈ D[X ] such that qK[X ] = FK[X ]. If

a is the leader coefficient of F , then a /∈ q, hence q $ (q+ (a)), and in (q+ (a)) is totally finite

σ–radical. Otherwise, we claim, qDa[X ] = F Da[X ]. Since qK[X ] = FK[X ], for any G ∈ qDa[X ],

there exists H ∈ K[X ] such that G = FH , hence H ∈ Da[X ]. Since qDa[X ] is cyclic, it is totally

finite σ–radical.
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Now we apply Lemma (3.40.) to get that q ⊆ D[X ] is totally finite σ–radical, which is a

contradiction.

(b)⇒ (a). It is a consequence of Lemma (3.37.) and the second part of the proof of Theorem (3.25.).

□

In the study of noetherian σ–radical rings we found that σ can be considered of finite type.

However, in the case of totally noetherian σ–radical we have no criteria to make the analogous

statement. Indeed, we know that if A is totally noetherian σ–radical, and σ′ = ∧{σA\p | p ∈

K (σ)}, then A is totally noetherian σ′–radical, andK (σ) =K (σ′). But, since totally noetherian

radical is not a lattice property, we can not affirm the converse.
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4 Totally prime ideals and submodules

4.1 Totally prime ideals

Let A be a commutative ring, and σ be a hereditary torsion theory in Mod– A with Gabriel

filter L (σ). An ideal a ⊆ A is

• prime if a ̸= A and for any a, b ∈ A if ab ∈ a, either a ∈ a or b ∈ a.

• totally σ–prime if a /∈ L (σ) and there exists an ideal h = ha ∈ L (σ) such that for any

a, b ∈ A if ab ∈ a, either ah ⊆ a or bh ⊆ a.

• σ–prime if a /∈ L (σ) and for any a, b ∈ A if ab ∈ a, either a ∈ ClA
σ
(a) or b ∈ ClA

σ
(a).

The ring A is prime (resp. totally σ–prime, σ–prime) whenever 0 ⊆ A is a prime (resp.

totally σ–prime, σ–prime) ideal.

For any ideal a ⊆ A, such that a /∈ L (σ), we have:

a ⊆ A is prime ⇒ a ⊆ A is totally σ–prime⇒ a ⊆ A is σ–prime.

σ–prime ideals

The σ–prime ideals can be characterized through their σ–closure as follows:

Proposition. 4.1.

Let a ⊆ A be an ideal such that a /∈ L (σ), the following statements are equivalent:

(a) a ⊆ A is σ–prime.

(b) ClA
σ
(a) ⊆ A is prime.

(c) For any ideals a1,a2 ⊆ A, if a1a2 ⊆ a, either a1 ⊆ ClA
σ
(a) or a2 ⊆ ClA

σ
(a).

Proof. (a) ⇒ (b). Let a, b ∈ A such that ab ∈ ClA
σ
(a), there exists c ∈ L (σ) such that

abc ⊆ a. If a /∈ ClA
σ
(a), then (a : a) /∈ L (σ). For any c ∈ c we have abc ∈ a; if for any c ∈ c

we have ac ∈ ClA
σ
(a), then ((a : a) : c) = (a : ac) ∈ L (σ), hence (a : a) ∈ L (σ), which is a

contradiction. Therefore, there exists c ∈ c such that ac /∈ ClA
σ
(a), so b ∈ ClA

σ
(a).
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(a)⇒ (c). Let a1a2 ⊆ a, if a1,a2 ⊈ ClA
σ
(a), there exist ai ∈ ai \ ClA

σ
(a), for i = 1,2, such that

a1a2 ∈ a, hence either a1 ∈ ClA
σ
(a) or a2 ∈ ClA

σ
(a), which is a contradiction.

(b)⇒ (a) and (c)⇒ (a) are immediate. □

In particular, σ–closed σ–prime ideals are prime.

Corollary. 4.2.

Let a ⊆ A be a σ–closed ideal; i. e., a= ClA
σ
(a), the following statements are equivalent:

(a) a ⊆ A is σ–prime.

(b) a ⊆ A is prime.

Totally σ–prime ideals

In a parallel way, we may characterize totally σ–prime ideals as follows. The proof of this

proposition is similar to the proof of Proposition (4.1.).

Proposition. 4.3.

Let a ⊆ A be an ideal such that a /∈ L (σ), the following statements are equivalent:

(a) a ⊆ A is totally σ–prime.

(b) There exists an ideal h = ha ∈ L (σ) such that for any ideals a1,a2 ⊆ A, if a1a2 ⊆ a, either

a1h ⊆ a or a2h ⊆ a.

Totally σ–prime ideals can be characterized through prime ideals of A as follows. First let us

point out that if a ⊆ A is a totally σ–prime ideal, the associated ideal h ∈ L (σ) can be chosen as

the annihilator of σ(A/a).

Lemma. 4.4.

Let a ⊆ A be a totally σ–prime ideal, and k = Ann(σ(A/a)) = (a : ClA
σ
(a)), the following

statements hold:

(1) k ∈ L (σ);

(2) for any a, b ∈ a such that ab ∈ a we have that either ak ⊆ a or bk ⊆ a;

(3) ClA
σ
(a) = (a : k) = (a : t), for any ideal t ∈ L (σ) such that t ⊆ k;
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(4) ClA
σ
(a) ⊆ A is prime.

Proof. By hypothesis A/a is not totally σ–torsion, or equivalently, a /∈ L (σ).

(1). Let h ∈ L (σ), the ideal associated to a ⊆ A; for any x ∈ ClA
σ
(a) there exists t ∈ L (σ)

such that xt ⊆ a; hence either xh ⊆ a or Ath ⊆ a. Therefore, ClA
σ
(a)h ⊆ a; i.e., h ⊆ (a : ClA

σ
(a)) = k.

(2). If we take k = (a : ClA
σ
(a)), for any x ∈ A if xh ⊆ a, then x ∈ ClA

σ
(a), hence xk ⊆ a. In

conclusion, we can take h= k.

(3). It is clear that (a : k) ⊆ ClA
σ
(a) ⊆ (a : k). Otherwise, if t ∈ L (σ) and t ⊆ k, then

(a : k) ⊆ (a : t) ⊆ ClA
σ
(a) = (a : k).

(4) is immediate since ClA
σ
(a) = (a : h). □

The relationship between totallyσ–prime ideals and prime ideals appears in the next proposition.

Proposition. 4.5.

Let a ⊆ A be an ideal such that a /∈ L (σ), and k = (a : ClA
σ
(a)), the following statements are

equivalent:

(a) a ⊆ A is totally σ–prime.

(b) There exists an ideal h ∈ L (σ) such that (a : h) ⊆ A is prime.

(c) There exists an ideal h ∈ L (σ) such that ClA
σ
(a) = (a : h), and ClA

σ
(a) ⊆ A is prime.

Proof. (a)⇒ (b) and (c) are consequence of Lemma (4.4.).

(b) ⇒ (c). If we take h as in (b), we only need to show that ClA
σ
(a) = (a : h). Always we

have a ⊆ (a : h) ⊆ ClA
σ
(a) because h ∈ L (σ). Since (a : h) is prime, then either (a : h) ∈ Z (σ)

or (a : h) ∈ K (σ). If (a : h) ∈ Z (σ), then ClA
σ
(a) = A, and a ∈ L (σ), which is a contradiction.

Therefore, (a : h) ∈K (σ), and (a : h) = ClA
σ
(a).

(c)⇒ (a) is obvious. □

As a consequence, as before, σ–closed totally σ–prime ideals are prime.

Corollary. 4.6.

Let a ⊆ A be a σ–closed ideal, the following statements are equivalent:

(a) a ⊆ A is totally σ–prime.
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(b) a ⊆ A is prime.

Compare with Example 2 in [28], and Corollary(4.2.) above.

Proof. (a) ⇒ (b). There exists an ideal h ∈ L (σ) such that (a : h) ⊆ A is prime. Since

a ⊆ (a : h), if a ̸= (a : h), there exists x ∈ (a : h) \ a satisfying xh ⊆ a, hence x + a ∈ σ(A/a) = 0,

which is a contradiction.

(b)⇒ (a) is immediate. □

Once we have a totally σ–prime ideal, we can build many others.

Proposition. 4.7.

Let a, k ⊆ A be ideals such that k ∈ L (σ), the following statements are equivalent:

(a) a ⊆ A is totally σ–prime.

(b) ak ⊆ A is totally σ–prime.

Proof. (a)⇒ (b). Since a /∈ L (σ), then ak /∈ L (σ) because, we have ak ⊆ a. Let h ∈ L (σ)

be an ideal associated to a, and a, b ∈ A such that ab ∈ ak. Since ab ∈ a, either ah ⊆ a or bh ⊆ a.

Therefore, either ahk ⊆ ak or bhk ⊆ ak.

(b) ⇒ (a). If a ∈ L (σ), since (ak : k) ⊇ a, for any k ∈ k, then ak ∈ L (σ), which is a

contradiction; in conclusion, a /∈ L (σ). Otherwise, if a, b ∈ A satisfy ab ∈ a, and h ∈ L (σ)

satisfies (ak : h) ⊆ A is prime, then abk ⊆ aa, and either ah ⊆ ak ⊆ a or bkh ⊆ ak ⊆ a. In

conclusion, a ⊆ A is totally σ–prime. □

Note that, if a ⊆ A is totally σ–prime, there exists an ideal h ∈ L (σ) such that ClA
σ
(a) = (a :

h) ⊆ A is prime; therefore, for every ideal h′ ∈ L (σ) we have (a : h′) ⊆ (a : h). But this condition

is not enough to get that a ⊆ A is totally σ–prime; it is further necessary that (a : h) ⊆ A be prime;

and, in consequence, that it be the σ–closure of a in A.

Theorem. 4.8.

Let σ be a hereditary torsion theory on Mod– A, the following statements hold:

(1) For any ideals h ∈ L (σ) and p ∈K (σ) the ideal ph ⊆ A is totally σ–prime.
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(2) For any totally σ–prime ideal a ⊆ A there exist ideals h ∈ L (σ) and p ∈ K (σ) such that

ph ⊆ a ⊆ p.

(3) Let a ⊆ A be an ideal, if there exist ideals h ∈ L (σ) and p ∈ K (σ) such that ph ⊆ a ⊆ p, then

(a : h) = p, and a ⊆ A is totally σ–prime.

Proof. (1) is a consequence of Proposition (4.7.).

(2). If a ⊆ A is totally σ–prime, there exists h ∈ L (σ) such that (a : h) ⊆ A is prime, and

ClA
σ
(a) = (a : h) belongs toK (σ), by Proposition (4.5.); obviously, ClA

σ
(a)h ⊆ a ⊆ ClA

σ
(a).

(3). Otherwise, let p ∈ K (σ), h ∈ L (σ), and a ⊆ A an ideal satisfying ph ⊆ a ⊆ p; we

claim a ⊆ A is totally σ–prime. First we note that ClA
σ
(ph) = ClA

σ
(a) = ClA

σ
(p) = p, and also that

(a : h) ⊆ A is σ–closed. Indeed, if x ∈ ClA
σ
((a : h)), there exists h′ ∈ L (σ) such that xh′ ⊆ (a : h),

hence xh′h ⊆ a, and x ∈ ClA
σ
(a) = p. Therefore, xh ⊆ ph ⊆ a, and x ∈ (a : h). On the other hand,

(a : h)h ⊆ a ⊆ p, so (a : h) ⊆ p, and since a ⊆ (a : h), then (a : h) = p. In conclusion, a ⊆ A is

totally σ–prime. □

Remark. 4.9.

Let a ⊆ A be a totally σ–prime ideal and ha = (a : ClA
σ
(a)), the following statements hold:

(1) For any prime ideal p ∈K (σ) the ideal hp is exactly the whole ring A.

In particular, p= (p : h) for any ideal h ∈ L (σ).

(2) For any ideals p ∈ K (σ) and h ∈ L (σ) we have ph = phph. Indeed, let a = ph, then

p = ClA
σ
(a) = (a : h) = (a : ha), hence h ⊆ ha. Otherwise, pha ⊆ a = ph ⊆ pha. Therefore,

ph= pha.

(3) For any totally σ–prime ideal a ⊆ A we have (a : h) = ClA
σ
(a), for any ideal h ∈ L (σ) such

that h ⊆ ha. In general we have ClA
σ
(a)h ⊆ a, and the equality is not always satisfied.

Let us show an example in which the different notions of prime ideal are independent.

Example. 4.10.

Let M = Z2∞ = {
a
2s +Z ∈ Q/Z | a ∈ Z, s ∈ N}, the Prüfer group, and A= M ⋊Z its idealization.

Let Σ = {(0, 2t) | t ∈ N}, and σ = σΣ, the hereditary torsion theory whose Gabriel filter is

L (σ) = {a ⊆ A | a∩Σ ̸=∅}.
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(1) The ideal a= M ⋊ 2Z ⊆ A is prime but it is not totally σ-prime because a ∈ L (σ).
(2) The ideal a = M ⋊ 12Z ⊆ A is not prime and it is totally σ–prime. Indeed, it we consider the

ideal h= M ⋊ 4Z, it satisfies h ∈ L (σ), and (a : h) = M ⋊ 3Z is a prime ideal.

(3) The ideal a= 0 ⊆ A isσ–prime but it is not totallyσ–prime. First observe that ClA
σ
(0) = M⋊0;

indeed, for any x = a
2s+Z ∈ M ⋊ 0 we have x(0,2s) = 0; therefore, a ⊆ A isσ–prime. Second,

if there exists an ideal h ∈ L (σ) such that (0 : h) ⊆ A is prime, then either there exists a prime

integer number p such that (0 : h) = M ⋊ pZ, i.e., h(M ⋊ pZ) = 0, and we have h ⊆ M ⋊ 0,

which is a contradiction, or (0 : h) = M ⋊ 0, and h(M ⋊ 0) = 0, so M ⋊ 0 is totally σ–torsion,

which is a contradiction.

4.2 Existence of totally prime ideals

One problem we are faced with is the existence of totally σ–prime ideals. Let us consider the

following example.

Example. 4.11.

Let K be a field, {Xn | n ∈ N} a set of numerably many indeterminates over K , and A the quotient

ring

A=
K[Xn | n ∈ N]

(X0, X 2
1 − X0, X 2

2 − X1, . . .)
.

We know that A is a zero–dimensional ring with maximal ideal m = (Xn | n ∈ N) satisfying

m2 = m and m ⊆ Nil(A). Under these conditions the hereditary torsion theory σ, whose Gabriel

filter is {m, A}, satisfiesK (σ) =∅. Consequently, there are not totally σ–prime ideals in A.

The existence of totally σ–prime ideals can be ensured by imposing some extra conditions;

for example, imposing that A is a σ–noetherian ring. In this case it is sufficient to show thatK (σ)

is non–empty.

Following [32], and section (3.1), an ideal a ⊆ A is totally σ–finitely generated whenever

there exists a finitely generated ideal a′ ⊆ a and an ideal h ∈ L (σ) such that a′h ⊆ a′ ⊆ a. The

ring A is totally σ–noetherian whenever every ideal is totally σ–finitely generated. In the same

way an ideal a ⊆ A is σ–finitely generated whenever there exists a finitely generated ideal a′ ⊆ A
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such that ClA
σ
(a) = ClA

σ
(a′), and the ring A is σ–noetherian whenever every ideal is σ–finitely

generated. Observe that every totally σ–noetherian ring is σ–noetherian; therefore, σ is of finite

type; i.e., the Gabriel filter L (σ) has a cofinal set of finitely generated ideals. The converse does

not necessarily hold.

The following result is well known.

Lemma. 4.12.

If A is a σ–noetherian ring, thenK (σ) ̸=∅.

Now we show that totally σ–noetherian ring can be characterized through prime and totally

σ–prime ideals.

Theorem. 4.13. (Cohen–like theorem)

Let σ be a hereditary torsion theory in Mod– A, the following statements are equivalent:

(a) A is totally σ–noetherian.

(b) Every totally σ–prime ideal is totally σ–finitely generated.

(c) Every prime ideal is totally σ–finitely generated.

Proof. (a)⇒ (b) is obvious.

(b) ⇒ (c). Let p ⊆ A be a prime ideal, either p ∈ L (σ) or p ∈ K (σ). In the first case p is

totally σ–finitely generated, and in the second one also because it is totally σ–prime.

(c)⇒ (a). See Corollary (3.5) in [32]. □

As it was shown in Theorem (4.8.), each totally σ–prime ideal defines a prime ideal inK (σ),

and there exists a plethora of totally σ–prime ideals defined by any prime ideal in K (σ). All

these ideals constitute an equivalence class for a convenient equivalence relation. Each class has a

maximum element; the existence of minimal elements in these equivalence classes depends of the

properties that L (σ) satisfies. For instance, if there exists a minimal element in L (σ), there is a

minimal element in each of these classes.

A hereditary torsion theory σ is jansian whenever L (σ) has a minimal element, say h. In

this case h ⊆ A must be an idempotent ideal.
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Proposition. 4.14.

Let σ be a jansian hereditary torsion theory in Mod– A, and let h ∈ L (σ) be minimal element, the

following statements holds:

(1) For any prime ideal p ∈K (σ) the class

{a ⊆ A | ClA
σ
(a) = p and a ⊆ A is totally σ–prime}

has a minimal element.

(2) For any ideal c ⊆ A the class

S = {a ⊆ A | a ⊇ c and a ⊆ A is totally σ–prime}

has minimal elements whenever it is non–empty.

Proof. (1) is obvious from Theorem (4.8.).

(2). Let {ai | i ∈ I} be a chain in S . For any a ∈ S there exists h ∈ L (σ) such that

(a : h) ⊆ A is prime. In consequence, (∩iai : h) = ∩i(ai : h) is the intersection of a chain of

prime ideals, hence it is a prime ideal, and ∩iai ⊆ A is totally σ–prime. By Zorn’s lemma, if S is

non–empty, it has minimal elements. □

A minimal element in the former class S is called a minimal totally σ–prime ideal over c.

Theorem. 4.15.

Let A be a totallyσ–noetherian ring, and c /∈ L (σ), there exist finitely many totallyσ–prime ideals

a1, . . . ,at and an ideal h ∈ L (σ) such that c ⊆ ai, for any index i = 1, . . . , t, and a1 · · ·ath ⊆ c.

We may take a1, . . . ,at ∈K (σ).

This is a generalization of [28, Theorem 5]

Proof. Let us define a class of ideals:

F = {c ⊆ A | for any family of totally σ–prime submodules

a1, . . . ,at ⊆ A and any h ∈ L (σ) we have a1 · · ·ath ⊈ c}.
48



If F ̸= ∅, since for any chain {ci | i ∈ I} in F we have ∪ici ∈ F , by Zorn’s lemma there are

maximal elements in F . Indeed, if ∪ici /∈ F , there are a1, . . . ,at ⊆ A totally σ–prime ideals and

h ∈ L (σ) (finitely generated) such that a1 · · ·ath ⊆ c. There are finitely generated ideals f j and

ideals h j ∈ L (σ) such that a jh j ⊆ f j ⊆ a j, for any index j = 1, . . . , t; hence a1h1 · · ·athth ⊆

f1 · · · fth ⊆ a1 · · ·ath ⊆ c. Since f1 · · · fth is finitely generated, there is an index i ∈ I such that

a1h1 · · ·athth ⊆ f1 · · · fth ⊆ ci, which is a contradiction.

Let c ∈ F be a maximal element. If c ∈ L (σ), for every totally σ–prime ideal a ⊆ A we

have ac ⊆ c, which is a contradiction; hence, c /∈ L (σ), and it is not totally σ–prime. Therefore,

there are elements a1, a2 ∈ A such that a1a2 ∈ c, and for every ideal h ∈ L (σ) we have a1h, a2h ⊈
c. Hence c + a1h, c + a2h ⊉ c, and they do not belong to F . There exist totally prime ideals

a1,1, . . . ,a1,t1
,a2,1, . . . ,a2,t2

, and ideals h1,h2 ∈ L (σ) such that ak,1 · · ·ak,tk
hk ⊆ c+ akh, and their

product satisfies:

a1,1 · · ·a1,t1
h1a2,1 · · ·a2,t2

h2 ⊆ (c+ a1h)(c+ a2h) ⊆ c,

which is a contradiction. In consequence, every maximal element in F is totally σ–prime, which

is also a contradiction. In conclusion, F must be empty and the result holds. □

We may enhanced this result to show that there are only finitely many prime ideals p1, . . . ,pt ∈

K (σ), minimal prime over c, satisfying this result.

Corollary. 4.16.

Let A be a totally σ–noetherian ring, and c /∈ L (σ), there exist finitely many prime ideals

p1, . . . ,pt ∈ K (σ), minimal prime over c, and an ideal h ∈ L (σ) such that c ⊆ pi, for any index

i = 1, . . . , t, and p1 · · ·pth ⊆ c.

In addition, every minimal prime ideal over c belongs to {p1, . . . ,pt}.

Proof. We may assume each ideal ai = pi, in the proposition is prime, hence pi ∈ K (σ).

For any prime ideal p ∈ K (σ), minimal over c we have p1 · · ·pth ⊆ c ⊆ p, hence there exists an

index i such that pi ⊆ p; therefore p= pi.

We may assume the elements in {p1, . . . ,pt} are incomparable; given pi there exists a prime

ideal p ∈ K (σ) minimal prime over c satisfying c ⊇ p ⊆ pi, hence pi ⊆ p, and pi is minimal prime
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over c. □
Corollary. 4.17.

Let A be a totally σ–noetherian ring, for any c /∈ L (σ) there exists an ideal h ∈ L (σ) such that

ClA
σ
(c)th ⊆ c, for some t ∈ N.

Proof. By the theorem there exist totally σ–prime ideals a1, . . . ,at ⊇ c and h ∈ L (σ) such

that a1 · · ·ath ⊆ c. For any index i = 1, . . . , t there exists hi ∈ L (σ) such that ClA
σ
(ai)hi ⊆ ai, and

ClA
σ
(c) ⊆ ClA

σ
(ai), hence we have

ClA
σ
(c)t
�

∏

i

hi

�

h=

�

t
∏

i=1

(ClA
σ
(c)hi)

�

h ⊆

�

t
∏

i=1

(ClA
σ
(ai)hi)

�

h ⊆

�

t
∏

i=1

ai

�

h ⊆ c.

□
Corollary. 4.18.

Let A be a totally σ–noetherian ring; for any ideal c ⊆ A such that c /∈ L (σ) if a ⊇ c is a minimal

totally σ–prime ideal over c, there exist ideals a′ ⊆ A and h ∈ L (σ) such that a= c+ a′h.

Proof. There are totally σ–prime ideals a1, . . . ,at ⊆ A and h ∈ L (σ) such that a1 · · ·ath ⊆ a,

and there exists h′ ∈ L (σ) and an index i such that aih
′ ⊆ a. Since c+ aih

′ ⊆ A is totally σ–prime

(it is enough to take quotient by c, and use that ai
c h ⊆

A
c is totallyσ–prime). Now, since a is minimal

over c, then c= c+ aih
′. □

The existence of only finitely many totally σ–prime which are minimal over an ideal c ⊆ A

satisfying c /∈ L (σ) can be proved whenever we impose together the conditions that appear in

Proposition (4.14.) and in Theorem (4.15.).

The existence of minimal totally σ–prime ideals is assured whenever σ is jansian; but in this

case if A totally σ–noetherian and σ jansian then that L (σ) = {h′ ⊆ A | h ⊆ h′} for some finitely

generated idempotent ideal h ⊆ A. Since h is generated by an idempotent element, there exists

a decomposition A = eA⊕ (1 − e)A. In this case, an A–module M is σ–torsionfree whenever M

is a (1− e)A–module, and σ–torsion whenever it is an eA–module. Therefore, if a ⊆ A is totally

σ–prime, then a= ea⊕ (1− e)a, ClA
σ
(a) = eA⊕ (1− e)a, and

A

ClA
σ
(a)
= 0⊕

(1− e)A
(1− e)a

.
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4.3 Ring extensions

For any ring map f : A −→ B and any hereditary torsion theory σ in Mod– A there exists a

hereditary torsion theory σ in Mod– B whose Gabriel filter is L (σ) = {h ⊆ B | f −1(h) ∈ L (σ)}.

If there is no confusion we can represent σ simply as σ.

Let us consider the particular case of the ring extension A −→ A[X ], the polynomial ring

extension.
Lemma. 4.19.

Let σ be a hereditary torsion theory in Mod– A, and σ be the induced hereditary torsion theory in

Mod– A[X ]. For any ideal a ⊆ A such that a /∈ L (σ), the following statements are equivalent:

(a) a ⊆ A is totally σ–prime.

(b) a[X ] ⊆ A[X ] is totally σ–prime.

This is an extension of [28, Example 4].

Proof. Since a /∈ L (σ), then a[X ] /∈ L (σ); in particular, σ is non–trivial in Mod– A[X ].

(a) ⇒ (b). Let h ∈ L (σ) be an ideal such that (a : h) ⊆ A is prime. Let F, G ∈ A[X ] such

that FG ∈ a[X ], since (a : h)[X ] ⊆ A[X ] is prime, either F ∈ (a : h)[X ] or G ∈ (a : h)[X ], and

either Fh ⊆ a[X ], hence Fh[X ] ⊆ a[X ], or Gh ⊆ a[X ], hence Fh[X ] ⊆ a[X ]. In consequence,

a[X ] ⊆ A[X ] is totally σ–prime.

(b)⇒ (a). Let h′ ∈ L (σ) be an ideal associated to a[X ]. Let a, b ∈ A such that ab ∈ a, then

ab ∈ a[X ], and either ah′ ⊆ a[X ] or bh′ ⊆ a[X ], hence either a(h′∩A) ⊆ a or b(h′∩A) ⊆ a. □

This result holds, more in general, in one direction, if we consider an arbitrary ring extension.

Proposition. 4.20.

Let A ⊆ B be a ring extension, and σ be a hereditary torsion theory in Mod– A. For any totally

σ–prime ideal c ⊆ B the ideal c∩ A⊆ A is totally σ–prime.

Proof. First we observe that c∩ A /∈ L (σ). On the other hand, let h ∈ L (σ) the associated

ideal to c. Let a, b ∈ A such that ab ∈ c∩ A; since ab ∈ c, we have either ah ⊆ c or bh ⊆ c, hence

either a(h∩ A) ⊆ c∩ A or b(h∩ A) ⊆ c∩ A. □
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For any ring map f : A−→ B the result also holds. To prove it, we only need to show that it

holds whenever f is surjective.

Proposition. 4.21.

Let f : A−→ B be a surjective map and σ be a hereditary torsion theory in Mod– A. For any ideal

totally σ–prime ideal c ⊆ B then f −1(c) ⊆ A is totally σ–prime.

Proof. First observe that f −1(c) ⊆ A does not belong toL (σ). Let h ∈ L (σ), the associated

ideal to c ⊆ B. For any a, b ∈ A such that ab ∈ f −1(c), since f (a) f (b) ∈ c, then either f (a)h ⊆ c

or f (b)h ⊆ c. Therefore, either f (a f −1(h)) ⊆ f (a)h ⊆ c, and a f −1(h) ⊆ f −1(c), and, in the same

way, we could obtain b f −1(h) ⊆ f −1(c). □

Corollary. 4.22.

Let σ be a hereditary torsion theory in Mod– A, c ⊆ A be an ideal and σ the induced hereditary

torsion theory in Mod– A/c. The following statements hold:

(1) For any totally σ–prime ideal a/c ⊆ A/c the ideal a ⊆ A is totally σ–prime.

(2) For any totally σ–prime ideal a such that c ⊆ a ⊆ A we have a/c ⊆ A/c is totally σ–prime.

(3) There exists a bijective correspondence between totally σ–prime ideals of A/c and totally

σ–prime ideals a ⊆ A such that c ⊆ a ⊆ A.

Proof. Let us show a proof for (2). If c ⊆ a ⊆ A is totally σ–prime then a /∈ L (σ), hence

a/c /∈ L (σ). Let h ∈ L (σ) be an ideal such that (a : h) ⊆ A is prime. We have c ⊆ a ⊆ (a : h), and

(a : h)/c = (a/c : (h+ c)/c) ⊆ A/c is prime. Otherwise, (h+ c)/c ∈ L (σ) In conclusion, a/c ⊆ A

is totally σ–prime. □

Lemma. 4.23. (Prime avoidance lemma)

Let σ be a hereditary torsion theory in Mod– A and a1, . . . ,at ⊆ A be totally σ–prime ideals. For

any ideal a ⊆ a1 ∪ · · · ∪ at there exist an index i ∈ {1, . . . , t} and an ideal h ∈ L (σ) such that

ah ⊆ ai.

Proof. For any index i there exists an ideal hi ∈ L (σ) such that (ai : hi) ⊆ A is prime. We

have the inclusion a ⊆ a1 ∪ · · · ∪ at ⊆ (a1 : h1)∪ · · · ∪ (at : ht), hence there is an index i such that

a ⊆ (ai : hi), and ahi ⊆ ai. □
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The radical of an ideal c ⊆ A is defined as the intersection of all prime ideals containing

c. The behaviour of totally σ-prime ideals with respect to the radical is studied in the following

results.
Lemma. 4.24.

Let a, c ⊆ A be ideals such that a ⊆ A is totally σ–prime and c ⊆ a, there exists an ideal h ∈ L (σ)

such that rad(c)h ⊆ a.

Proof. Since a ⊆ A is totally σ–prime, there exists h ∈ L (σ) such that (a : h) ⊆ A is prime.

Since c ⊆ a ⊆ (a : h), then rad(c) ⊆ (a : h), and rad(c)h ⊆ a. □

The result can be enhanced as follows.
Proposition. 4.25.

Let a1, . . . ,at ⊆ A be totally σ–prime ideals, there exists an ideal h ∈ L (σ) such that rad(a1∩· · ·∩

at)h ⊆ a1 ∩ · · · ∩ at .

Proof. For any index i, since ai ⊆ A is totally σ–prime, there exists an ideal hi ∈ L (σ) such

that (ai : hi) ⊆ A is prime. If we define h= h1 ∩ · · · ∩ ht , then

rad(a1 ∩ · · · ∩ at) ⊆ (a1 : h1)∩ · · · ∩ (at : ht)

⊆ (a1 : h)∩ · · · (at : h) = (a1 ∩ · · · ∩ at : h).

Therefore, rad(a1 ∩ · · · ∩ at)h ⊆ a1 ∩ · · · ∩ at . □

Let σ be a hereditary torsion theory in Mod– A, let Σ ⊆ A be a multiplicatively closed subset,

and λ : A −→ Σ−1A the canonical map. For any ideal a ⊆ A let Σ−1a = λ(a)Σ−1A, and ClA
Σ
(a) =

{a ∈ A | there exists t ∈ Σ such that at ∈ a} = λ−1(Σ−1a). There exists a hereditary torsion

theory σ in Mod–Σ−1A whose Gabriel filter is L (σ) = {c ⊆ Σ−1A | λ−1(c) ∈ L (σ)}.

Lemma. 4.26.

If a ⊆ A is a totally σ–prime ideal such that ClA
Σ
(a) /∈ L (σ), then Σ−1a ⊆ Σ−1A is totally σ prime.

Proof. Since a ⊆ A is totally σ–prime, then Σ−1a /∈ L (σ) because ClA
Σ
(a) /∈ L (σ). There

exists h ∈ L (σ) such that (a : h) ⊆ a is prime, and we have Σ−1h ∈ L (σ). For any a, b ∈ A if
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(a/1)(b/1) ∈ Σ−1a, there exists t ∈ Σ such that abt ∈ a; hence either ah ⊆ a or bth ⊆ a. In

consequence, either λ(a)Σ−1h ⊆ Σ−1a or λ(b)Σ−1h ⊆ a, and Σ−1a ⊆ Σ−1A is totally σ–prime.

□
Proposition. 4.27.

Let σ be a hereditary torsion theory in Mod– A, and Σ ⊆ A be a multiplicatively closed subset.

There exists a bijective correspondence between totallyσ–prime ideals inΣ−1A and totallyσ–prime

ideals a ⊆ A such that ClA
Σ
(a) /∈ L (σ).

Proof. Let c ⊆ Σ−1A be a totally σ–prime ideal, and h ∈ L (σ) such that (c : h) ⊆ Σ−1A is

prime. Let p ⊆ A be a prime ideal such that Σ−1p = (c : h). Hence Σ−1ph ⊆ c, and pλ−1(h) =

λ−1(Σ−1ph) ⊆ λ−1(c). Therefore, p ⊆ (λ−1(c) : λ−1(h)). Otherwise, if x ∈ (λ−1(c) : λ−1(h)), then

xλ−1(h) ⊆ λ−1(c), and λ(x)h ⊆ c. Hence λ(x) ∈ (c : h), and x ∈ λ−1(c : h) = p. In conclusion,

λ−1(c) ⊆ A is totally σ–prime and ClA
Σ
(λ−1(c)) /∈ L (σ).

The bijective correspondence is obvious. □

Remark. 4.28.

To get the condition ClA
Σ
(a) /∈ L (σ), it is sufficient to show that ClA

Σ
(a) ⊆ ClA

σ
(a); i.e., that the

module ClA
Σ
(a)/a is σ–torsion.

Proposition. 4.29.

Let a ⊆ A be a totally σ–prime ideal. If p = ClA
σ
(a), then σ ≤ σA\p. In this situation, a ⊆ A is

totally σA\p–prime.

Proof. Since σ ≤ σA\p, we only need to show that a /∈ L (σA\p). In the contrary, if a ∈

L (σA\p), then a ⊈ p, which is a contradiction. □

Compare the next result with Theorem (4.15.).

Proposition. 4.30.

Let A be a σ–noetherian ring and a ⊆ A be a totally σ–prime ideal, then there exist only finitely

many prime ideals p1, . . . ,pt ∈ K (σ) which are minimal over a. In addition, a ⊆ A is totally

σA\pi
–prime, for any index i = 1, . . . , t.
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Proof. For any prime ideal p ∈ K (σ) containing a we have a ⊆ ClA
σ
(a) ⊆ p, and there are

only finitely many prime ideals inK (σ) containing ClA
σ
(a) since R is σ–noetherian, hence the first

part of this result holds. The second part is a consequence of the inclusions a ⊆ pi for any index

i = 1, . . . , t, and Proposition (4.27.). □

The converse of the last result does not hold; i.e., if A is σ–noetherian, p1, . . . ,pt ∈K (σ) are

minimal ideal over and ideal a ⊆ A such that σ = σA\p1
∧ · · · ∧σA\pt

, if a ⊆ A is totally σA\pi
–prime

for any index i = 1, . . . , t, not necessarily a ⊆ A is totally σ–prime.

Example. 4.31.

Let A = Z6, p1 = 2A, p2 = 3A, whose Gabriel filters are: L (σA\p1
) = {3A, A} and L (σA\p2

) =

{2A, A}. First we have L (σ) = {A}, whenever σ = σA\p1
∧ σA\p2

. The zero ideal 0 ⊆ A is not

totally σ–prime, but it is totally σA\pi
–prime for any index i = 1,2.

In a natural way the following problem arises: How one can characterize ideals a ⊆ A such

that a ⊆ A is totally σA\p–prime?

Observe that

(1) a ⊆ A is not σA\p–dense, hence a ⊆ p.

(2) Since a ⊆ A is totally σA\p–prime, then q := ClA
σ
(a) = (a : h) ⊆ A is prime, hence q ⊆ p, and

h ⊈ p; in consequence, (a : q) ⊈ p.

(3) The following relationship holds: (a : (a : q)) = q.

The converse also holds, i.e., given an ideal a ⊆ A and a prime ideal p ⊆ A, if a ⊈ p, and

q := (a : (a : q)) for some prime ideal q ⊆ p, and (a : q) ⊈ p, then a ⊆ A is totally σA\p–prime.

4.4 Prime submodules

For any A–module M and any submodule, we have the following definitions:

• N ⊆ M is prime if N ̸= M and for any m ∈ M and a ∈ A, if ma ∈ N , then either m ∈ N or

Ma ⊆ N , i.e., a ∈ (N : M).
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• N ⊆ M is σ–prime if N = ClM
σ
(N) ̸= M and for any m ∈ M and a ∈ A, if ma ∈ N , then

either m ∈ N or Ma ⊆ N , i.e., a ∈ (N : M).

• N ⊆ M is totally σ–prime if for every k ∈ L (σ) we have Mk ⊈ N , i.e., M/N is not totally

σ–torsion, and there exists h ∈ L (σ) such that for any m ∈ M and a ∈ A, if ma ∈ N , then

either m ∈ (N : h) or Ma ⊆ (N : h), i.e., a ∈ (N : M).

The module M is prime (resp. totally σ–prime, σ–prime) whenever 0 ⊆ A is a prime (resp.

totally σ–prime, σ–prime) submodule.

Note the difference between totally σ–prime ideal and totally σ–prime submodule, and that

in both cases we have imposed the condition that the quotient be totally σ–torsion.

Let us analyse the different notions of prime submodule.

σ–prime submodules
Lemma. 4.32.

If N ⊆ M is a submodule such that N ̸= M , the following statements are equivalent:

(a) N ⊆ M is a σ–prime submodule.

(b) N
σN
∼= σM+N

σM ⊆
M
σM is a σ–prime submodule.

(c) N ⊆ M is prime.

Proof. For any submodule N ⊆ M let eN = σM+N
σM , and eM = M/σM .

(a) ⇒ (b). Let em ∈ eM and a ∈ A; if ema ∈ eN , there exist t ∈ σM and n ∈ N such that

ema =àt + n. Let h = Ann(t) ∈ L (σ), then mah = nh ∈ N , hence either m ∈ N or Mah ⊆ N , and

Ma ∈ N . Therefore either em ∈ N
σM or eMa ∈ N

σM .

(b)⇒ (a). Let ma ∈ N , then ema ∈ eN , and either em ∈ eN = N
σM or eMa ⊆ eN . Therefore, either

m ∈ N or Ma ⊆ N .

(a)⇒ (c). Let m ∈ M and a ∈ A such that ma ∈ N , there exists h ∈ L (σ) such that mah ⊆ N ,

then either m ∈ N or Mah ⊆ N , hence Ma ⊆ N .

(c)⇒ (a). Let m ∈ M and a ∈ A such that ma ∈ N ⊆ N , hence either m ∈ N or Ma ⊆ N , and

N ⊆ M is σ–prime. □
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Corollary. 4.33.

Let N ⊆ M be a σ–closed submodule, the following statements are equivalent:

(a) N ⊆ M is σ–prime.

(b) N ⊆ M is prime.

Lemma. 4.34.

Let N ⊆ M be a submodule; always we have (N : M) ⊆ (N : M), and if M is finitely generated,

then we have the equality.

Proof. If a ∈ (N : M) there exists h ∈ L (σ) such that ah ⊆ (N : M), hence Mah ⊆ N , and

a ∈ (N : M).

Otherwise, if a ∈ (N : M), then Ma ⊆ N , and since M is finitely generated, there exists

h ∈ L (σ) such that Mah ⊆ N , hence a ∈ (N : M). □

Proposition. 4.35.

If N ⊆ M is a σ–prime submodule, and M is finitely generated, then (N : M) ⊆ A is σ–prime.

Proof. Let a, b ∈ A such that ab ∈ (N : M). If a /∈ (N : M) = (N : M), for every h ∈ L (σ)

we have ah ⊈ (N : M), hence Mah ⊈ N . Since M is finitely generated, then Ma ⊈ N . Since

Mab ⊆ N , and Ma ⊈ N , then M b ⊆ N , hence b ∈ (N : M) = (N : M). □

Totally σ–prime submodules

First we show that totallyσ–prime submodules can be characterized through prime submodules.

Indeed, we have:

Proposition. 4.36.

Let N ⊆ M be a submodule such that M/N is not totally σ–torsion, the following statements are

equivalent:

(a) N ⊆ M is totally σ–prime.

(b) There exists h ∈ L (σ) such that (N : h) ⊆ M is prime.

(c) There exists an ideal h ∈ L (σ) such that N = (N : h), and N ⊆ M is prime.
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In this case, (N : h′) ⊆ (N : h), for any h′ ∈ L (σ), and (N : h′) = (N : h) whenever h′ ⊆ h.

Proof. (a)⇒ (b). Let h ∈ L satisfying that for any m ∈ M and a ∈ A such that ma ∈ N then

either mh ⊆ N or Mah ⊆ N . If ma ∈ (N : h), then mah ⊆ N , and either mh ⊆ N or Mah ⊆ N .

Therefore, either m ∈ (N : h) or Ma ⊆ (N : h).

(b)⇒ (a). Let ma ∈ N ⊆ (N : h), then either m ∈ (N : h) or Ma ⊆ (N : h), and N ⊆ M is

totally σ–prime.

Now we claim that (N : h) = N . Indeed, we only need to prove the inclusion N ⊆ (N : h). If

m ∈ N , there exists d ∈ L (σ) such that md ⊆ N , hence either mh ⊆ N or Mdh ⊆ N ; in the second

case M/N is totally σ–torsion; therefore, m ∈ (N : h), and the claim holds. In consequence, for

any h′′ ∈ L (σ) we have (N : h′′) ⊆ (N : h); and if h′ ∈ L (σ) satisfies h′ ⊆ h, then (N : h′) = (N :

h) = N . □

Observe that the condition N = (N : h) for some h ∈ L (σ) is not enough to get that N ⊆ M

is totally σ–prime; it is necessary that, in addition, N ⊆ M is prime.

Remark. 4.37.

Similarly to the case of totaly σ–prime ideals, we may establish the result of Lemma (4.4.) for

modules. Therefore, if N ⊆ M is a totally σ–prime submodule, we can take h= Ann(σ(M/N)) =

(N : N), and it satisfies N = (N : h) ⊆ M is a prime submodule.

Corollary. 4.38.

Let N ⊆ M be a σ–closed submodule, the following statements are equivalent:
(a) N ⊆ M is totally σ–prime.

(b) N ⊆ M is prime.

The following results are immediate from the definition.

Lemma. 4.39.

Let σ1 ≤ σ2 hereditary torsion theories in Mod– A. If N ⊆ M is a totally σ1–prime submodule,

and ClM
σ2
(N) ̸= M , then N ⊆ M is totally σ2–prime.

Lemma. 4.40.

Let N ⊆ M be a submodule such that M/N is not totally σ–torsion, the following statements are

equivalent:
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(a) N ⊆ M is totally σ–prime.

(b) There exists h ∈ L (σ) such that for every L ⊆ M and a ⊆ A, if La ⊆ N , then either Lh ⊆ N or

Mah ⊆ N .

There is also a relationship between totally σ–prime submodules and totally σ–prime ideals.

Remember that such a relationship does not exist in the case of σ–prime submodule, where we

needed to impose the extra condition that the ambient module was finitely generated.

Lemma. 4.41.

Let N ⊆ M be a totally σ-prime submodule, then (N : M) ⊆ A is a totally σ–prime ideal.

Proof. Let a, b ∈ A such that ab ∈ (N : M), and h ∈ L (σ) such that (N : h) ⊆ M is prime.

If ah ⊈ (N : M), then Mah ⊈ N . Let m ∈ M such that mah ⊈ N . Since mab ∈ M , then either

mah ⊆ N or M bh ⊆ N . In consequence, M bh ⊆ N , and bh ⊆ (N : M). □

There a method to build totallyσ–prime submodules from a given primeσ–closed submodule

as the following proposition shows.

Proposition. 4.42.

Let N ⊆ M be a totally σ–prime submodule, then for any h′ ∈ L (σ) we have that Nh′ ⊆ M is

totally σ-prime.

Proof. Let ma ∈ Nh′ ⊆ N , and h ∈ L (σ) such that (N : h) ⊆ M is prime, hence either

mh ⊆ N or Mah ⊆ N . In consequence, either mhh′ ⊆ N or Mahh′ ⊆ N . □

Proposition. 4.43.

Let N ⊆ M be a submodule such that M/N is not totally σ–torsion, the following statements are

equivalent:

(a) N ⊆ M is totally σ–prime.

(b) N ⊆ M is prime and there exists h ∈ L (σ) such that (N : h′) ⊆ (N : h) for any h′ ∈ L (σ).

Proof. We only need to prove that (b)⇒ (a). Let ma ∈ N ⊆ N , hence either m ∈ N or Ma ⊆

N . If m ∈ N , there exists h′ ∈ L such that ah′ ⊆ N , hence m ∈ (N : h′) ⊆ (N : h). If Ma ∈ N ,
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for every x ∈ M there exists hx ∈ L (σ) such that xahx ⊆ N , hence xa ∈ (N : hx) ⊆ (Nh). In

conclusion, N ⊆ M is totally σ–prime. □

This is a generalization of [50, Proposition 2.17].

In addition we have the following result that characterizes totally σ–prime submodules.

Proposition. 4.44.

Let N ⊆ M be a totally σ–prime submodule, and h′ ∈ L (σ). Then any submodule N ′ ⊆ M such

that Nh′ ⊆ N ′ ⊆ N is totally σ–prime in M .

Proof. Let m ∈ M and a ∈ A such that ma ∈ N ′ ⊆ N , and h ∈ L (σ) such that (N : h) ⊆ M

is prime. Then either mh ⊆ N or Mah ⊆ N . In consequence either mhh′ ⊆ Nh′ ⊆ N ′ or Mahh′ ⊆

Nh ⊆ N ′. □

In consequence, for any A–module M if there exists a totally σ–prime submodule N ⊆ M ,

then N ⊆ M is a prime submodule, and conversely, for any prime σ–closed submodule N ⊆ M

and any ideal h ∈ L (σ), then Nh ⊆ M is totally σ–prime. We have shown that, essentially, these

are the totally σ-prime submodules of M ; see Proposition (4.44.).

The totally σ–prime submodules also characterize a particular class of modules: the totally

σ–noetherian modules. Let us show an extension of Cohen–like’s theorem as appears in [32,

Corollary 3.5].

Theorem. 4.45. (Cohen–like theorem)

Let M be a totally σ–finitely generated A–module, the following statements are equivalent:

(a) M is totally σ–noetherian.

(b) Every totally σ–prime submodule is totally σ–finitely generated.

(c) Every σ–prime submodule is totally σ–finitely generated.

(d) Every σ–closed prime submodule P ⊆ M is totally finitely generated.

Proof. (a)⇒ (b)⇒ (c)⇒ (d) are obvious.

(d)⇒ (a). Let Γ = {N ⊆ M | N is not totally σ–finitely generated}. This set does not contain

M . If it is non–empty, since it is inductive, by Zorn’s lemma it has maximal elements. Let N ∈ Γ
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maximal. We show N ⊆ M is prime. Indeed, if there are m ∈ M \ N and a ∈ A such that ma ∈ N ,

and Ma ⊈ N , we consider the short exact sequence: 0→ (N : a)a
α
→ N ×Ma

β
→ N +Ma → 0,

being α(x) = (x , x) and β(y, z) = y − z, for obvious elements x , y and z. By the maximality

of N we obtain that (N : a) % N , hence it is totally σ–finitely generated, hence (N : a)a is; and

similarly N +Ma is totally σ–finitely generated. Therefore, N ×Ma is, and N is totally σ–finitely

generated, which is a contradiction.

In addition, every N maximal in Γ is σ–closed. Indeed, if N $ N , there exists m ∈ N \N and

h ∈ L (σ) such that mh ⊆ N , hence Mh ⊆ N , and N is totally σ–finitely generated as M is, which

is a contradiction. In conclusion, every maximal element in Γ is a prime σ–closed submodule

of M that, by hypothesis, is totally σ–finitely generated; thus, Γ must be empty and M is totally

σ–noetherian. □

Observe that, in this case, we have no any extra condition on the hereditary torsion theory σ.

In the case in which M = A we have that σ must of finite type; and under this condition we have

more characterizations of totally σ–noetherian modules.

Corollary. 4.46.

Let σ be a finite type hereditary torsion theory in Mod– A. If M is a totally σ–finitely generated

A–module, the following statements are equivalent:
(a) M is totally σ–noetherian.

(e) Ma ⊆ M is totally σ–finitely generated for every totally σ–prime ideal a ∈ A.

(f) Mp ⊆ M is totally σ–finitely generated for every p ∈K (σ).

Proof. (a)⇒ (e), and (e)⇒ (f) are obvious.

(f)⇒ (a). Following the proof in the above theorem, we find that if N ∈ Γ is maximal, then

(N : M) ⊆ A is prime and σ–closed, hence (N : M) ∈ K (σ). Therefore, N(N : M) ⊆ N is totally

σ–finitely generated.

Let us call p := (N : M). By hypothesis M is totally σ–finitely generated, hence there are

m1, . . . , mt ∈ M and h1 ∈ L (σ) such that Mh1 ⊆ (m1, . . . , mt) ⊆ M . In consequence, using

Remark (4.9.),

(N : M) ⊆ (N : (m1, . . . , mt)) ⊆ (N : Mh1) = (N : M).
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Therefore, p = (N : (m1, . . . , mt)) = ∩t
i=1(N : mi), and there exists an index i ∈ {1, . . . , t} such

that p = (N : mi). Obviously mi ∈ M \ N , hence N + miA is totally σ–finitely generated, and

there exist n1, . . . , ns ∈ N and h2 ∈ L (σ) such that (N + miA)h2 ⊆ (n1, . . . , ns, mi) ⊆ N +miA.

Therefore, Nh2 ⊆ (n1, . . . , ns)+mip ⊆ (n1, . . . , ns)+Mp. Since Mp is totally σ–finitely generated,

there exist x1, . . . , x r ∈ M and h3 ∈ L (σ), that we can take finitely generated, such that Mph3 ⊆

(x1, . . . , x r) ⊆ Mp. In consequence, we have:

Nh2h3 ⊆ (n1, . . . , ns)h3 +Mph3 ⊆ (n1, . . . , ns)h3 + (x1, . . . , x r) ⊆ N ,

and N is totally σ–finitely generated, which is a contradiction. □

This is a generalization of [50, Proposition 2.22], and [5, Proposition 4].

4.5 Modules and ring extensions

First we consider the case of a module map, and the behaviour of totally prime submodules;

the proof is straightforward.
Proposition. 4.47.

(1) Let f : M1 −→ M2 be a module map. If N2 ⊆ M2 is a totally σ–prime submodule, and

M1/ f −1(N2) is not totally σ–torsion then f −1(N2) ⊆ M1 is totally σ–prime.

(2) Let f : M1 −→ M2 be an epimorphism, there is a bijective correspondence between totally

σ–prime submodules of M2 and totally σ–prime submodules N ⊆ M such that Ker( f ) ⊆ N .

A classical result says that an A–module M is prime if, and only if, Ann(M) ⊆ A is prime and

M is torsionfree over A/Ann(M). We try to recover a similar result in the case of totally σ–prime

modules.

Let M be a totallyσ–prime A–module, then Ann(M) ⊆ A is totallyσ–prime, hence Ann(M) ⊆

A is prime, see Lemma (4.4.). In consequence, M , which is an A–module, is naturally an A/Ann(M)–module,

and M/σM is an A/Ann(M)–module. Since A/Ann(M) is an integral domain, we obtain that

M is a torsionfree A/Ann(M)–module whenever, for any m = m + σM ∈ M/σM and any
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a = a + Ann(M) ∈ A/Ann(M), if m a = 0, then either m = 0 or a = 0. This means that there

exists h ∈ L (σ) such that mh= 0 and ah ∈ Ann(M), i.e., ah= 0 in A/Ann(M).

Thus, the following definition appears in a natural way: an A–module M is totallyσ–torsionfree

whenever there exists an ideal h ∈ L (σ) such that for any m ∈ M and any a ∈ A, if ma = 0, then

either mh= 0 or ah= 0. See [50].

With this background, if σ is the hereditary torsion theory induced by σ in A/Ann(M), we

have:
Proposition. 4.48.

Let M be an A–module which is not totally σ–torsion. The following statements are equivalent:

(a) M is totally σ–prime.

(b) Ann(M) ⊆ A is totally σ–prime and M is a totally σ–torsionfree module over A/Ann(M).

Proof. (a) ⇒ (b). Let h = (0 : σM) ∈ L (σ) be an ideal such that σM = (0 : h) ⊆ M is

prime, see Proposition (4.36.). Let m ∈ M , a ∈ A, and a = a + Ann(M), such that ma = 0, then

ma = 0, and either mh= 0 or Mah= 0, hence ah= 0, and M is totally σ–torsionfree.

(b)⇒ (a). Let h ∈ L (σ) be an ideal such that (Ann(M) : h) ⊆ A is prime and either mh = 0

or ah = 0 whenever ma = 0. Let m ∈ M and a ∈ A such that ma = 0, then ma = 0, hence either

mh= 0 or ah= 0, and ah ∈ Ann(M) = (0 : M). In conclusion, M is prime. □

Corollary. 4.49.

If M is totally σ–prime, then M/σM is a torsionfree A/Ann(M)–module.

Proof. If m a = 0, then ma ∈ σM , and there exists h′ ∈ L (σ) such that mah′ = 0.

Therefore, since M is totally σ–torsionfree, as A/Ann(M)–module, there exists h ∈ L (σ) such

that either mh = 0 or ah = 0. In the first case, m ∈ σM , son m = 0. In the second case, since

ah= 0, then ah ⊆ Ann(M), and a ∈ Ann(M), i.e., a = 0. □

Observe that m represents the class of m ∈ M in M/σM , and if a ∈ A, then a represents

either that class of a in A/Ann(M) or the class of A in A/Ann(M) depending of the context.
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The converse of this corollary does not necessarily hold as the following example shows,

i.e., if M is not totally σ–torsion, Ann(M) ⊆ A is totally σ–prime, and M/σM is torsionfree as

A/Ann(M)–module, it may be that M is not totally σ–prime.

Example. 4.50.

Consider A = Z, and M = Z2∞ . Then Ann(M) = 0 ⊆ Z is prime. Take σ the hereditary torsion

theory defined by Σ, the multiplicative subset of all integers whose prime factors are different

of 2. In this case Ann(M) = 0, because Z is an integral domain. Otherwise, M = σM , hence

M/σM = 0 is a torsionfree A/Ann(M)–module. But M is not totally σ–prime. Indeed, does not

exist an ideal h ∈ L (σ) such that for any m ∈ M and any a ∈ Z such that ma = 0 then either

mh = 0 or Mah = 0. Take, for instance, the family of elements mt =
1
2t + Z and at = 2t , then

there is not such an ideal h.

At this point we have two notions that are closely related:

(α) M is totally σ–torsionfree over A/Ann(M).

(β) M/σM is a torsionfree A/Ann(M)–module.

Remark. 4.51.

First we note that if M is σ–torsionfree over A, then M is totally σ–torsion. If h ∈ L (σ) is

the associated ideal to M , for any x ∈ σM there exists k ∈ L (σ) such that xk = 0, hence,

either xh = 0 or kh = 0; in the second case we have 0 ∈ L (σ), which is imposible. Therefore,

x ∈ (0 : h), and σM ⊆ (0 : h) is totally σ–torsion. In this case, if k = (0 : σM), we have

σM = (0 : k).

Now we may establish the announced equivalence.

Proposition. 4.52.

If M is a non totally σ–torsion module, the following statements are equivalent:

(a) M is totally σ–torsionfree over A/Ann(M).

(b) σM is totally σ–torsion and M/σM is a torsionfree A/Ann(M)–module
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Proof. (a)⇒ (b). Let (m+σM)(a + Ann(M)) = 0; if m+σM ̸= 0, since ma ∈ σM we

have mah = 0, hence either mhh = 0, which is a contradiction, or ah = 0, and a ∈ σA, which

implies a+Ann(M) = 0.

(b)⇒ (a). Let h = (0 : σM), for any m ∈ M and a ∈ A such that m(a + Ann(M)) = 0, we

have ma ∈ σM ; hence, we have (m + σM)(a + Ann(M)) = 0; therefore, either m + σM = 0,

which implies mh = 0, or a + Ann(M) = 0, and there exists k ∈ L (σ) such that Mka = 0; i.e.,

Ma ⊆ σM ; hence Mah= 0, which implies (a+Ann(M))h= 0. □

It is possible to give a local characterization of totally σ–torsionfree modules in the particular

case in which σ is half–centered. To do this we need that A satisfy an additional property.

Let σ = ∧{σA\p | p ∈ K (σ)} be a half–centered hereditary torsion theory. The ring A

is universally σ–integral whenever A is σA\p–torsionfree for every p ∈ K (σ). Observe that

universallyσ–integral rings are the natural generalization of integral domains, and they are characterized

by the property: Ann(a) ⊆ ∩{p | p ∈ K (σ)}, the σ–radical of A, for any a ∈ A. We shall show

that rings of this type satisfy two interesting properties.

Proposition. 4.53.

Let A be a ring, σ ∧ {σA\p | p ∈ K (σ)} a half–centered hereditary torsion theory such that A is a

universally σ–integral ring. For any A–module M , the following statements hold:

(I). If σM is totally σ–torsionfree, then Ann(M) = ClA
σ
(Ann(M)) = ∩{ClA

σA\p
(Ann(M)) | p ∈

K (σ)}.

(II). The following statements are equivalent:

(a) M is totally σ–torsionfree.

(b) M is totally σA\p–torsionfree for any p ∈K (σ).

Proof. (I). Obviously the inclusion we Ann(M) = ∧ClA
σ
(Ann(M)) holds. Otherwise, for

any a ∈ ∧ClA
σ
(Ann(M)) and any p ∈ K (σ), there exists kk ⊈ p such that ahp ⊆ Ann(M); i.e.,

Mahp = 0. If h = (0 : σM), then either Mah = 0; hence x ∈ Ann(M), or hph = 0, and

h ⊆ σA\p = 0, which is a contradiction. Therefore, we have an equality.

(II).
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(a)⇒ (b) is evident.

(b)⇒ (a). Let m ∈ M and a ∈ A such that ma = 0. Since M is totally σA\p–torsionfree for

every p ∈ K (σ), there exists hp ∈ L (σA\p), and either mhp = 0 or ahp = 0. Since A is universally

σ–integral then ahp = 0 it is not possible. In consequence, mhp = 0, and Ann(m) ⊈ p for any

p ∈ C (σ), and Ann(m) ∈ ∩{L (σA\p) | p ∈K (σ)}=L (σ). □

There is another approach to totallyσ–prime modules based in the annihilator of theσ–torsion

module, see Lemma (4.4.); in this case is not necessary to change the ring. Given a totallyσ–prime

module M , we have that σM is totally σ–torsion; moreover, if h= (0 : σM), then it satisfies:

(1) h ∈ L (σ), and

(2) σM = (0 : h) ⊆ M is a prime submodule.

Indeed, these two conditions characterize totally σ–prime modules.

Theorem. 4.54.

Given an A–module M , the following statements are equivalent:

(a) M is totally σ–prime.

(b) h = (0 : σM) ∈ L (σ) (i.e., σM is totally σ–torsion), and σM = (0 : h) ⊆ M is a prime

submodule (i.e., M/σM is prime).

Proof. We prove that (b)⇒ (a). Since σM ⊆ M is a prime submodules, then M is not totally

σ–torsion. Otherwise, for any m ∈ M and a ∈ A, if ma = 0 and m /∈ σM (i.e., mh ̸= 0), then

Ma ⊆ σM , and Mha = 0. □

There is another condition, consequence of (2) above:

(3) (0 : Mh) = ((0 : h) : M) ⊆ A is a prime ideal.

This condition (3) is not enough to assure that M is totally σ–prime; indeed, it is necessary to

add to it the condition that appears in Corollary(4.49.): M/σM is a torsionfree A/Ann(M)–module.
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5 Extensions

In this chapter we shall study some examples of ring constructions, used mainly to build ring

examples to prove or disprove results in Commutative Algebra.

We’ll consider in it hereditary torsion theories in the category Mod– A, and induce others in

the categories of modules over the new rings; just note that the starting hereditary torsion theories,

will usually be of finite type.

5.1 Idealization

The first example of construction of ring is the idealization, also called also called the trivial

extension of A by M , introduced by Nagata in 1955.

Let A be a ring and M be an A–module, the idealization of M with respect to A is

B = M ⋊ A= {(m, a) | m ∈ M , a ∈ A}

with sum componentwise, and multiplication given by

(m1, a1)(m2, a2) = (m1a2 +m2a1, a1a2).

In consequence, M can be identify with the ideal M ⋊ 0 ⊆ M ⋊ A, and A is isomorphic to

(M ⋊ A)/(M ⋊ 0). In the same way we may identify A with the subring 0 ⋊ A via the ring map

f : A−→ M ⋊ A, defined f (a) = (0, a).

For any hereditary torsion theory σ in Mod– A we have a hereditary torsion theory f (σ) in

Mod– M ⋊ A, whose Gabriel filter is:

L ( f (σ)) = {b ⊆ M ⋊ A | f −1(b) ∈ L (σ)}

Lemma. 5.1.

A basis of filter form L ( f (σ)) is {Ma⋊ a | a ∈ L (σ)}.

Proof. Let b ∈ L ( f (σ)), then a = f −1(b) ∈ L (σ). Otherwise, it is clear that Ma ⋊ a ∈

L ( f (σ)), for any a ∈ a since (0, a) ∈ b, then Ma⋊ a= 〈(0, a) | a ∈ a〉 ⊆ b. □
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Remark. 5.2.

Observe that ifσ is a finite type hereditary torsion theory, since {Ma⋊a | a ∈ L (σ)} is filter basis,

if a = 〈a1, . . . , at〉, then a(M ⋊ A) = ((0, a1), . . . , (0, at))(M ⋊ A) ⊆ Ma⋊ a is finitely generated,

and f −1(a(M ⋊ A)) ⊇ a, then a(M ⋊ A) ∈ L ( f (σ)), and f (σ) is of finite type. In the contrary, if

f (σ) is of finite type, non–necessarily M is finitely generated as the following example shows.

Example. 5.3.

Let A= Z the ring of integer numbers and M = ⊕NZ2 = (Z2)(N). Let us consider the multiplicative

subset Σ = {2t | t ∈ N}, and the hereditary torsion theory σΣ. It is clear that σΣ is principal,

hence of finite type. The induced hereditary torsion theory f (σΣ) is also of finite type, since it is

σ f (Σ), but M is not finitely generated.

Remark. 5.4.

We may answer the following question in positive: If f (σ) is of finite type, must be σ of finite

type?

We may consider a hereditary torsion theory σ in Mod– A such that f (σ) is of finite type,

then σ is of finite type. For any a ∈ L (σ) we consider Ma ⋊ a ∈ L ( f (σ)), there is a finitely

generated ideal b ∈ L ( f (σ)) such that b ⊆ Ma⋊ a. Since c= f −1(b) ∈ L (σ), and it is contained

in a. We consider the following diagram

(Mc⋊ c)∩M � //
_

��

b∩M � //
_

��

(Ma⋊ a)∩M � //
_

��

M_

��
Mc⋊ c � //

����

b
� //

����

Ma⋊ a � //

����

A

����
Mc⋊c

(Mc⋊c)∩M
� //

∼=

��

b
b∩M

� //

∼=
��

Ma⋊a
(Ma⋊a)∩M

� //

∼=

��

M⋊A
M

∼=
��

c
� // b+M

M
� // a

� // A

Since a, c ∈ L (σ), then b+M
M ∈ L (σ) and it is finitely generated.

Remark. 5.5.

Observe that if a ⊆ A is finitely generated, non–necessarily Ma⋊ a is finitely generated. Indeed,
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we have a short exact sequence

Ma
� // Ma⋊ a // // a

If M is also finitely generated, then Ma is finitely generated, and Ma⋊ a also is.

The next result is related to the noetherian condition.
Proposition. 5.6.

Let A be a ring and M an A–module; the prime ideals of M ⋊A are of the shape: M ⋊p, being p ⊆ A

a prime ideal.

Proof. Since (M ⋊ 0)2 = 0, then M ⋊ 0 is contained in each prime ideal of M ⋊ A. Let

q ⊆ M ⋊ A be a prime ideal, since M ⋊ 0 ⊆ q, then q is an homogeneous ideal, say q = M ⋊ p; we

show that p ⊆ A must be a prime ideal. Indeed, we have
M ⋊ A

q
=

M ⋊ A
M ⋊ p

∼= 0⋊
A
p

; since it is an

integral domain, then p ⊆ A is prime. □

In consequence, if A is a noetherian ring and M is finitely generated, then M ⋊ p is finitely

generated for any prime ideal p ⊆ A, and by Cohen’s theorem we have M ⋊ A is a noetherian ring.

We may extend this result to consider a hereditary torsion theory σ in Mod– A whenever we

consider the Cohen–like’s theorem, see Theorem (4.13.).

Proposition. 5.7.

Given a totally σ–noetherian ring A, and a totally σ–finitely generated M we have that M ⋊ A is

totally f (σ)–noetherian.

As a consequence we have the following result, see [43].

Theorem. 5.8.

Given a ring A, an A–module M and a finite type hereditary torsion theory σ in Mod– A, the

following statements are equivalent:

(a) M ⋊ A is totally f (σ)–noetherian (resp. totally f (σ)–artinian).

(b) A is totally σ–noetherian (resp. totally σ–artinian) and M is totally σ–finitely generated.
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In this way we may build examples of totally σ–noetherian rings; simply we can take M to

the totally σ–noetherian; for example a totally σ–torsion module.

For any ideal a ⊆ A, since M×A
M⋊a
∼= A

a , then we have a bijective correspondence between Spec(A)

and Spec(M ⋊A) induces bijective correspondencesK (σ) andK ( f (σ)), and similarly for Z (σ)

and Z ( f (σ)).

Idealization and principal ideal rings

Let us collect some results on PIRs and the idealization; the next three are well known.

Lemma. 5.9.

If B = M ⋊ A is a principal ideal ring, then:

(1) A is a principal ideal ring.

(2) M is a principal A–module.

Lemma. 5.10.

Let A= A1 × A2 be a product of rings, and M be an A–module, then

(1) MA1, MA2 ⊆ M are submodules.

(2) MA1 and MA2 have no isomorphic simple subfactors.

(3) M = MA1 ⊕MA2.

(4) M ⋊ A∼= (MA1 ⋊ A1)× (MA2 ⋊ A2).

Lemma. 5.11.

If the ring B = M ⋊ A has a decomposition B = B1 × B2, then

(1) MB1 ⊕MB2 is a lattice decomposition of M .

(2) A= AB1 × AB2 is a ring decomposition.

(3) Bi = MBi ⋊ ABi for i = 1, 2.

On the other hand we have a decomposition theorem whenever the ring A is a PIR. If A is a

PIR, there exists a decomposition A=
∏t

i=1 Ai as a product of DIPs and SPIRs. Hence we have an

isomorphism

M ⋊ A∼=
t
∏

i=1

MAi ⋊ Ai.
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Therefore, the problem of studying when M ⋊ A is a PIR is reduced to consider the case in

which A is either a DIP or a PIR.

To determine when M⋊A is a PIR, first we study when M⋊A is homogenous, i.e., every ideal

of M ⋊ A has the shape N ⋊ a for some N ⊆ M , submodule, and a ⊆ A, ideal (it is homogeneous).

If N ⋊ a ⊆ M ⋊ A is an ideal, then Ma ⊆ N . Since the converse also holds, we have the

following Lemma.

Lemma. 5.12.

N ⋊ a ⊆ M ⋊ A is an ideal if, and only if, Ma ⊆ N .

The next result is the converse of Lemma (5.9.).

Proposition. 5.13. ([4, Theorem 11])

Let A and M be principal. If M ⋊ A is homogeneous, then M ⋊ A is principal.

Proof. Let N ⋊ a ⊆ M ⋊ A be an ideal. If N = mA and a = aA, then (m, a) ∈ N ⋊ a, as it is

homogeneous. Otherwise, by Theorem 3.3(3), in [7], we have N⋊a= mA⋊aA⊆ (mA+Ma)⋊aA=

(m, a)M ⋊ A⊆ N ⋊ a. □

In this situation we can characterize when for any ring A and any A–module M the idealization

M ⋊A is either PIR or Euclidean ring (ER). By Lemma (5.10.) we may reduce to consider the case

in which A is either a PID or a SPIR. The simplest case is when M = 0; in this case M ⋊ A is PIR

if, and only if, A is PIR.

Theorem. 5.14.

Let A be a PID and M a non–zero A–module. The following statements are equivalent:

(a) M ⋊ A is a PIR.

(b) A is a field, say K , and M = A.

In this case K ⋊ K is an ER.
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Proof. (b)⇒ (a). Let A= M = K be a field, we define δ : K ⋊ K −→ O as

δ(x) =















0, if x is invertible,

1, if x is not invertible and x ̸= 0,

2, if x = 0.

We claim δ is a Euclidean norm. Indeed, (m, a) ∈ K ⋊ K is invertible if, and only if, a ̸= 0; for

any x1 = (m1, 0) and x2 = (m2, 0) belonging to K⋊K are not invertible, since x1 = x2(0, m1m−1
2 )+

0 is a division in K ⋊ K with respect to the norm δ, then K ⋊ k is an ER. In particular, K ⋊ K is a

PIR.

(a)⇒ (b). Let A= D be a PID, which is not a field, and M be a cyclic D–module. There are

two cases:

(1) M = D. There exists 0 ̸= a ∈ D such that aD ̸= D. The element (1, a) ∈ D⋊ D satisfies

(1, a) (D⋊ D) ⊆ D⋊ aD.

We show that D ⋊ aD is not cyclic. If (x , a y) ∈ D⋊ aD is a generator, there exists (u, v) ∈

D⋊ D such that (1, a) = (x , a y)(u, v) = (x v + auy, a yv), hence a = a yv, and y, v are

invertible. Therefore, from 1= x v+ auy we obtain y = x + auy2, hence x = (1− auy)y . In

consequence, (x , y) = ((1−auy)y, a y) = (1−auy, a)y , and since y is invertible, (1−auy, a)

is a generator of D ⋊ aD. Since aD $ D, if z ∈ D \ aD, there is (u′, v′) ∈ D⋊ D such that

(z, 0) = (1 − auy, a)(u′, v′) = ((1 − auy)v′ + u′a, av′), hence 0 = av′, and v′ = 0, so

z = (1− auy)v′ + u′a = u′a ∈ aD, which is a contradiction.

(2) There exists 0 ̸= d ∈ D such that M = D/dD, then M ⋊ D = D
dD ⋊ D. The element (1, d) ∈

D
dD ⋊ D satisfies

(1, d)
�

D
dD
⋊ D
�

⊆
D

dD
⋊ dD.

We claim D
dD ⋊ dD is not cyclic. If (x , d y) is a generator, there exists (u, v) ∈ D

dD ⋊D such that

(1, d) = (x , d y)(u, v) = (x v, d yv), hence d = d yv, and 1 = yv, so y and v are invertible.

From 1 = x v = x y−1, we obtain x = y and (x , d y) = (y , d y) = (1, d)y; a generator
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of D
dD ⋊ dD is (1, d) because y is invertible. Since D

dD ̸= 0, if we take m ∈ D \ dD, then

(m, 0) ∈ D
dD⋊dD, and there exists (u′, v′) ∈ D

dD⋊D such that (m, 0) = (1, d)(u′, v′) = (v′, dv′),

hence 0= dv′, and v′ = 0, so m= 0, which is a contradiction.

□

In the same line we can conclude with the following.

Theorem. 5.15.

Let A be a SPIR and M a non–zero A–module, never M ⋊ A is a PIR.

Proof. Let A be a SPIR, and M be a cyclic A–module. Let us denote by m= tA the maximal

ideal of A. There are two cases:

(1) M = A. We have tA$ A. The element (1, t) ∈ (A⋊ A) satisfies

(1, t) (A⋊ A) ⊆ A⋊ tA.

We show that A⋊ tA is not cyclic. If (x , t y) ∈ A⋊ aA is a generator, there exists (u, v) ∈

(A⋊ A) such that (1, t) = (x , t y)(u, v) = (x v + tuy, t y v), hence t = t y v, and y, v are

invertible. Therefore, from 1= x v + tuy we obtain y = x + tuy2, hence x = (1− tuy)y . In

consequence, (x , y) = ((1− tuy)y, a y) = (1− tuy, a)y , and since y is invertible, (1− tuy, a)

is a generator of A⋊ tA. Since tA $ A, if z ∈ A\ tA, there is (u′, v′) ∈ (A⋊ A) such that

(z, 0) = (1 − tuy, t)(u′, v′) = ((1 − tuy)v′ + u′ t, t v′), hence 0 = t v′, and v′ ∈ tA = 0,

z = (1− yuy)v′ + u′ t ∈ tA, which is a contradiction.

(2) There exists 0 ̸= d ∈ A such that M = A/dA, then M ⋊ A= A
dA ⋊ A. In this case M t = ( A

dA)t =
dA+tA

dA ̸=
A

dA. The element (1, d) ∈ A
dA ⋊ A satisfies

(1, d)
�

A
dA
⋊ A
�

⊆
A

dA
⋊ dA.

We claim A
dA ⋊ dA is not cyclic. If (x , d y) is a generator, there exists (u, v) ∈ A

dA ⋊ A such

that (1, d) = (x , d y)(u, v) = (x v, d yv), hence d = d yv, and w = yv, y and v are invertible.

From 1 = x v = xwy−1, we obtain x = w−1 y and (x , d y) = (w−1 y , d y) = (1, dw)w−1 y .

A generator of A
dA ⋊ dA is (1, dw) because w−1 y is invertible. Since ( A

dA)t ̸=
A

dA, we take
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m ∈ A
dA \ (

A
dA)t, then (m, 0) ∈ D

dD ⋊ dD, and there exists (u′, v′) ∈ A
dA ⋊ A such that (m, 0) =

(1, dw)(u′, v′) = (v′, dwv′), hence 0 = dwv′, and v′ ∈ tA, so m = v′ ∈ ( A
dA)t, which is a

contradiction.

□
Corollary. 5.16.

Let A be a ring and M an A–module. The idealization M ⋊ A is a principal ideal ring (a Euclidean

ring) if, and only if, A= M = K is a field K .

Later on, we will get a similar result when we consider PIRs relative to a hereditary torsion

theory, see Example (5.41.).

5.2 Totally principal ideal rings

We include here this kind of ring because looking for non–trivial examples of totally σ–PIRs

the first we constructed was an example of an idealization. Our aim in including here this type of

rings has been to obtain a structure theorem which is a generalization of the classical theorems; we

do that after proving some intermediate results.

Let A be a ring, and M an A–module, we say

• A is a principal ideal ring whenever every ideal a ⊆ A is principal, i.e., there exists an

element a ∈ A such that a= aA.

• M is called a principal module whenever every submodule is cyclic.

These definition, with respect to a hereditary torsion theory σ in Mod– A, are expressed as

follows:

• a submodule N ⊆ M is a σ–cyclic submodule (σ–principal submodule) if there exists an

element m ∈ M such that ClM
σ
(N) = ClM

σ
(mA).

• A is a σ–principal ideal ring if every ideal a ⊆ A is a σ–cyclic ideal.

• M is a σ–principal module whenever every submodule is σ–cyclic.
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• a submodule N ⊆ M is a totally σ–cyclic submodule (totally σ–principal submodule)

whenever there exist h ∈ L (σ) and n ∈ N such that Mh ⊆ nA.

• A is a totally σ–principal ideal ring if for every ideal a ⊆ A is totally σ–cyclic.

• M is a totally σ–principal module whenever every submodule is totally σ–cyclic.

Remark. 5.17.

For any multiplicative subset Σ ⊆ A we consider the hereditary torsion theory σΣ defined by

L (σΣ) = {a ⊆ A | a∩Σ ̸=∅}.

In this particular case we have that for any ideal a ⊆ A we have a isΣ–principal (=σΣ–principal)

if, and only if, it is totally Σ–principal (= totally σΣ–principal). If there exists a ∈ A such that

ClA
σΣ
(aA) = ClA

σ
(a), we only need to show that ClA

σΣ
(xA) = ClA

σ
(a) for some x ∈ a. Indeed, since

ClA
σΣ
(aA) ⊆ ClA

σ
(a), there exists s ∈ Σ such that asA⊆ a. Now we show that ClA

σΣ
(asA) = ClA

σ
(aA);

for any y ∈ ClA
σ
(aA) there is sy ∈ Σ such that ysy ∈ aA, hence yssy ∈ asA, hence y ∈ ClA

σ
(asA).

It is clear that if σ is not a principal hereditary torsion theory the result may be false.

The follow results shows that there are families of totally σ–principal ideal rings which are

not principal ideal rings.

Proposition. 5.18. ([10, Proposition 2.1])

Let A be a ring, and Σ = Reg(A), if there exists an essential ideal a ⊆ A, then A is a totally

Σ–principal ideal ring.

Proof. For any non–zero ideal b ⊆ A there is an element 0 ̸= b ∈ b∩ a, hence bA∈ L (σΣ),

and we have bbA⊆ bA⊆ b. □
Corollary. 5.19. ([10, Corollary 2.2])

If D is an integral domain and Σ= D \ {0}, then D is totally Σ–principal ideal ring.

A construction that provides new examples of PIRs is the direct product. For any family of

rings {Ai | i ∈ I} the product ring A=
∏

i Ai satisfies: A is a PIR if, and only if, each Ai is a PIR.

Indeed, each ideal of A=
∏

i Ai has the shape
∏

i ai, being each ai ⊆ Ai an ideal. If A is a PIR then

each Ai is a PIR because homomorphic images of PIR are PIR. If every Ai is a PIR, for every i ∈ I

there exists ai ∈ Ai such that ai = ai D, and we have
∏

i ai = (ai)iA is a principal ideal.
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If we study this example relative to a hereditary torsion theory, we find some problems. If σ

is a hereditary torsion theory in Mod– A, being A=
∏

i Ai, with projections p j :
∏

i Ai −→ A j, we

have a hereditary torsion theory σ j in each category Mod– A j, defined

L (σ j) = {c ⊆ A j | p−1
j (c) ∈ L (σ)}.

On the other hand, for any h ∈ L (σ), not necessarily pi(h) belongs to L (σi), which has

broken the possibility of passing properties from A to each Ai. In parallel, if we consider a

hereditary torsion theory τi is each Mod– Ai, the natural way to define a hereditary torsion theory

in A is considering in Mod– A the induced hereditary torsion theory τ′i, defined

L (τ′i) = {a ⊆ A | q−1
i (a) ∈ L (τi)},

and then consider the intersection of all τi, that produces a hereditary torsion theory in Ai that may

have no relationship with the original τi.

For that reason we restrict to consider families with finitely many elements.

Proposition. 5.20.

Let {Ai | i = 1, . . . , n} be a family of rings, and A=
∏n

i=1 Ai, the following statements hold:

(1) If for every index i we have a hereditary torsion theory σi in Mod– Ai and define

L (σ) =

¨

a=
n
∏

i=1

ai | ai ∈ L (σi) for every index i

«

,

then L (σ) is the Gabriel filter for a hereditary torsion theory σ in Mod– A.

(2) If σ is a hereditary torsion theory in Mod– A, and, for every index i, we define

L (σi) = {ai ⊆ Ai | A1 × · · · × Ai−1 × ai × Ai+1 × · · · × An ∈ L (σ)} ,

then L (σi) is the Gabriel filter for a hereditary torsion theory σi in Mod– Ai, for every index

i.

It is clear that every principal (resp. σ–principal, totally σ–principal) ring is noetherian (resp.

σ–noetherian, totally σ–noetherian).

Given a ring A we say:
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• A is a σ–domain if A is not σ–torsion (⇔ 0 /∈ L (σ) and for any a, b ∈ A such that ab = 0

we have either a ∈ ClA
σ
(0) or b ∈ ClA

σ
(0), or equivalently 0 ⊆ A is a σ–prime ideal.

• A is a totally σ–domain if A is not totally σ–torsion (⇔ 0 /∈ L (σ)) and there exists h ∈

L (σ) such that for any a, b ∈ A satisfying ab = 0 we have either ah = 0 or bh = 0, or

equivalently 0 ⊆ A is a totally σ–prime ideal.

We first give a useful characterization of totally σ–domains, see Theorem (4.54.).

Theorem. 5.21.

Given a ring A such that 0 /∈ L (σ), the following statements are equivalent:

(a) A is a totally σ–domain.

(b) If h= (0 : σA), then h ∈ L (σ) and (0 : h) = σA⊆ A is prime.

Proof. (a) ⇒ (b). Let k ∈ L (σ) an ideal associated to 0 ⊆ A, then (0 : k) ⊆ A is prime;

otherwise, for any x ∈ σA there exists t ∈ L (σ) such that xt = 0, hence either xk = 0; i.e.,

x ∈ (0 : k), or tk = 0; which is a contradiction. In consequence, σA ⊆ (0 : k) ⊆ σA, and

the equality holds. Otherwise, let h = (0 : σA), then k ⊆ h, hence h ∈ L (σ), and we have

(0 : h) ⊆ (0 : k) = σA⊆ (0 : h), and the result holds.

(b)⇒ (a). By the hypothesis h ∈ L (σ). Let a, b ∈ A such that ab = 0 ∈ (0 : h), hence either

a ∈ (0 : h); i.e., ah= 0, or b ∈ (0 : h); i.e., bh= 0. □

As a consequence, we have:

Corollary. 5.22.

A ring A is a totally σ–domain if, and only if, σA is totally σ–torsion and σA⊆ A is a prime ideal.

Proof. If σA is totally σ–torsion and take h = (0 : σA), then σA ⊆ (0 : h) ⊆ σA; and the

result holds from the theorem. □

These results are of interest because they show that the ideal h, in the Gabriel filter, of the

definition of totally σ–domain is directly fixed by the structure of A.

We can consider an ideal a ⊆ A instead of 0 ⊆ A, and define totally σ–prime ideal, and, as a

consequence of the theorem we have:
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Corollary. 5.23.

An ideal a ⊆ A is a totally σ–prime ideal if, and only if, taking h = (a : ClA
σ
(a)), then h ∈ L (σ)

and (a : h) = ClA
σ
(a) ⊆ A is a prime ideal.

In particular, if a ⊆ A is a totally σ–prime ideal, then A/a is a totally σ–prime domain.

Proof. It is the translation of the previous results to the ring A/a whoseσ–torsion submodule

is ClA
σ
(a)/a. □

At this point it is convenient to remark that for any ideal a ⊆ A, it is totally σ–prime if, and

only if, ClA
σ
(a) ⊆ A is prime and there exists h ∈ L (σ) such that ClA

σ
(a)h ⊆ a.

Proposition. 5.24.

Given a totally σ–PIR A, and a totally σ–prime ideal a ⊆ A we have that A/a and A/ClA
σ
(a) are

totally σ–PID, being σ’s the hereditary torsion theories induced by σ; i.e., L (σ) = {b/a ⊆ A/a |

b ∈ L (σ)}.

Observe that, in this case, A/ClA
σ
(a) is a domain; therefore, to study totally σ–prime ideals,

we can restrict ourselves to considering prime ideals inK (σ).

Proposition. 5.25.

If A is a totally σ–PIR, and Σ ⊆ A a multiplicative subset, then the ring of fractions AΣ is a totally

σ–PIR.

Proof. As usual, we denote σ the hereditary torsion theory induced by σ in AΣ. For any

ideal b ⊆ AΣ there exists an ideal a ⊆ A such that b = aAΣ, and there exist h ∈ L (σ) and a ∈ a

such that ah ⊆ aA. Therefore, we have aAΣ ⊇ ahAΣ = bhAΣ, and b is totally σ–principal. □

The spectrum of a totally principal ideal ring

We again study the structure of prime ideals inK (σ)whenever A is a totallyσ–PIR. We shall

prove one of the main results in this section.

Theorem. 5.26.

Given a totally σ–PIR A, does not exist a chain p0 $ p1 $ p2 of three prime ideals inK (σ).
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Proof. If there exists such a chain; we consider the quotient ring A/p0, which is a domain;

if σ is the induced hereditary torsion theory in A/p0 by σ, then A/p0 is a totally σ–PIR. Therefore

we may assume that p0 = 0, in consequence A must be an integral domain.

Consider the hereditary torsion theory σi = σA\pi
, for i = 1, 2, the following relationship:

σ ≤ σ2 ≤ σ1 holds. When we localize at σ2 obtain new ring: Ap2
; if we adorne σ∗ the hereditary

torsion theory induced by σ∗ in Ap2
, then σ = σ2 ≤ σ1. Now, since A is totally σ–PID, then Ap2

is σ–PID, hence a PID. Thus, we have a chain of prime ideals: 0 $ p1Ap2
$ p2Ap2

, which is a

contradiction. □

In the general case we have:

Corollary. 5.27.

For any totally σ–PIR A there is no chain of totally σ–prime ideals a0 ⊆ a1 ⊆ a2 such that ai+1/ai,

i = 1,2 is not totally σ–torsion.

Proof. If there exists such a chain, we have a chain of prime ideals inK (σ)which contradices

the result in the above theorem. □

Let A be a ring, an ideal m is called:

• σ–maximal if m /∈ L (σ), and for any ideal a ⊇ m we have either ClA
σ
(m) = ClA

σ
(a) or

ClA
σ
(a) = A.

• totally σ–maximal if m /∈ L (σ), and there exists h ∈ L (σ) such that for any ideal a ⊇ m

we have either ah ⊆ m or a ∈ L (σ).

It is well established that every totally σ–maximal ideal is totally σ–prime.

In a totally σ–PID we have that σA is a prime ideal and that prime ideals in K (σ) are

well–arranged. Indeed, as a consequence of Corollary (5.22.), we have:

Corollary. 5.28.

In a totally σ–PID every non σ–torsion prime ideal is totally σ–maximal.

The following is a technical result that will use later in this work and that allows us an

approach to all ideals of A in terms of the elements ofK (σ).
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Theorem. 5.29.

If A is a totally σ–noetherian ring, then Min(K (σ)) is finite.

Proof. Consider the family of ideals:

Γ = {a ⊆ A | there are infinitely prime ideals inK (σ) which are minimal over a}.

The result will be true whenever Γ is empty. Let us assume Γ is non–empty, and we shall

arrive to a contradiction. Since A is totally σ–noetherian, there are σ–maximal elements in Γ . If

a ∈ Γ is σ–maximal, there exists h ∈ L (σ) such that if b ∈ Γ and a ⊆ b, then bh ⊆ a; we show

that α is totally σ–prime. Given elements a, b ∈ A such that ab ∈ a, we consider the ideals a+ aA

and a + bA. If a + aA ∈ Γ , then (a + aA)h ⊆ a, hence ah ⊆ a; similarly if a + bA ∈ Γ . It rests

the case in which a+ aA,a+ bA /∈ Γ ; hence there are prime ideals p1, . . . ,pt ∈ K (σ) which are

the minimal over a+ aA, and similarly for q1, . . . ,qs and a+ bA. For any prime ideal p ∈ K (σ),

minimal over a, since (a+ aA)(a+ bA) ⊆ a ⊆ p, then either a+ aA⊆ p; hence there exists pi ⊆ p;

i.e., p = pi; or a + bA ⊆ p, and we may deduce that there exists one q j such that p = q j. this

means that there are only finitely many prime ideals inK (σ) which are minimal over a, which is

a contradiction. □

With this background, we may prove other important theorem in this section.

Theorem. 5.30.

Let A be a totally σ–PID, for any ideal a ⊆ A such that σA$ a the ring A/a is totally σ–artinian.

Proof. Since A is totally σ–PID then σA ⊆ A is a domain, and A/a is a totally σ–PIR. For

simplicity let B = A/a, and σ the induced hereditary torsion theory. The following properties hold

for B: B is totally σ–noetherian, every prime ideal in K (σ) is maximal, and σ ≤ σA\p, for any

prime ideal p ∈K (σ).

In the ring Bp the torsion theories induced by σ and σA\p are the same and they are trivial;

therefore Bp is artinian since it has only one prime ideal.

From [31, Theorem 4.5], and Theorem (5.29.) we have that B = A/a is totally σ–artinian.

□
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Corollary. 5.31.

Given a totally σ–PID A and a decreasing chain of ideals {ai | i ∈ I}, with σA⊆ ai for any index

i ∈ I , we have either the chain is σ–stable or ∩iai = σA.

Proof. If ∩iai ⊈ σA let us call a = ∩iai. The quotient ring A/a is totally σ–artinian, hence

the chain {ai/a}i is σ–estable. Therefore {ai}i is σ–estable. □

Let us recall thatK (σ) has enough information to characterize totally σ–PIRs.

Theorem. 5.32. (Kaplansky–like theorem, [32, Theorem 7.1])

Let σ be a finite type hereditary torsion theory, the following statements are equivalent:

(a) A is totally σ–PIR.

(b) Every prime ideal p ∈K (σ) is totally σ–principal.

Corollary. 5.33. ([32, Corollary 7.2])

Let σ be a finite type hereditary torsion theory, the following statements are equivalent:

(a) A is totally σ–PIR.

(b) A is σ–PIR and every prime ideal p is totally σ–finitely generated.

(c) A is σ–PIR and totally σ–noetherian.

Structure of totally principal ideal rings

Once we have proved that most of the information on totally σ–PIRs resides in the setK (σ),

the next steps to determine the structure of totally σ–PIR are: first, to check that the product of

finitely many totally PIRs is as well; and second, to study local and indecomposable totally PIRs.

Compare with Proposition (5.20.).

Proposition. 5.34.

Let {Ai | i = 1, . . . , n} be a family of rings, and A=
∏n

i=1 Ai, the following statements hold:

(I) If for every index i we have a hereditary torsion theoryσi in Mod– Ai such that Ai is a totally

σi–PIR, and define

L (σ) =

¨

a=
n
∏

i=1

ai | ai ∈ L (σi) for every index i

«

, then
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(1) L (σ) is the Gabriel filter for a hereditary torsion theory σ in Mod– A.
(2) The ring A is totally σ–PIR if, and only if, Ai is totally σi–PIR, for every index i.

(II) If σ is a hereditary torsion theory in Mod– A, and, for every index i, we define

L (σi) = {ai ⊆ Ai | A1 × · · · × Ai−1 × ai × Ai+1 × · · · × An ∈ L (σ)} , then

(1) L (σi) is the Gabriel filter for a hereditary torsion theory σi in Mod– Ai, for every index

i.
(2) The ring A is totally σ–PIR if, and only if, Ai is totally σi–PIR, for every index i.

(III) In the case in which A=
∏n

i=1 Ai is a direct product of totally PIRs, then

(1) C(σ, A) =
∏n

i=1 C(σi, Ai), is the product of lattices, and
(2) K (σ) = ∪n

i=1K (σi), being incomparable elements ofK (σi) with elements ofK (σ j),

whenever i ̸= j.

Before continuing with the study of local totally PIRs we shall establish a result of prime

ideals inK (σ).

Lemma. 5.35.

Let A be a totally σ–PIR and a prime ideal p ∈ K (σ), for every prime ideals p1,p2 $ p we have

p1 = p2.

Proof. Since p ∈K (σ) then σ ≤ σA\p. In Ap we have two hereditary torsion theories σ and

σA\p, and both of them are trivial; i.e., L (σ) = {Ap}. Since Ap is totally σ–PIR, then it is a PIR.

For any two prime ideals p1,p2 $ p, since p1Ap,p2Ap $ pAp, then p1Ap = p2Ap, hence p1 = p2.

□

If A is a local totallyσ–PIR, (local means thatK (σ) only has a maximal element m ∈K (σ)),

then σ = σA\m. There are four possibilities:

(1) σA∈K (σ) and dim(K (σ)) = 0: In this case Am is a field.

(2) σA∈K (σ) and dim(K (σ)) = 1: In this case Am is a PID, not a field.

(3) σA /∈K (σ) and dim(K (σ)) = 0: In this case Am is a special PIR.
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(4) σA /∈K (σ) and dim(K (σ)) = 1:

In this case we have that Am is a PIR and has two non–zero prime ideals, which contradices

[30, Lemma 10]. This case never occurs!

This means that given a prime ideal p ∈ K (σ), there exists only one minimal prime ideal

p0 ∈ K (σ) such that p0 ⊆ p. On the contrary, given a prime ideal p ∈ K (σ), we have no control

on the prime ideals q ∈K (σ) such that p ⊆ q.

Theorem. 5.36.

Let A be a totally σ–PIR, there is a decomposition A/σA=
∏n

i=1 Ai of A/σA as a direct product of

totally PIRs Ai, having each Ai a unique minimal prime ideal.

Proof. We may assume A is σ–torsionfree. Using Theorem (5.29.) we have that K (σ) has

only finitely many minimal elements. For any p ∈Min(K (σ)) consider V (p) = {q ∈K (σ) | q ⊇

p}. It is clear that, as a consequence of Theorem (5.26.), {V (p) | p ∈ Min(K (σ))} is a partition

ofK (σ).

Following the theory that appears in [23] and [24], we have a lattice decomposition of A, say

A=
∏

{A[p] | p ∈ Min(K (σ))}. If σ[p] is the hereditary torsion theory induced by σ in A[p] then

each factor A[p] satisfiesK (σ[p]) ⊆ Spec(A[p]) is homeomorphic with V (p). □

As a consequence of this decomposition theorem we can distinguish a particular class of

totally σ–PIR. Indeed, a totally σ–PIR A is called indecomposable whenever Min(K (σ)) is

unitary. There are different possibilities for indecomposable totally σ–PIRs:

(1) σA∈K (σ) andK (σ) = {m} is unitary: In this case Am is a field.

(2) σA ∈ K (σ) and K (σ) is not unitary: In this case dim(K (σ)) = 1, A/σA is a totally PID,

and for each maximal ideal m inK (σ) the ring of fractions Am is a PID, not a field.

(3) σA /∈K (σ) andK (σ) = {m} is unitary: In this case Am is a special PIR.

Let us show some examples to illustrate the theory.

Examples. 5.37.

The classical case is obtained when we take σ such that L (σ) = {A}. A second case: S–principal

ideal rings (for S ⊆ A a multiplicative set) is covered if we take σ = σS. Our approximation makes
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very strong use of the torsion ideal σS(A) = {a | there exists σS such that as = 0}, which contains

the redundant information of A, from the point of view of S, and whose annihilator provides a useful

tool for studying A; and the prime ideals in K (σS), which are a small but the most representative

part within the S–prime ideals.

Examples. 5.38.

(1) Let A be a ring and M an A–module, consider the idealization M⋊A. The prime ideals of M⋊A

have the shape M ⋊ p, being p ⊆ A a prime ideal.

(2) For any ring A an ideal a ⊆ A is regular whenever it contains a regular element, and it is

semi–regular if it contains a finitely generates ideal b ⊆ a such that (0 : b) = 0. The filter of

ideals L (τq) = {a ⊆ A | a is semi–regular} is a Gabriel filter, we denote by τq the hereditary

torsion theory it defines. In fact, the localization of A with respect to τq is the ring of finite

fractions; see [42] and [56]. For this hereditary torsion theory we have Z (τq) is the set of all

semi–regular prime ideals, and K (σ) the set of all prime ideals p such that for every finitely

generated ideal b ⊆ p we have (0 : b) ̸= 0.

(3) Let A = D be an integral domain and M a torsionfree A–module, then M ⋊ 0 is the set of all

zero–divisors of M ⋊ D. Indeed, if (m, d) is a zero–divisor, there exists 0 ̸= (x , y) ∈ M ⋊ D

such that 0 = (m, d)(x , y) = (my + xd, d y); hence d y = 0. If d ̸= 0, then y = 0, hence

xd = 0, this implies that x = 0, which is a contradiction.

Moreover, we have that M ⋊D has property (A), see [29]. Indeed, if m1, . . . , mt ∈ M there are

non–zero elements d1, . . . , dt ∈ D such that midi = 0 for every index i; hence 0 ̸= d1 · · · dt ∈

(0 : 〈m1, . . . , mt〉). Consequently M ⋊ 0 is a prime ideal which is not semi–regular.

On the other hand, every prime ideal M ⋊ p, with p ̸= 0, is a semi–regular prime ideal. In

consequence: K (τq) = {M ⋊ 0}, and Z (σ) = {M ⋊ p | a ∈ Spec(D) \ {0}}.
(4) If D is a non–noetherian integral domain and M is finitely generated torsionfree D–module,

then M⋊0 is a finitely generated; hence totally τq–finitely generated; by Cohen–like theorem,

see [32, Corollary 3.5], we have that M ⋊ D is a totally τq–noetherian ring.

(5) If we take M a torsionfree principal D–module, then M ⋊ 0 is totally τq–principal; therefore,

by Kaplansky–like theorem, see [32, Proposition 7.1], we have that M ⋊ D is totally τq–PIR;
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indeed, an indecomposable totally τq–PID since τq(M ⋊ D) = M ⋊ 0.

Examples. 5.39.

(1) Let A= Z[X ], and Σ = 〈X 2n | n ∈ N〉 ⊆ Z[X ] be a multiplicative set. Let p = (F(X )), for an

irreducible polynomial F(X ) ∈ Z[X ], F(X ) ̸= X . Since p ∩Σ = ∅, then p ⊆ Z[X ] is totally

σ–prime; in addition for any ideal h ∈ L (σ), we have ph ⊆ Z[X ] is totally Σ–prime; i.e.,

(X 2F(X )) ⊆ Z[X ] is totally σ–prime and it is not prime, but (X F(X )) ⊆ Z[X ] is neither prime

not totally Σ–prime.

(2) The same situation occurs if we take a prime ideal q = (p, F(X )), being p ∈ Z a prime integer

number and F(X ) =
∑t

i=0 aiX
i ∈ Z[X ], F(X ) ̸= X , p ∤ ai if ai ̸= 0, irreducible and irreducible

modulo p, or zero.

(3) Observe that 0 ⊆ Z[X ] is a totallyΣ–prime ring. This means that Z[X ] is totallyσ–noetherian,

but not totally Σ–artinian.

(4) On the other hand, if we take the multiplicative set Σ = 〈{X 2n | n ∈ N} ∪ (Z \ {0})〉 ⊆ Z[X ],

then prime ideals like q= (p, F(X )) in (2) satisfy q∩Σ ̸=∅, and they are not totally Σ–prime.

Thus the only prime ideals which are totally Σ–prime are 0 and those of the shape (F(X )),

with F(X ) ̸= X irreducible in Z[X ].

(5) In this case Z[X ] is a totally Σ–principal ideal domain.

Example. 5.40.

(1) Let A= Z12[X ], and Σ= Z12 \ 2Z12. the prime ideals of Z12[X ] are (2); (3); (2, F(X )), being

F(X ) =
∑t

i=1 aiX
i ∈ Z12[X ], 2 ∤ ai if ai ̸= 0, and F(X ) is irreducible modulo 2; (3, F(X )),

being F(X ) =
∑t

i=1 aiX
i ∈ Z12[X ], 3 ∤ ai if ai ̸= 0, and F(X ) is irreducible modulo 3.

(2) In the case we have:

Z (σΣ) = {(3)} ∪ {(3, F(X )) | satisfying the above condition};

K (σΣ) = {(2)} ∪ {(2, F(X )) | satisfying the above condition}.

Otherwise, σΣ(Z12[X ]) = 4Z12[X ].

(3) In consequence, Z12[X ] is a totally σΣ–noetherian rings and it is not a totally σ–artinian ring.

In addition, it is not totaly σ–PIR.
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(4) A picture of the spectrum of Z12[X ] is the following:

•
(2)

• • • • • • • • • •
(2, F(X ))

•
(3)

• • • • • • • • • •
(3, F(X ))

Spec(Z12[X ])

We have that Z12[X ] is totally σ–PIR whenever we take σ such that K (σ) = {(2), (3)} or

K (σ) = {(p)} for p = 2,3. In all these cases Z12[X ] has decompositions as product of

indecomposables totally σ–PIRs.

Let us consider the particular case of σ withK (σ) = {(2), (3)}. We have:

• σ = σZ12[X ]\(2) ∧σZ12[X ]\(3),

• σZ12[X ]\(2)(Z12[X ]) = 3Z12[X ], and σZ12[X ]\(3)(Z12[X ]) = 2Z12[X ],

• σ(Z12[X ]) = 6Z12[X ].

Therefore, we have the decomposition

Z12[X ]
6Z12[X ]

∼=
Z12[X ]
2Z12[X ]

×
Z12[X ]

3Z12[X ]
∼= Z2[X ]×Z3[X ].

Example. 5.41.

As a byproduct of the theory we may show when an idealization M ⋊ A is a totally σ–PIR, see

page 74. Observe that, given a hereditary torsion theory σ, to study when M⋊A is a totally σ–PIR

we may consider M and A to be σ–torsionfree; indeed, we have σ(M ⋊ A) = σM ⋊σA.

In this case, if M = 0 we have M ⋊A= A. Otherwise, if M ̸= 0, then M ⋊A is never a totally

σ–PID, hence 0 ⊆ M ⋊ A is not a prime ideal.

If M ⋊A is a totally σ–PIR, then M and A are totally σ–principal. Conversely, if A is a totally

σ–PIR, there is a decomposition A= A1 ⊕ · · · ⊕ At being each Ai either an indecomposable totally

σ–PIR. We may consider that A is one of the Ai’s.

If we take a prime ideal p, maximal ideal inK (σ), and localize at p, there are three possibilities:
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(1) Ap is a field.

(2) Ap is a PID, not a field.

(3) Ap is a SPIR.

Only in case (1) we have that Mp ⋊ Ap is a PIR, and for this we need that Mp = Ap. In this case

K (σ) = {0}, hence A must be a field, and M = A.

If we call P= M ⋊p ⊆ M ⋊ A, then (M ⋊A)P = Mp⋊Ap; in consequence in cases (2) and (3)

we have that M ⋊ A is not a totally σ–PIR.

One may consult the following references for PIRs: [54], [30].

5.3 Dorroh extension

Algebras

Given a ring A, an A–algebra is an abelian group B satisfying:

(i) B is an A–module (in consequence ab = ba for any a ∈ A and b ∈ B),

(ii) B is a ring, not necessarily with unity nor commutative,

(iii) the action of A satisfies: a(b1 b2) = (ab1)b2 = b1(ab2), for any a ∈ A and b1, b2 ∈ B.

Given an A–algebra B a left A–ideal b of B is an A–submodule closed under the multiplication

by elements of B on the left side; i.e., b ⊆ B is an A–submodule and a left ideal of B. (Right and

two–sided B–ideals are defined in the same way.)

Given an A–algebra B, an A–subalgebra H of B is an A–submodule closed under the multiplication;

i.e., H ⊆ B is an A–submodule and x y ∈ H for any x , y ∈ H .

Given A–algebras B1 and B2 and a map f : B1 −→ B2, we say that f is an A–algebra map

whenever f is a module map that preserves the product; i.e., it satisfies:

(i) f (ax + b y) = a f (x) + b( f (y), for any a, b ∈ A and x , y ∈ B1.

(ii) f (x y) = f (x) f (y), for any x , y ∈ B1.

If f : B1 −→ B2 is an A–algebra map, then
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• Ker( f ) = {x ∈ B1 | f (x) = 0}, the kernel of f is a two–sided A–ideal of B1.

• Im( f ) = { f (x) ∈ B2 | x ∈ B1}, the image of f is an A–subalgebra of B2.

The operation with A–ideals and A–subalgebras are defined in the natural way.

An A–algebra B is called a unitary A–algebra if there exists an element u ∈ B such that

ux = x = xu for every x ∈ B. If for an A–algebra B there exists such element u then it is the

only one satisfying this property, and we call it the unity element of B. If B1 and B2 are unitary

A–algebras, with unities, u1 and u2 respectively, a unitary A–algebra map from B1 to B2 is an

A–algebra map f satisfying f (u1) = u2.
Examples. 5.42.

(1) If A= F2, then B = FN2 is a unitary A–algebra.

(2) In the same situation C = F(N)2 is an Q–algebra which is not unitary.

(3) Also D = {(an)n ∈ B | (an)n is finally constant} is a unitary A–algebra.

Examples. 5.43.

(1) For any A–module M the set of all A–endomorphisms of M is a unitary A–algebra.

(2) If we consider A = R and the A–module M = AN and S = { f ∈ EndA(M) | dimR(Im( f )) <

∞}, then S is an A–algebra which is not unitary.

(3) Let A = Z, and B = Z × Z, then B is an unitary A–algebra, and the map j1 : Z −→ Z × Z,

defined j1(n) = (n, 0) is an A–algebra map and it is not a unitary A–algebra map.

Extensions

Let A be a ring and B an A–algebra; a new A–algebra can be build as follows:

B ⋊ A= {(b, a) ∈ B × A | b ∈ B and a ∈ A},

being the multiplication

(b1, a1)(b2, a2) = (b1 b2 + b1a2 + b2a1, a1a2).

The A–algebra B⋊A is called the Dorroh extension of B by A, and it may be denoted also by

B1.

In this situation we have:
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(1) B is identified with {(b, 0) | b ∈ B}, the image of j : B −→ B ⋊ A, is an ideal of B ⋊ A.

(2) The image of p : B ⋊ A−→ A, i.e., (B ⋊ A)/B, is isomorphic to A as A–algebras.

(3) A is identified with {(0, a) | a ∈ A}, the image of i : A −→ B ⋊ A, is a subring of B ⋊ A. In

addition, the map i is an injective A–algebra map.

There is a commutative diagram

0 B B ⋊ A A 0// j // p // //

s

��

where s(a) = (0, a), for any a ∈ A, hence it satisfies ps = idA.
Examples. 5.44.

(1) For any non–necessary unitary ring B the ring B ⋊ Z is called the Dorroh ring extension of

the ring B.

(2) Let us consider the polynomial ring Q[X ], and let A=Q, B = XQ[X ]. In this situation B is an

A–algebra, and the Dorroh extension B⋊Q is isomorphic to Q[X ], which is a noetherian ring.

(3) The A–algebra D in Example (5.42.) is the Dorroh extension of C and A.

Lemma. 5.45. (Universal property of the Dorroh extension)

Given an A–algebra B, a unitary A–algebra C and an A–algebra map f : B −→ C , there exists a

unique unitary A–algebra map f ′ : B ⋊ A −→ C such that f ′|B = f ; i.e., the following diagram

commutes.

B i //

f
''

B ⋊ A

∃1 f ′

��
C

Proof. If f ′ exists satisfying these properties, then it must be defined f ′(b, a) = b(b) + 1a,

for any (b, a) ∈ B ⋊ A, being 1 ∈ C the unity element. If we define f ′ is this way, we may check

that f ′ is a unitary A–algebra map, and it is the only one making the diagram commutative. □

Given an A–algebra B and an A–module M , a structure of B–module on M is given in

defining an A–algebra map β : B −→ EndA(M)op; in consequence, there exists a unique unitary
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A–algebra map β ′ : B ⋊ A −→ EndA(M)op such that β ′|B = β . In conclusion, given an A–algebra

map from B to EndA(M)op is equivalent to give a unitary A–algebra map from B⋊A to EndA(M)op,

hence to give a structure of B–module on M is equivalent to give a structure of B ⋊ A–module.

A pair constituted by an A–module M and an A–algebra map β : B −→ EndA(M)op is called

a B–module; hence on an A–module M is equivalent to give either a structure of B–module or a

structure of B ⋊ A–module. For any b ∈ B and m ∈ M we will write β(b)(m) = mb, so we have

β ′(b, a) = mb+ma, for any (b, a) ∈ B ⋊ A, and m ∈ M .

Given an A–module M , an A–submodule N ⊆ M is a B–submodule whenever nb ∈ N for any

n ∈ N and any b ∈ B. The sum and intersection of B–submodules, as the multiplication by left or

right B–ideals (i.e., A–ideals of B), are defined in a natural way.

Given a B–module M , for any element x ∈ M there is a smallest B–submodule 〈x〉 containing

x : the intersection of all B–submodules containing x . This submodule can be also described as

x(B ⋊ A) = {x b+ xa | b ∈ B, a ∈ A},

and it is called the cyclic submodule generated by x .

Given a B–module M , for any subset S ⊆ A, the B–submodule generated by S is the smallest

B–submodule containing S; it is denoted as 〈S〉, and its elements are the elements of

S(B ⋊ A) =

¨

∑

i

si x i | si ∈ S, x i ∈ B ∪ A

«

= SB + SA.

Similar definitions for left B–ideals, right B–ideals and two–sided B–ideals can be performed.

In the following we will work on commutative A–algebras; i.e., A–algebras in which the

product or multiplication is commutative.

Finiteness conditions

Given a ring A, an A–algebra B and a B–module M , we say:

• M is finitely generated if there is finite subset S ⊆ M such that M = S(B⋊A), and cyclic if

S is an unitary set.
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• M is noetherian if every submodule is finitely generated, or equivalently if every ascending

chain of B–ideals is estable.

• the A–algebra B is noetherian whenever it is a noetherian B–module. An A algebra B which

is noetherian as A–module is named A–noetherian.

Example. 5.46.

(1) Observe that in the example (X )⋊Q=Q[X ] we have (X ) is noetherian, and Q[X ] also is.

(2) We consider D = F(N)2 and A= F2, then D⋊A is the subring of FN2 constituted by all sequences

finally constant, neither D nor D1 = FN2 = B are noetherian.

Chain conditions, I

The following result is well known. Let A be a ring and B an A–algebra, we’ll study when the

A–algebra B ⋊ A is noetherian.

Theorem. 5.47.

Let A be a ring and B an A–algebra.

(1) If B ⋊ A is noetherian, then A is a noetherian ring and B is a noetherian A–algebra.

(2) If A is a noetherian ring and B a noetherian A–algebra, then B ⋊ A is noetherian

Proof. (1). If B ⋊ A is noetherian then A, is noetherian because it is a homomorphic image

of B ⋊ A. Otherwise, for any ascending chain {Nn}n of B–submodules of B, each Nn is a B ⋊

A–submodule of B; indeed, for any (b, 0) ∈ Nn and any (x , y) ∈ B ⋊ A we have (b, 0)(x , y) =

(bx + b y, 0) ∈ Nn, hence Nn is a B–ideal of B ⋊ A. In consequence, the ascending chain is stable.

(2). On the other hand, if A is a noetherian ring and B is a noetherian A–algebra, then B⋊A is

noetherian. For any ascending chain {bn}n of B–ideals of B ⋊ A, and any indices n ≤ m we have a
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commutative diagram of A–modules:

0 // bn ∩ B //

��

bn
//

��

bn
bn+B
∼= bn+B

B
//

��

0

0 // bm ∩ B //

��

bm
//

��

bm
bm+B
∼= bm+B

B
//

��

0

0 // B // B ⋊ A // A∼= B⋊A
B

// 0

• The first column is a chain of B–ideals of B, hence it is stable; there exists n1 ∈ N such that

bn1
∩ B = bm ∩ B for any m≥ n1.

• The third column is a claim of A–ideals of A, hence there exists an index n3 ∈ N such that

bn3
+ B = bm + B for any m≥ n3.

If we take n = max{n1, n3}, then we have bn = bm for any m ≥ n. In consequence, B ⋊ A is

noetherian. □

Using the same methodology as before, we obtain that B ⋊ A is artinian if, and only if, A is

artinian and B is an artinian B–algebra.

Corollary. 5.48.

Let A be a ring and B an A–algebra.

(1) If B ⋊ A is artinian, then A is a artinian ring and B is an artinian B–algebra.

(2) If A is an artinian ring and B an artinian B–algebra, then B ⋊ A is artinian.

Chain conditions, II

Let σ be a hereditary torsion theory in Mod– A, for any A–algebra B we consider B1 = B⋊A,

and the ring A–algebra map i : A−→ B1. In this situation there is a hereditary torsion theory τ1 is

B1, defined by

L (τ1) = {c | c∩ A∈ L (σ)}.
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In consequence, if c ∈ L (τ1) and h = c ∩ A ∈ L (σ), then hB1 = hB ⋊ h ⊆ c, and the set

{hB ⋊ h | h ∈ L (σ)} is a filter basis for L (τ1).

On the other hand, using the map j : B −→ B1, the topology L (τ1) induces a topology L ′ in

B, defined

L ′ = {b∩ B | b ∈ L (τ1)},

in consequence, a filter basis for L ′ is

B = {hB | h ∈ L (σ)}.

This filter basis generates a hereditary torsion theory that we’ll called τ.

Actually, there exists a natural topology in B defined by the hereditary torsion theoryσ, which

is

L (B,σ) = {H ⊆ BA | B/H ∈ Tσ}= {H ⊆ BA | there exists h ∈ L (σ) such that hB ⊆ H}.

In conclusion, for any hereditary topology σ in Mod– A we have topologies τ and τ1, in B

and in B1, respectively, defined from σ.
Example. 5.49.

(1) Let Σ ⊆ A be a multiplicative subset, and σ = σΣ the hereditary torsion theory with Gabriel

filter L (σΣ) = {h ⊆ A | h∩Σ ̸=∅}. We may consider τ1 with Gabriel filter

L (τ1) = {c ⊆ B1 | c∩ i(Σ) ̸=∅},

L (τ) = {b ⊆ B | there exists s ∈ Σ such that b∩ sB ̸=∅}.

(2) Let us consider A = Z, B = X 2Q[X ], for an indeterminate X , and Σ = {2t | t ∈ N}. In this

situation we have:

L (σ) = {a ⊆ Z | a∩Σ ̸=∅}= {2tZ | t ∈ N}.

L (τ1) = {c ⊆ B1 | b∩Σ ̸=∅}= 〈2tZ+ X 2Q[X ] | t ∈ N〉.

L (τ) = {b ⊆ B | b∩ sB ̸=∅ for some s ∈ Σ}= {X 2Q[X ]}.

Theorem. 5.50.

Given a ring A, an A–algebra B and a hereditary torsion theoryσ in Mod– A, we have Gabriel filters

L (τ) and L (τ1) in B and B1, respectively, and the following statements are equivalent.
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(a) B1 is τ1–noetherian.

(b) A is σ–noetherian and B is τ–noetherian.

Proof. (a) ⇒ (b). For any ascending chain of ideals {ai}i∈I of A we have {aiB1}i is an

ascending chain of ideals of B1, and there exists i ∈ I such that ClB1
τ1
(aiB1) = ClB1

τ1
(a jB1) for any

j ≥ i.

For any a ∈ a j there exists h ∈ L (σ) such that aB1h ⊆ aiB1; for any (x , y) ∈ B1 and any

h ∈ h we have the following identity: (0, a)(x , y)(0, h) = (axh, a yh) ∈ aiB1, hence a yh ∈ ai;

therefore, ah ⊆ ai, and ClA
σ
(a j) ⊆ ClA

σ
(ai).

Given an ascending chain {bi}i∈I of B–ideals of B, each bi is a B1–ideal, and there exists i ∈ I

such that ClB1
τ1
(bi) = ClB1

τ1
(b j) for any j ≥ i.

For any b ∈ b j there exists h ∈ L (σ) such that bB1h ⊆ bi, hence, for every (x , y) ∈ B1

and any h ∈ h we have (b, 0)(x , y)(0, h) = (bxh + b yh, 0) ∈ bi; in particular, bBh ⊆ bi, and

b ∈ ClB
τ
(bi).

(b)⇒ (a). For any ascending chain {ci}i∈I of ideals of B1, and for any pair of indices i, j such

that i ≤ j, we consider the following commutative diagram

0 // ci ∩ B //

��

ci
//

��

ci
ci+B
∼= ci+B

B
//

��

0

0 // c j ∩ B //

��

c j
//

��

c j

c j+B
∼= cj+B

B
//

��

0

0 // B // B1 = B ⋊ A
p // A∼= B1

B
// 0

We can take each ideal ci an ideal τ1–closed. We claim ci ∩ B ⊆ B is τ–closed since it is an

A–submodule of B1/ci; by the hypothesis there exists an index i1 ∈ I such that ci ∩ B = c j ∩ B for

any j ≥ i. Now we claim {ci}i is stable. The chain {p(ci)}i is σ–stable, i.e., there exists an index

i2 ∈ I such that ClA
σ
(p(ai)) = ClA

σ
(p(a j)) For any x ∈ j. We take i =max{i1, i2}. For any j ≥ i and

any x ∈ c j there exists h ∈ L (σ) such that p(x)h ⊆ p(ci). For any h ∈ h there exists c ∈ ci such
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that p(x)h = p(c), hence p(xh− c) = 0, and xh− c ∈ c j ∩ B = ci ∩ B ⊆ ci. In conclusion xh ⊆ ci,

and x ∈ ci, which is τ1–closed.

Be careful because the chain ideals p(ci)∼=
ci+B

B , i ∈ I , are not σ–closed in A. □

Similar technique could be used to show the next result.

Theorem. 5.51.

Given a ring A, an A–algebra B and a hereditary torsion theoryσ in Mod– A, we have Gabriel filters

L (τ) and L (τ1) in B and B1, respectively, and the following statements are equivalent.

(a) B1 is τ1–artinian.

(b) A is σ–artinian and B is τ–artinian.

Chain conditions, III

We want to see the behaviour of chain conditions relative to totally torsion of the A–algebra

extension. To do that we consider a ring A, an A–algebra B and a hereditary torsion theory σ in

Mod– A. As we seen before, there are Gabriel filters L (τ) and L (τ1) in B and B1 respectively;

hence we may study the relationship between totally noetherian conditions in each of these three

A–algebras.

We have a short exact sequence of A–modules:

0 −→ B −→ B1 = B ⋊ A
p
−→ B1/B ∼= A−→ 0

Theorem. 5.52.

Given a ring A, an A–algebra B and a hereditary torsion theoryσ in Mod– A, we have Gabriel filters

L (τ) and L (τ1) in B and B1, respectively, and the following statements are equivalent.

(a) B1 is totally τ1–noetherian.

(b) A is totally σ–noetherian and B is totally τ–noetherian.

Proof. (a) ⇒ (b). For any ascending chain {ai}i∈I of ideals of A we have that {aiB1}i is

an ascending chain of ideals of B1, hence there exist h ∈ L (σ) and an index i ∈ I such that

(∪ ja jB1)h ⊆ aiB1, hence (∪ ja j)h ⊆ ai, and A is totally σ–noetherian.
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For any ascending chain {bi}i∈I of B–ideals of B we have that each bi is an ideal of B1, hence

there exist h ∈ L (σ) and an index i ∈ I such that (∪ jb j)h ⊆ bi, i.e., B is totally τ–noetherian.

(b)⇒ (a). Given an ascending chain {ci}i∈I of ideals of B1 we have each ci ∩ B is a B–ideal

of B, hence there exist h1 ∈ L (σ) and an index i1 ∈ I such that (∪ j(c j ∩ B))h ⊆ bi ∩ B. On the

other hand, {p(ci)}i is an ascending chain of ideals of A, hence there exist h2 ∈ L (σ) and an index

i2 ∈ I such that (∪ j p(ci))h ⊆ p(ci). We take I = max{i1, i2}, and h = h1 ∩ h2. Then for any

j ≥ i we have p(c j)h ⊆ p(ci), so for any c j ∈ c j and any h ∈ h there exists x j,h ∈ ci such that

p(c j)h = p(x j,h), hence c jh− x j,h ∈ cj ∩ B. By the hypothesis we have (c j ∩ B)h ⊆ ci ∩ B, hence

(c jh − x j,h)h ⊆ ci ∩ B ⊆ ci, and c jhh ⊆ ci. This means that c jh
2 ⊆ ci. In consequence, we have

(∪ jc j)h2 ⊆ ci; therefore, B1 is totally τ1–noetherian. □

Similar technique could be used to show the next result.

Theorem. 5.53.

Given a ring A, an A–algebra B and a hereditary torsion theoryσ in Mod– A, we have Gabriel filters

L (τ) and L (τ1) in B and B1, respectively, and the following statements are equivalent.

(a) B1 is totally τ1–artinian.

(b) A is totally σ–artinian and B is totally τ–artinian.

References for this results are: [31] and [32].

5.4 Pullback construction

Definition and properties

Let A, B and C be commutative rings with unities, if α : A → C and β : B → C are ring

homomorphisms, the set D := {(a, b) ∈ A× B| α(a) = β(b)} of A× B is called the pullback of α

and β .
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The pullback D can be described using the diagram:

D

A

B

C

β ′

α

α′

β

(5.1)

where α′,β ′ are the restriction to D of the projection of A× B onto B and A, respectively.

Remark. 5.54.

The pullback D is a subring of A× B.

Proof. Trivially, D is an abelian group, and (1, 1) ∈ D. For multiplication, let (a1, b1) and

(a2, b2) ∈ D, then (a1, b1)(a2, b2) = (a1a2, b1 b2), we want to show that (a1a2, b1 b2) ∈ D. For,

α(a1a2) = α(a1)α(a2) = β(b1)β(b2) = β(b1 b2). Hence, (a1a2, b1 b2) ∈ D. □

Proposition. 5.55.

Let D be the pullback defined in (5.1), if the ring homomorphism α is surjective, then:

(1) α′ is surjective.

(2) Ker(α)∼= Ker(α′)

Moreover, the following diagram is also a pullback.

Ker(α′) D B

Ker(α) A C

α
′k

γ

α′

β ′ β

αk α

Proof. (1). Let x ∈ B, then β(x) ∈ C , since α is surjective then ∃a ∈ A such that α(a) =

β(x), hence, (a, x) ∈ D and α′(a, x) = x . Thus, α′ is surjective.

(2). Since αβ ′α
′k = βα′α

′k = 0, then there exists a unique γ : Ker(α′) −→ Ker(α) such that

α
′k = αkγ. □
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Therefore, The D–submodules of B are exactly the ideals of the ring B, and α′ induces on B a

natural structure of D–module by setting d · x := α′(d)x for all d ∈ D and x ∈ B.

There are many types of pullbacks according to type of maps to be used. We are interested

with the type of pullbacks as in Proposition (5.55.). That is, α and α′ are surjective ring homomorphisms,

β and β ′ are injective ring homomorphisms.

Thus, for the following diagram, we have:

k D B

k A C

(1) k := Ker(α) = Ker(α′) is a common ideal of A and D.

(2) If a is a common ideal of A and D, then a/k is a common ideal of B and C . The converse is

also true.

(3) For the previous pullback, we can consider the pullbacks in which B and C have no nonzero

common ideals and we have: C ∼= A
k .

Proposition. 5.56.

Let D be the pullback defined in (5.1), such that A and D have k := Ker(α) the maximum common

ideal. That is, the conductor of A and D is k.

Proof. Clearly, k is an ideal of A and D. Now, let j be any common ideal of A and D. Then,

Dj ⊆ j and j ⊆ A. For any (a, b) ∈ D and j ∈ j we have: (a, b) j = (a j, b j) ∈ j ∼= j× (0). Hence,

(a j, b j) = (a j, 0) and a j ∈ j ⊆ A. Therefore, (a j, 0) ∈ Ker(α′), consequently, j ⊆ k. □

Multiplicative subsets and hereditary torsion theory of the pullbacks

We are interested in studying the behaviour of hereditary torsion theories with respect to

pullback.

D B

A C

α′

β ′ β

α

(5.2)
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First let us point out some useful facts.
Remark. 5.57.

(1) Let Σ be a multiplicative subset of the pullback D, then Σ′ := α′(Σ) is a multiplicative subset

of B.

(2) Let σ be a hereditary torsion theory in Mod– D, then α′(σ) is a hereditary torsion theory in

Mod– B; since L (α′(σ)) = {b ⊆ B | α′−1(b) ∈ L (σ)}, then we have: L (α′(σ)) = {b ⊆ B |

there exists d ∈ L (σ) such that α′(d) ⊆ b}.
(3) In consequence, if σ is of finite type, then α′(σ) is of finite type, and there exists a bijective

correspondence betweenK (α′(σ)) and {p ∈K (σ) | Ker(α′) ⊆ p}, and similarly forZ (α′(σ)).

In particular, if σ = ∧{σD\p | p ∈K (σ)}, then α′(σ) = ∧{σB\q | q ∈K (α′(σ))}.
(4) For any ideal d ⊆ D we have α′(ClD

σ
(d)) ⊆ ClB

α′(σ)(α
′(d)); the equality holds WHENEVER

Ker(α′) ⊆ d. Indeed, if α′(x) ∈ ClB
α′(σ)(d), there exists h ∈ L (σ) such that α′(x)h ⊆ α′(d),

hence xh ∈ d+ Ker(α′) = d, and α′(x) ∈ α′(ClD
σ
(d)).

(5) For any σ–finitely generated ideal d ⊆ D we have α′(d) is α′(σ)–finitely generated. Indeed,

if d is σ–finitely generated there exists d1, . . . , ds ∈ D such that ClD
σ
((d1, . . . , ds)) = ClD

σ
(d),

hence ClD
σ
((d1, . . . , ds) + Ker(α′)) = ClD

σ
(d+ Ker(α′)), and

ClB
α′(σ)(α

′(d))= ClB
α′(σ)(α

′(d+ Ker(α′)))

= α′(ClD
σ
(d+ Ker(α′)))

= α′(ClD
σ
((d1, . . . , ds) + Ker(α′)))

= ClB
α′(σ)(α

′((d1, . . . , ds) + Ker(α′)))

= ClB
α′(σ)(α

′(d1, . . . , ds)).

The converse holds whenever Ker(α′) is σ–finitely generated, Ker(α′) ⊆ d, and σ is of finite

type. Indeed, if ClB
α′(σ)(α

′(d)) is α′(σ)–finitely generated, there exist d1, . . . , ds ∈ D such that

ClB
α′(σ)(α

′(d1, . . . , ds)) = ClB
α′(σ)(α

′(d)), hence

α′(ClD
σ
((d1, . . . , ds) + Ker(α′)) = ClB

α′(σ)((d1, . . . , ds)) = ClB
α′(σ)(α

′(d)) = α′(ClD
σ
(d+ Ker(α′))).

Therefore, ClD
σ
((d1, . . . , ds) + Ker(α′)) ⊆ ClD

σ
(d) + Ker(α′) = ClD

σ
(d). On the other hand, for

any x ∈ ClD
σ
(d) there exists h ∈ L (σ) such that xh ⊆ d, hence α′(x)h ⊆ d, and there exists
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h′ ∈ L (σ) such that α′xhh′ ⊆ α′(d1, . . . , ds), and xhh′ ⊆ (d1, . . . , ds) + Ker(α′); i.e., x ∈

ClD
σ
((d1, . . . , ds) + Ker(α′)), and the equality ClD

σ
((d1, . . . , ds)) + Ker(α′) = ClD

σ
(d) holds.

(6) A similar result holds for totally σ–finitely generated ideals.

Proposition. 5.58.

Let D be the pullback defined in (5.2), if σ is a finite type hereditary torsion theory in Mod– D,

then the following are equivalent:

(a) D is an σ–noetherian ring.

(b) B is an α′(σ)–noetherian ring and Ker(α′) is an σ–noetherian D–module.

Proposition. 5.59.

Let D be the pullback defined in (5.2), if σ is a finite type hereditary torsion theory in Mod– D,

then the following are equivalent:

(a) D is a totally σ–noetherian ring.

(b) B is a totally α′(σ)–noetherian ring and Ker(α′) is totally σ–noetherian.

General results

Let M1, M2, M0 be A–modules, and f : M1 −→ M0, g : M2 −→ M0 be maps, The pullback of f

and g is a pair (P, {g ′, f ′}) such that f ′g = g ′ f , and for any pair (X , {h1, h2}) such that gh2 = f h1

there is a map h : X −→ P such that h1 = f ′h and h2 = g ′h.

X
h2

**
h1

��

h

  
P

f ′
//

g ′

��

M2

g

��
M1 f

// M0

(5.3)

The construction of P can be do as follows: build the direct product M1×M2, the projections
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p1 and p2, and the equalizer (E, e) of f p1 and gp2:

E
p2e //

p1e

��

e

$$

M2

g

��

M1 ×M2

p2

::

p1

zz
M1 f

// M0

In consequence, the elements of E are:

E = {(m1, m2) ∈ M1 ×M2 | g(m2) = f (m1)}.

The first property of a pullback diagram, like in (5.3) is related to the kernel of the opposite

maps. Indeed, in such a diagram we have an isomorphism

Ker( f ′) //

��

P //

��

M2

g

��
Ker( f ) // M1

// M0

Given a pullback like in (5.3), a second property is related with that factorization of homomorphisms.

We may consider the factorization of f in an epimorphism and a monomorphism: f = f ck f kc,

which produces a two pullback diagrams:

P2
//

��

P1
//

��

M2

g

��
M1

// Im( f ) // M0
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On the other hand we have the natural diagram produced by the factorizations of f and f ′:

P //

��

##

M2

��

Im( f ′)

��

;;

M1
//

##

M0

Im( f )

;;

Indeed, there exist isomorphisms P1
∼= Im( f ′) and P2

∼= P such that the two faces of the last

diagram are pullback squares.

The third property on pullback squares says that two pullback squares produces a pullback

square.

P2
//

��

P1
//

��

M2

g

��
M3 h

// M1 f
// M0

If P1 and P2 are pullback, then P2 is the pullback of f h and g.

As a consequence, to study pullback squares we may restrict to consider one of the following

types:

• //

��

•� _

��

• //

��

•

����

• //

��

•� _

��
• �
� // • • // // • • // // •

Taking into account that the opposite map of a monomorphism is a monomorphism, and the

opposite map of an epimorphism is an epimorphism.

In the particular case in which M0, M1 and M2 are rings and f , g ring maps, in a pullback

square we may give structure of ring to P, and, in addition, the maps f ′ and g ′ also are ring maps.
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Indeed, the structure is given via the direct product. Let us consider a pullback of rings like

D
f ′ //

g ′

��

B
g
��

A
f

// C

(5.4)

If we consider the case

D
f ′ //

g ′

��

B
g
����

A
f

// // C

(5.5)

since f and g are surjective maps, there are maps between the spectrum, and we may build a

diagram like the following one;

Spec(C)
g∗ //

f ∗

��

Spec(B)

��

( f ′)∗

��

uu

Spec(A)
•
∪ Spec(B)

))Spec(A) //

(g ′)∗
--

55

Z

&&
Spec(D)

(5.6)

In consequence, Spec(D) is related with the push-out of the set–maps between the spectra. If

we impose conditions to A, B, C and f , g, then we may obtain a useful description of Spec(D), but

in general we only will have information on the prime ideals of D and the prime ideals of A and B

containing the kernels of f and g, respectively.

The mixed case

D
f ′ //

g ′

��

B� _
g
��

A
f

// // C

(5.7)
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corresponds to the case of a ring extension in which the rings sharing an ideal, in this case the

kernel of the epimorphisms.

Ker( f ′) �
� // D

f ′ // //
� _

��

B� _
g

��
Ker( f ) �

� // A
f

// // C

5.5 Amalgamated algebras

Definitions and main results

Let A be a ring and f : A −→ B be a ring map, hence B is an A–module with action a · b =

f (a)b, for any a ∈ A and b ∈ B. For any ideal H ⊆ B we consider

A ▷◁ H = A ▷◁ f H = {(a, f (a) + h) ∈ A× B | a ∈ A, h ∈ H}.

It is a subring of B, with componentwise multiplication, and unity (1,1). We call A ▷◁ H the

amalgamated algebra of A and H through f .

There are useful maps related with A ▷◁ H:

• The map j : A −→ A ▷◁ H , defined j(a) = (a, f (a)), is a ring map; hence every A ▷◁

H-module is inherited an A–module structure.

• The map t : H −→ A ▷◁ H , defined t(h) = (0, h), is an A–module map.

• There is a ring isomorphism A ▷◁ H/0 ▷◁ H ∼= A ▷◁ 0.

We have that the amalgamated algebra is an example of a particular pullback construction.

Indeed, for any ring map f : A−→ B and any ideal b ⊆ B we consider the pullback diagram

A ▷◁ b

D A

B B/b

d

r

s

p′

g ′ p f=g

p
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being p : B −→ B/b the projection and g = p f : A−→ B/b the composition. In this situation, the

pullback of p and g is (D, {g ′, p′}). If we consider the maps r : A ▷◁ b −→ A, defined r(x , y) = x ,

and s : A ▷◁ b −→ B, defined s(x , y) = y , we have gr = p f r = ps, and there exists a unique ring

map d : A ▷◁ b −→ D such that r = p′d and s = g ′d. The description of d is just d(x , y) = (x , y);

hence it is a bijection, i.e., an isomorphism.

Since p is a surjective map, then p′ also is a surjective map, hence we have a commutative

diagram

Ker(p′) A ▷◁ b A

Ker(p) = b B B/b

p′

g ′ p f=g
f

p

(5.8)

If we start from a hereditary torsion theory σ in Mod– A, it defines hereditary torsion theories

σA▷◁b in Mod– A ▷◁ b and σB in Mod– B in the usual way:

L (σA▷◁b)= {d ⊆ A ▷◁ b | j−1(d) ∈ L (σ)}

= {d ⊆ A ▷◁ b | there exists a ∈ L (σ) such that j(a) ⊆ d}.

L (σB) = {c ⊆ B | f −1(c) ∈ L (σ)}.

(5.9)

In this situation, the ring map p′ : A ▷◁ b −→ A defines a hereditary torsion theory τ in Mod– A

whose Gabriel filter is
L (τ)= {a ⊆ A | p′−1(a) ∈ L (σA▷◁b)}

= {a ⊆ A | j−1p′−1(a) ∈ L (σ)}

= {a ⊆ A | (p′ j)−1(a) ∈ L (σ)}

=L (σ).

Before a brief remark: if σ is a finite type hereditary torsion theory in Mod– A, then σA▷◁b and

σB are of finite type. In this section we assume, unless otherwise stated, that all hereditary torsion

theory is of finite type.

In consequence, given a hereditary torsion theory σ in Mod– A, if A ▷◁ b is σA▷◁b–noetherian,

then A isσ–noetherian, and Ker(p′) isσA▷◁b–noetherian. Since there is an isomorphism of A–modules

Ker(p′) ∼= Ker(p) = b, hence of A ▷◁ b–modules; if Ker(p′) is σA▷◁b–noetherian, then Ker(p) is

σB–noetherian.
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Let us denote by B′ the subring f (A) + b ⊆ B. Observe that, in considering B′, we may also

obtain A ▷◁ b as the pullback of A and B′; in this case the maps g and g ′ are surjective.

If we consider this last situation, B′ is σB′–noetherian whenever A ▷◁ b is σA▷◁b–noetherian,

the converse also holds; hence the following result holds.

Theorem. 5.60.

Let σ is a finite type hereditary torsion theory in Mod– A, the following statements are equivalent:

(a) A ▷◁ b is σA▷◁b–noetherian.

(b) A is σ–noetherian and B′ = f (A) + b is σB′–noetherian (= σA▷◁b–noetherian).

(c) A is σ–noetherian and Ker(p) = b ⊆ B is σB–noetherian.

The same result holds if we consider totally noetherian instead of noetherian. In this case we

obtain a generalization to hereditary torsion theories of [41, Theorem 3.2].

In the same situation we have the following consequence:

Corollary. 5.61.

The following statements are equivalent:

(a) A is σ–noetherian.

(b) Ker( f ) is σ–noetherian and B is f (σ)–noetherian.

And similarly for totally noetherian!

We may apply these results to a particular case of the pullback construction.

Proposition. 5.62.

Let

D
f ′ //

g ′

��

A
g
��

B
f

// // C

be a pullback of rings such that f is surjective. For any finite type hereditary torsion theory σ in

Mod– D the following statements are equivalent:

(a) D is σ–noetherian.
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(b) Ker( f ) is σ–noetherian and A is f ′(σ)–noetherian.

Proof. Since f is surjective, f ′ is also surjective; on the other hand there Ker( f ) ∼= Ker( f ′),

and the sequence 0 −→ Ker( f ′)
i
−−→ D

f ′
−−→ A−→ 0 is short exact. Hence, D is σ-Noetherian ring

if, and only if, A and Ker( f ) are σ-Noetherian D-modules.

The D–submodules of A are exactly the ideals of A because f ′ is surjective, then A is an

σ–Noetherian D-module if, and only if, A is a f ′(σ)-Noetherian ring. Therefore, D isσ-Noetherian

ring if, and only if, A is a f ′(σ)-Noetherian ring and Ker( f ) is an σ-Noetherian D-module. □

Now, we study the σ-Artinian property on a pullback. We start by a proposition.

Proposition. 5.63.

Let

D
f ′ //

g ′

��

A
g
��

B
f

// // C

be a pullback of rings such that f is surjective. For any finite type hereditary torsion theory σ in

Mod– D the following statements are equivalent:
(a) D is σ–artinian.

(b) Ker( f ) is σ–artinian and A is f ′(σ)–artinian.

Proof. The proof is similar to the proof of Proposition (5.62.). □

The same results hold if we consider either totally σ–noetherian or totally σ–artinian rings.

Let j : A −→ A ▷◁ b be the natural embedding defined by j(x) = (x , f (x)) for all x ∈ A.

If Σ ⊆ A is a multiplicative subset of A, then clearly, Σ′ = {(s, f (s)) | s ∈ Σ} and f (Σ) are

multiplicative subsets of A ▷◁ b and B, respectively. They meet with the correspondence described

in (5.9).

Let us consider the pullback of rings

A ▷◁ b
pA //

PB

��

A
g
��f

wwB p
// B/b
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Theorem. 5.64.

Let f : A→ B be a ring homomorphism, b ⊆ B an ideal, and Σ a multiplicative subset of A such

that 0 /∈ Σ, Σ∩(b :A A ▷◁ b) =∅ and Ann(b)∩Σ=∅; then the following statements are equivalent:

(a) A ▷◁ b is a Σ′–artinian ring.

(b) A is a Σ–artinian ring and B′ = f (A) + b is an f (Σ)–artinian ring.

(c) A is a Σ–artinian ring and b is Σ′–artinian A ▷◁ b-module (= f (Σ)–artinian B–module).

Proof. (a)⇒ (b). Since pA : A ▷◁ b −→ AA and pB : A ▷◁ b −→ B′ are surjective maps, then A

is Σ–artinian and B′ is f (Σ)–artinian.

(b)⇒ (c). Consider {bi | i ∈ I} a descending chain of A ▷◁ b–submodules of b. Since every

A ▷◁ b–submodule of b is an ideal of B′ = f (A) + b, we have that the chain is of B′–ideals, hence

there exists s ∈ Σ, and k ∈ I such that bk f (s) ⊆ bi for any i ≥ k, i ∈ I ; then j(s) satisfies bk j(s) ⊆ bi

for any i ∈ I , i ≥ k, and b is a Σ′–artinian A ▷◁ b–module.

(c)⇒ (a). We have short exact sequence of A ▷◁ b–modules:

0 −→ b −→ A ▷◁ b −→ A−→ 0,

and b, A are Σ′–artinian, hence A ▷◁ b also is. □

We can state and prove the corresponding result relative to a hereditary torsion theory σ in

Mod– A similarly to Theorem (5.60.). Observe that the main difference is that when we consider

multiplicative set in A, we are considering principal hereditary torsion theories, whereas with

general hereditary torsion theories we are using finite type hereditary torsion theories; that is,

multiplicative sets of finitely generated ideals.

Theorem. 5.65.

In the above situation the following statements are equivalent:

(a) A ▷◁ b is a σA▷◁b–artinian ring.

(b) A is a σ–artinian ring and B′ = f (A) + b is a σB′–artinian ring.

(c) A is a σ–artinian ring and b is a σB–artinian B–module.
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Proof. (a)⇒ (b). Consider the surjective map r : A ▷◁ b −→ A and the map s : A ▷◁ b −→ B

whose image is B′ = f (A) ▷◁ b, and call σB′ the hereditary torsion theory induced from σ through

the map f . Therefore, B′ = f (A) ▷◁ b is σB′–artinian.

(b)⇒ (c). Given a decreasing chain of A–submodules {bi | i ∈ I} of b, we have a decreasing

chain {0 ▷◁ bi | i ∈ I} of f (A) ▷◁ b, hence it stabilizes, and there exist an index k and h ∈ L (σ)

such that (0 ▷◁ bk) j(h) ⊆ ∪i(0 ▷◁ bi). In particular, bk f (h) = bkh ⊆ ∪ibi, and b is a σ–artinian

A–module.

(c)⇒ (a). We have a pull back diagram

b // A ▷◁ b

��

// A
f

ww ��
b // B // B/b

with the top row a short exact sequence. For any ideal c ⊆ A ▷◁ b we have a short exact sequence

0→ b∩ c→ c→ (c+ b)/b→ 0; hence c is a σ–artinian module. In particular, for any decreasing

chain {ci | i ∈ I} of ideals of A ▷◁ b we have a decreasing chain of σ–artinian A–submodules,

hence there exist and index k and h ∈ L (σ) such that ck j(h) ⊆ ∪ici. This means that A ▷◁ b is a

σA▷◁b–artinian ring. □

As we realize before, we may assume in this develop of the theory that f : A −→ B is a

surjective map, simple replacing B by B′ = f (A) + b.

Remark. 5.66.

Let us point out that this result solves a question in [43, Question 3.8] when we take σ = σΣ, for

a multiplicative set Σ ⊆ A.

Study through prime ideals

Based on [20], [22] and [47], M. D’Anna, C. A. Finocchiaro and M. Fontana studied the

prime spectrum of the amalgamated algebra along an ideal. We recall their results from [16].
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Corollary. 5.67.

Let X := Spec(A), Y := Spec(B), and W := Spec(A ▷◁ b), b0 := 0 × b ⊆ A ▷◁ b, and b1 :=

f −1(b)× 0 ⊆ A ▷◁ b. For all p ∈ X and q ∈ Y , set

p′ f := p ▷◁ b := {(p, f (p) + b) | p ∈ p, b ∈ b},

q̄ f := {(a, f (a) + b) | a ∈ A, b ∈ b, f (a) + b ∈ q}.

Then the following statements hold:

(1) The prime ideals of A ▷◁ b are of the type p′ f or q̄ f , for p varying in X and q in Y \ V (b) where

V (b) = {q ∈ Y | q ⊇ b} .

(2) p′ f is a maximal ideal of A ▷◁ b if, and only if, p ⊆ A is a maximal ideal.

(3) Let q ⊆ B be a prime ideal not containing b. Then, q̄ f is a maximal ideal of A ▷◁ b if, and only

if, q ⊆ B is a maximal ideal.

Proof. See [16]. □

Now we study totally σ–prime ideals and its behaviour with respect to the amalgamation

construction.

Un relation with the amalgamated ring extension, let us consider a finite type hereditary

torsion theory in Mod– A; we may assume that 0 /∈ L (σ), hence the same holds for σA▷◁b and

σB.

Proposition. 5.68.

For any ring map f : A−→ B and any ideal b ⊆ B the following statements hold:

(1) For any prime ideal p ∈K (σ) we have p′ f = p ▷◁ b ∈K (σA▷◁b).

(2) For any prime ideal q ∈K (σB) we have q̄ f ∈K (σA▷◁b).

(3) For any prime ideal Q ∈ K (σA▷◁b), if Q = p′ f , for some p ∈ Spec(A), then p ∈ K (σ); if

Q= q̄ f , for some q ∈ Spec(B), then q ∈K (σB).

This result can be extended to consider totally prime ideals.

Proof. (1). Since p′ f ⊆ A ▷◁ b is prime, if p′ f /∈ K (σA▷◁b), then p′ f ∈ Z (σA▷◁b), hence

p ∈ Z (σ), which is a contradiction.
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(2). If q̄ f /∈K (σA▷◁b), then q̄ f ∈ Z (σA▷◁b), hence j−1(q̄ f ) ∈ L (σ). In this case we have:

j−1(q̄ f )= {a ∈ A | j(a) = (a, f (a)) ∈ q̄ f }

= {a ∈ A | f (a) ∈ q}= f −1(q).

In consequence, q ∈ Z (σB), which is a contradiction.

(3). If Q = p′ f , for some p ∈ Spec(A), and Q ∈ K (σA▷◁b), then p = j−1(Q) ∈ K (σ). On the

other hand, if Q= q̄ f , for some q ∈ Spec(B), then f −1(q) = j−1(Q) ∈K (σ); hence q ∈K (σB).

□

Now, if we apply Cohen–like’s theorem, see [15] or [32], for the amalgamation, then we have:

Theorem. 5.69.

For any ring map f : A −→ B, any ideal b ⊆ B, and any finite type hereditary torsion theory in

Mod– A the following statements are equivalent:

1. A ▷◁ b is totally σ-Noetherian.

2. Every totally σ-prime ideal of A ▷◁ b is totally σ-finite.

3. Every prime ideal inK (σA▷◁b) is totally σ-finite.

It is easy to prove that, if b is totally σB–finitely generated, for any prime ideal p ∈K (σ) we

have p is totallyσ–finitely generated if, and only if, p′ f is totallyσA▷◁b–finitely generated. However

we have had difficulties in proving a similar result for the ideals q and q̄ f .

If σ is a hereditary torsion theory in Mod– A ▷◁ f b, it is known that for any prime ideal p of

A ▷◁ f b we have either p ∈ C(A ▷◁ f b,σ) or p ∈ L (σ), i.e., either (A ▷◁ f b)/p is σ-torsionfree or

(A ▷◁ f b)/p is σ-torsion.

Corollary. 5.70.

Let σ be a finite type hereditary torsion theory in Mod– A ▷◁ f b, the following are equivalent:

1. A ▷◁ f b is totally σ-noetherian.

2. Every prime ideal inK (σ) is totally σ-finitely generated.

The amalgamated algebras along an ideal generalizes other important constructions, such as

the idealization, see section (5.1).

The next proposition proves that the idealization is a special case of the amalgamated algebras.
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Proposition. 5.71. ([45])

Let M be an A–module and f : A −→ M ⋊ A the ring map defined f (a) = (0, a). If take b =

M ⋊ 0 ⊆ M ⋊ A, then M ⋊ A∼= A ▷◁ f b.

Proof. We’ll represent the element of M ⋊ A as m+ a, instead of (m, a). Let λ : M ⋊ A−→

A ▷◁ f (M ⋊ 0) defined by λ(m, a) = (a, a+m); it is well defined, and we can show that it is a ring

map isomorphism. Indeed, λ(0,1) = (1,1), and for elements a, a′ ∈ A and m, m′ ∈ M we have:

λ((m, a) + (m′, a′)) = λ(m+m′, a+ a′) = (a+ a′, a+ a′ +m+m′)

= (a, a+m) + (a′, a′ +m′) = λ(m, a) +λ(m′, a′).

λ((m, a)(m′ + a′)) = λ(ma′ +m′a, aa′) = (aa′, aa′ +ma′ +m′a)

= (a, a+m)(a′, a′ +m′) = λ(m, a)λ(m′, a′).

Trivially, λ is bijective. Hence λ is an isomorphism ring map. □

Therefore, we can easily apply the previous theorems of the amalgamation on the idealization.

We finish by observing that the amalgamated algebra along an ideal need not to be an idealization.

Since the idealization is always non-reduced when M ̸= 0 but the amalgamation can be even a

domain.
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local, 82

pullback, 10, 96

radical torsion, 13

ring

artinian, 22

homogenous, 71

S–noetherian, 4

σ–noetherian, 21, 47

σS–noetherian, 21

prime, 41

σ–prime, 41

principal ideal, 74

σ–principal ideal, 74

totally σ–noetherian, 21, 46

totally σ–prime, 41

totally σ–principal ideal, 75

totally artinian, 22

totally finite σ–radical, 33

totally noetherian σ–radical, 33

saturation, 17

set

Gabriel, 18

space

noetherian, 27

spectrum, 23

119



subalgebra, 87

submodule, 90

σ–closed, 14

cyclic, 90

σ–cyclic, 74
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