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Introduction

Given a logic L and a formula of that logic, the decision problem, also called satisfiability
problem, tries to answer whether that formula is valid or equivalently if it is satisfiable. Then,
a decision procedure for the logic L is an algorithm that solves the decision problem for any
formula in L. We will say that a decision procedure is sound if it always returns the correct
answer, and it is complete if it answers in a finite time. A decidable logic is one for which
there exists a sound and complete decision procedure. In propositional logic, the problem
consists in determining if there is a truth assignment of its variables for which the formula
is true. In the worst case, checking satisfiability involves testing 2n inputs, where n is the
number of variables in the formula. This is the first problem that was proven NP-complete
in 1971 by Cook [16]. It is called the boolean satisfiability problem also called SAT. First
order logic is more expressive than propositional logic. However, the satisfiability problem
for first order logic is undecidable, since there is no algorithm that returns a correct answer
in a finite time for the satisfiability problem of any first order formula. In spite of this,
there are fragments of first order theories that are decidable. That motivates the so-called
satisfiability modulo theories problem (SMT).

Due to the continuous improvement of SAT solving technology, it turns out a good decision
to use SAT solvers within SMT solvers. It is the case of the eager and lazy approaches of
SMT solving. The eager approach to SMT solving involves translating the original formula
into an equisatisfiable propositional formula, while the lazy approach uses SAT solvers along
with decision procedures for first order theories called theory solvers. These theory solvers
are dedicated methods tailored to the specific theory. In the image 1 we can see in broad
outline the scheme that follows a lazy approach of SMT solver. The input is usually a first
order formula in conjunctive normal form. As we can see, in the image the input is of the
form

(P11 ∧ · · · ∧ P1n1
)∨ · · · ∨ (Pm1 ∧ · · · ∧ Pmnm

)

where Pi j are predicates applied to the corresponding terms. When the SAT solver receives
the formula, it builds a propositional formula that is nothing more than the same formula
where the predicates have become propositional variables that can take values true or
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false. Afterwards, the SAT solver search for a satisfying assignment, if it does not find
such assignment, it returns UNSAT.

SAT solver SAT / UNSAT

Theory solvers

Set of
constraints

SAT or
inconsistent set

FOL formula in CNF

Figure 1: Diagram of lazy SMT solvers

In case the SAT solver does find an assignment, then the set of predicates associated with the
propositional variables that were assigned true, is sent to the corresponding theory solver.
The theory solver check the consistency of the predicates within the theory, that is, whether
there exists an assignment to the first order variables that makes the predicates true. If so,
then the system returns SAT. If the set of predicates is not consistent within the theory, the
theory solver returns a set of inconsistent predicates to the SAT solver, which generates a
conflict clause with the propositional variables that correspond to the conflicting predicates.
This clause is used so that the SAT solver does not generate another assignment that assigns
true to predicates in the conflicting set any more.

Recently, satisfiability checking and symbolic computation communities have found that
some of their lines of research have started to converge. Symbolic computation usually
refers to the study and development of algorithms and software for manipulating symbolic
objects such as algebraic expressions, logical propositions and programs themselves. Com-
puter algebra systems have functionality for Gröbner basis, cylindrical algebraic decompo-
sition, graph algorithms, etc. The use of computers to tackle mathematical problems dates
back to 1953, being almost as old as computing itself. It is longer than that of satisfiability
checking, appearing the first SAT solver that follows the modern design in the 1990s. The
first algebraic software appeared in the 1960s with new methods for factoring polynomials.

May 25, 2023 Course 2021–2022. Master thesis
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Buchberger’s development of the Gröbner bases was a breakthrough in the field. Symbolic
computational systems solve abstract problems, but while computer algebra systems are not
optimized for problems that require searching through a large combinatorial space, this is
something that SAT solvers excel at.

A combination of SAT solvers and symbolic computation is used to solve conjectures in this
paper [15]. Symbolic computation can also be used to solve the boolean satisfiability prob-
lem by means of Gröbner bases computation, as discussed in [19]. Also, an example of the
combination of those two fields are SMT solvers for the theory of non-linear real arithmetic
[1, 3]. A decision procedure for the last example is the cylindrical algebraic decomposition
[5]. Cylindrical algebraic decomposition was introduced by George Collins in 1975 and has
much better computational complexity than the initial version, quantifier elimination, de-
veloped by Tarski in the 1930s. The quantifier elimination decision procedure proved that
non-linear real arithmetic is decidable.

Despite the benefits that both communities would obtain from the collaboration between
them, their research areas are still very disconnected. Furthermore, their libraries can not
be easily embedded since it requires either a deep understanding of complex mathematical
problems or efficient solver implementations. To support a stronger collaboration, several
initiatives have been launched. SC2 was created to bridge these two communities, they
organize some community building events such us workshops and summer schools [2]. In
2016, SC2 obtain funding from the European Commission. SMT-LIB states common stan-
dards and a library of benchmarks for the comparison of SMT systems. This community also
work to extend SMT-LIB to better support the areas of relevance to SC2.

In this thesis, we are focused on how to solve a few satisfiability problems using Gröbner
bases. The computation of the Gröbner basis of a system of non-linear multivariate polyno-
mials can be seen as a term rewriting method, since it allows us to obtain a simpler system
of equations that represents the same set of solutions as the initial system [7]. Once the
Gröbner basis is calculated, we can check if the set of equations has any solutions using
Hilbert’s Nullstellensatz theorem. This theorem states that to check this, it is only necessary
to check whether 1 belongs to the Gröbner basis.

In the first application, Gröbner bases are used to define a SAT solver by algebraic methods.
The propositional formula is converted into a polynomial over the finite field F2 where
0,1 represent true, false respectively. After, the Gröbner basis of a system of equations
is computed and the problem is reduced to the verification of whether 1 belongs to the
Gröbner basis. A simple implementation of an algebraic SAT solver is presented at the end.

The other application is the resolution of the existential fragment of Presburger’s theory
of arithmetic. Using a lazy SMT solver, as we saw in the image 1, the problem is reduced

Satisfiability and Gröbner basis Eva González García
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to checking if a set of linear equations defined over the natural numbers has a common
solution, that is to check if there is an assignment that satisfies those constraints. As the set
of natural numbers is not algebraically closed, we can not compute the Gröbner basis of this
system of equations directly.

Then, we will prove the Herbrand’s expansion theorem, which will be used to prove that
the satisfiability problem in first order logic is undecidable and satisfiability in propositional
logic is NP-complete. In a next chapter, we review the Gröbner bases theory. We will use
this tool to solve two satisfiability problems.

May 25, 2023 Course 2021–2022. Master thesis



Chapter I

Satisfiability

A SAT solver is a decision procedure for propositional logic, while SMT solvers aims at de-
termining the satisfiability of first order logic formulas regarding some background theories
for which the decision problem is decidable. To understand in more depth what SAT and
SMT consist of, in this chapter we will discuss the following topics whose content has been
taken from the specified references.

1. Review of Propositional Logic (PL) [14, 29, 28].

2. Review of First Order Logic (FOL) [14, 32, 36].

3. Determination of complexity of the satisfiability problem for propositional logic and
first order logic [32, 36, 38, 23, 18].

4. Introduction to first order theories and fragments and some examples [14, 19].

1 Propositional logic

We will start by illustrating with an example what a propositional formula is. Let’s say we
have two numbers a and b, the statement “a is greater than b” would be a variable of PL
which can be true or false but not both at the same time.

A more complex example which uses connectives is “if a is greater than b and b is greater
than c, then a is greater than c”. If we define the variables A= “a is greater than b”, B= “b is
greater than c” and C= “a is greater than c”, the corresponding logic formula is (A∧B)→ C .



6 CAP. I. SATISFIABILITY

Syntax

The elements of propositional logic are:

• truth values: 1 - true, 0 - false.

• atoms are the propositional variables A, B, C , . . .. We can assign truth values to the
atoms. The set of atoms is a countably infinite set AP .

• connectives can be applied to atoms or formulas. A d-ary connective is of the form
C : {0,1}d → {0,1}. The set of connectives is denoted by C.

Example. 1.1.
¬ and id are examples of 1-ary connectives, while ∧, ∨,→↔, and ⊕ are 2-ary connectives.

a id(a) ¬a

0 0 1
1 1 0

a b a ∧ b a ∨ b a→ b a↔ b a⊕ b

0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 0 0 1
1 1 1 1 1 1 0

Figure I.1: Truth tables of id, ¬, ∧, ∨,→,↔, and ⊕.

A proposition is constructed by applying connectives to one or several atoms or propo-
sitions. If P1 = {C(P1, . . . , Pd) : C ∈ C, Pi ∈ A} is the set of connectives applied to the
variables, then Pn = {C(P1, . . . , Pd) : C ∈ C, Pi ∈ Pn−1} is a set of propositions. As we assume
that id ∈ C, then Pn ⊂ Pn+1 for all n ∈ N.

The set LP =
⋃

n∈NPn contains the propositions that can be formed by the elements of the
propositional logic.

May 25, 2023 Course 2021–2022. Master thesis
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Semantics

An interpretation ν : AP → {0,1} is a function that assigns to every propositional variable
a truth value. We can extend this definition to the set of propositions ν : LP → {0, 1}, in
this way for each P = C(P1, . . . , Pd) ∈ LP where C ∈ C,

ν(P) = ν(C(P1, . . . , Pd)) = C(ν(P1), . . . ,ν(Pd)).

This is the result of assigning the corresponding values to each atom of the proposition.

Satisfiability

A proposition P ∈ LP is satisfiable if there is an interpretation ν such that ν(P) = 1. Oth-
erwise, it is unsatisfiable. It is valid if for all ν interpretation, ν(P) = 1.

Example. 1.2.
• A∨¬A is valid.

• A∧¬A is unsatisfiable.

• A∧ ¬B is satisfiable, and we check it by using the interpretation ν : {A 7→ 1, B 7→ 0}
since ν(A∧¬B) = ν(A)∧ ν(¬B) = ν(A)∧¬ν(B) = 1∧ 1= 1.

• (¬A∨ B)∧ (A∨¬B ∨ C) is satisfiable for the interpretation ν : {A 7→ 0, B 7→ 0, C 7→ 1}.

• (¬A∨ B)∧ (A∨ B)∧¬B is unsatisfiable.

Lemma. 1.3.
Given P ∈ LP , P is valid if, and only if ¬P is unsatisfiable.

PROOF.

⇒) If P is valid, then for any interpretation ν, ν(P) = 1. Equivalently, ν(¬P) = 0. Then,
¬P is unsatisfiable.

⇐) If ¬P is unsatisfiable, then for any interpretation ν, ν(¬P) = 0. Equivalently, ν(P) = 1.
Then, P is valid. □

Satisfiability and Gröbner basis Eva González García
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Normal forms

A literal is a variable or its negation. The connectives ∧ y ∨ are called conjunction and
disjunction, respectively. A clause is a disjunction of literals or a single literal.

A formula in conjunctive normal form (CNF) is a conjunction of clauses
∧

i

∨

j li, j for
literals li, j.

Example. 1.4.
The formula (A∨ B ∨ C)∧ (D ∨ B ∨ C) is in conjunctive normal form.

A formula in disjunctive normal form (DNF) is a disjunction of conjuctions
∨

i

∧

j li, j for
literals li, j.

Example. 1.5.
The formula (A∧ B)∨ (A∧ C)∨ (D ∧ B)∨ (D ∧ C) is in disjunctive normal form.

2 First order logic

Compared to PL, we have a higher level of freedom in FOL. Considering the statement we
used before “a greater than b” (an atom in PL), we create the predicate > (x , y) that is
equivalent to x > y . Now, x and y are variables, and depending on the value they take,
the predicate is true or false. It is also possible to define the formula with quantifiers
∀x∃y.x ⩾ y , or define the function +(x , y), that represents x + y , and write the formula
∀x .x + d > x where d is a constant. This makes first order logic more expressive than the
propositional logic.

Syntax

The elements of first order logic are:

May 25, 2023 Course 2021–2022. Master thesis
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• variables x , y, z, . . . and constants a, b, c, . . . which are the most basic terms. The set
of variables and constant symbols is denoted by V and the set of terms by T.

• functions f , g, h, . . . are used to construct more complex terms. A d-ary function is of
the form f : Td → T. The set of function symbols is denoted by M.

• predicates A, B, C , . . . are the atoms of first order logic. A d-ary predicate is of the
form P : Td → {0,1}. Predicates are seen as relations where (t1, . . . , td) ∈ P if
P(t1, . . . , td) = 1. The set of predicates symbols is denoted by N.

• in addition to the elements of the PL, there are two quantifiers:

– universal quantifier: ∀x .x + d > x means “for all x, x + d > x“;

– existential quantifier: ∃x . f (x) = 0 means “there exists x such that f (x) is equal
to 0“.

Quantifiers are denoted by Q ∈ {∃,∀,∅}, where∅means that no quantifier is applied.

A term is constructed by applying functions to one or several variables, constants or terms.
Let T1 = { f (t1, . . . , td) : f ∈M, t i ∈ V} be the set of functions applied to the variables and
constants, then Tn = { f (t1, . . . , td) : f ∈ M, t i ∈ Tn−1} is a set of terms. We convene that
some function symbol is the identity function, then Tn ⊂ Tn+1 for all n ∈ N.

• The set T =
⋃

n∈NTn contains the terms that can be obtained by using constant, vari-
able, and function symbols.

• The set AFO = {P(t1, . . . , td) : P ∈N, t1, . . . , td ∈ T} contains the predicates applied to
the terms.

A formula is constructed by applying connectives or quantifiers to one or several atoms or
formulas. If F1 = {Qx .C(F1, . . . , Fd)|C ∈ C; x , Fi ∈ AFO} is the set of connectives applied
to the variables, then Fn = {Qx .C(F1, . . . , Fd)|C ∈ C; x , Fi ∈ Fn−1} is a set of propositions.
Since id ∈ C, then Fn ⊂ Fn+1 for all n ∈ N.

The set LFO =
⋃

n∈NFn contains the formulas that can be formed by the elements of first
order logic.

A variable can be classified regarding the state of that variable within a specified formula:

Satisfiability and Gröbner basis Eva González García



10 CAP. I. SATISFIABILITY

• free: there is an occurrence of x that is not bound by any quantifier,

• bound: there is an occurrence of x in the scope of a binding quantifier ∀x or ∃x .

Example. 2.1.
In the formula

F = ∀x .p( f (x), y)→∀y.p( f (x), y),

x only occurs bound, and y appears as free (in the left-hand side of the implication) and
bound (in the right-hand side). Observe that F is the scope of the quantifier ∀x and
p( f (x), y) is the scope of the quantifier ∀y .

A formula is closed if it does not contain any free variables.

Semantics

First order formulas evaluate to truth values, but terms evaluates to values from a specific
domain. An interpretation ν : (Dν,αν) consisting of a domain and an assignment. A do-
main Dν of an interpretation ν is a non-empty set, where examples of elements of this set
are the integer and real numbers, or any other physical or abstract objects. Domains can be
finite, countably or uncountable infinite.

The assignment αν of an interpretation ν is a map:

• each variable or constant is assigned a value from Dν;

• each n-ary function symbol is assigned an n-ary function fν : Dn
ν
→ Dν;

• each n-ary predicate symbol P is assigned an n-ary predicate Pν : Dn
ν
→ {true,false};

A formula F ∈ LFO is interpreted as follows:

• ν(x) = xν for every free variable or constant x in F ,

• ν(S(s1, . . . , sd)) = Sν(ν(s1), . . . ,ν(sd)) for every symbol S in F such that S ∈ C∪N∪M,

• ν(∀x .F) = 1 if and only if [∀a ∈ Dν : ν(x) = a]ν(F) = 1,

• ν(∃x .F) = 1 if and only if [∃a ∈ Dν : ν(x) = a]ν(F) = 1.

May 25, 2023 Course 2021–2022. Master thesis
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A model of F is and interpretation ν such that ν(F) = 1.

Example. 2.2.
The formula F = ∀y∃x .P(y, x)∧ ∃z∀w.¬P(w, z) consists of the binary predicate symbol P,
and the variables x , y, z, w.

We construct an interpretation ν : (Dν,αν) where Dν = N. The predicate P is assigned the
less-than relation<. The variables x , y, z, w are assigned the values 13, 12,0, 4, respectively.
Then we obtain the interpretation ν : (N,αν), where

αν : {P 7→<, x 7→ 13, y 7→ 12, z 7→ 0, w 7→ 4}.

All the other constant, function and predicate symbols that do not appear in F are ignored.
Then, the formula becomes

∃x .(y < x)∧ ∃z∀w.¬(w< z).

Satisfiability

A formula is satisfiable if it has a model. It is valid if every interpretation is a model. Nor-
mally, satisfiability only apply to closed formulas, but there is convention, a formula F is
satisfiable if its existential closure ∃∗ .F is satisfiable, it is valid if its universal closure ∀∗ .F
is valid.

Normal forms

Two formulas F and G are equivalent if for all interpretation ν, then ν(F) = ν(G). It
is denoted by F ≡ G. They are equisatisfiable when, F is satisfiable if and only if G is
satisfiable.

A formula is rectified if no variable occurs both bound and free, and if all the quantifiers in
the formula have an effect on different variables.

The rectified equivalent formula is computed by renaming variables, making the bounding
variables disjoint for different subformulas. Given a formula F , a variable in this formula x
and a term t which does not appear in F , F[x/t] is the result of replacing any free occurrence
of x by t. It is also used F[x1/t1, . . . , xn/tn] for the replacement to be simultaneously, it
should not be confused with F[x1/t1] · · · [xn/tn]. To replace a bound variable, the equality
Qx F ≡QtF[x/t] is applied.

Satisfiability and Gröbner basis Eva González García
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Example. 2.3.
1. P(x)[x/y, y/z] = P(y). Conversely, P(x)[x/y][y/z] = P(y)[y/z] = P(z).

2. In F = R(x) ∨ ∀x P(x , x), the variable x is both free and bound. To get the rectified
formula, we select a new variable y and replace the bound occurrences of x . The
resulting rectified formula is

R(x)∨∀x P(x , x)≡ R(x)∨∀yP(x , x)[x/y] = R(x)∨∀yP(y, y).

3. In F = ∃x(S(x)∧ (∀yP(x , y)∨¬yS(y)))∧R(x), x is both free and bound, and there
are two occurrences of ∀ with the variable y . To get the rectified form, we select the
variables w, z:

∃w(S(x)∧ (∀yP(x , y)∨¬∀zS(y)[y/z]))[x/w]∧ R(x)
= ∃w(S(w)∧ (∀yP(w, y)∨¬∀zS(z)))∧ R(x).

Lemma. 2.4.
Any formula is equivalent to a rectified formula.

A rectified formula is in prenex form (RPF) if it has the form Q1 y1 · · ·Qn yn.F , where Q i ∈
{∃,∀}, n ⩾ 0, and F is quantifier-free. Any rectified formula can be expressed in prenex
form by using these equivalences:

• For F ∈ LFO and variable x:
¬∃x F ≡ ∀x¬F,

¬∀x F ≡ ∃x¬F.

• For F, G ∈ LFO, the variable x has no free occurrence in G, since it is a rectified formula:

(∃x F ∨ G)≡ ∃x(F ∨ G),

(∃x F ∧ G)≡ ∃x(F ∧ G),

(∀x F ∨ G)≡ ∀x(F ∨ G),

(∀x F ∧ G)≡ ∀x(F ∧ G).

May 25, 2023 Course 2021–2022. Master thesis
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Example. 2.5.
In this example we express in prenex form the rectified formulas of the Example (2.3.):

1. The rectified formula F = R(x)∨∀yP(y, y) is equivalent to ∀y(R(x)∨ P(y, y)).

2. Moving ∃w to the left in the rectified formula ∃w(S(w)∧(∀yP(w, y)∨¬∀zS(z)))∧R(x),
we get

∃w((S(w)∧ (∀yP(w, y)∨¬∀zS(z)))∧ R(x)).

After applying ¬∀zS(z)≡ ∃z¬S(z),

∃w((S(w)∧ (∀yP(w, y)∨ ∃z¬S(z)))∧ R(x)).

Finally, by moving to the left in several steps ∀y∃z, we obtain the formula in prenex
form

∃w∀y∃z((S(w)∧ (P(w, y)∨¬S(z)))∧ R(x)).

Lemma. 2.6.
Any formula is equivalent to a rectified formula in prenex form (RPF).

The Skolem form of a rectified formula in prenex form is a formula that does not contain
any existential quantifier. It can be computed as follows:

SKOLEMIZATION_ALGORITHM(F):

Input: F = ∀y1 · · ·∀yn∃x1 · · · ∃xmG in RPF

Result: Skolem normal form of F

for ∃x i in F :

take fx i
(y1, . . . , yn) an n-ary function that does not appear in F

F = ∀y1 · · ·∀yn∃x i+1 · · · ∃xmG[x i/ fx i
(y1, . . . , yn)]

return F

Satisfiability and Gröbner basis Eva González García



14 CAP. I. SATISFIABILITY

Example. 2.7.
The Skolem form of the formula F = ∀y1∀y2∃x1∃x2(P(y1)∨(¬R(x1, y1, y2)∧R(x2, y1, y2)))
is:

∀y1∀y2(P(y1)∨ (¬R( fx1
(y1, y2), y1, y2)∧ R( fx2

(y1, y2), y1, y2))).

Lemma. 2.8.
Any formula and its Skolem form are equisatisfiable.

PROOF. From Lemma (2.6.), any formula can be expressed in rectified prenex form and
both are equivalent. As a result, we obtain the formula

F = ∀y1 · · ·∀yn∃x1 · · · ∃xmG.

Using the algorithm to convert F in its Skolem form, we get the formula

F ′ = ∀y1 · · ·∀ynG[x1/ fx1
(y1, . . . , yn), . . . , xm/ fxm

(y1, . . . , yn)].

We are going to prove that F is satisfiable if and only if F ′ is satisfiable.

⇐) Assume there exists ν such that ν(F ′) = 1. Then, ∀b1, . . . , bn ∈ Dν,

ν[y1/b1,...,yn/bn](G[x1/ fx1
(y1, . . . , yn), . . . , xm/ fxm

(y1, . . . , yn)]) = 1.

Thus, ν[y1/b1,...,yn/bn,x1/ fx1
(y1,...,yn),...,xm/ fxm (y1,...,yn)](G) = 1. As ∀b1, . . . , bn ∈ Dν it occurs that

f νx i
(b1, . . . , bn) = ai ∈ Dν and ν[y1/b1,...,yn/bn,x1/a1,...,xm/am](G) = 1. Therefore, ν(F) = 1.

⇒) Assume ν(F) = 1. Then, for all ∀b1, . . . , bn ∈ Dν, there exists a1, . . . , an ∈ Dν such that
ν[y1/b1,...,yn/bn,x1/a1,...,xm/am](G) = 1. Since ν does not define fx i

because they were taken to be
a new function that did not occur in G, if ν′ is an extension of ν that defines fx i

such that
f νx i
(b1, . . . , bn) = ai then ν′[y1/b1,...,yn/bn,x1/ f νx1

(b1,...,bn),...,xm/ f νxm
(b1,...,bn)]

(G) = 1, and thus

ν′[y1/b1,...,yn/bn]
(G[y1/b1, . . . , yn/bn, x1/ f νx1

(b1, . . . , bn), . . . , xm/ f νxm
(b1, . . . , bn)]) = 1.

Therefore, ν′(F ′) = 1. □

We denote by Sk(F) the set of all the k-ary functions in the Skolem form of F . Thus, the set
of constants is S0(F).
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3 Complexity of satisfiability

Given a logic L and a formula of that logic, the decision problem tries to answer whether
that formula is valid or equivalently if it is satisfiable. Then, a decision procedure for the
logic L is an algorithm that solves the decision problem for any formula in L. We will say
that a decision procedure is sound if it always returns the correct answer, and it is complete
if it answers in a finite time. A decidable logic is one for which there exists a sound and
complete decision procedure.

In this section, we will see the Herbrand expansion theorem, which is used along with the
tiling problem, to prove that first order logic is undecidable and the satisfiability problem in
the propositional logic is NP-complete. We begin by defining the Herbrand universe induc-
tively.

If D0 =

¨

S0(F) if S0(F) ̸=∅
{1̃} otherwise, where 1̃ is some arbitrary constant

and Dn = { f (t1, . . . , tn) : f ∈ Sn(F), t1, . . . , tn ∈
⋃n−1

i=0 Di}.

The Herbrand universe is D(F) =
⋃

n∈N Dn.

Example. 3.1.
We take F and ν from the Example (2.2.) where we can deduce that F is satisfiable. The
prenex form is ∀y∀w∃x∃z.(y < x) ∧ ¬(w < z). To remove ∃x∃z, we choose the function
f (y) = y + 1 and the constant a = 0 so that the subformulas y < f (y) and ¬(w < a) are
always true.

Then, the Herbrand universe of F is the set of terms that can be obtained from a and f :

D(F) = {a, f (a), f ( f (a)), . . .}.

The result of removing the quantifiers of a formula F is called matrix of F , and it is denoted
by F ∗. We define the Herbrand expansion as the set of all formulas resulting from substituting
the terms D(F) in the matrix F ∗.
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Let F = ∀y1 · · ·∀ynF ∗ be a closed formula in Skolem form, where F ∗ is the matrix of F . The
Herbrand expansion of F is the set of formulas

E(F) = {F ∗[y1/t1, . . . , yn/tn] : t1, . . . , tn ∈ D(F)}.

Every formula in the Herbrand expansion can be treated as a proposition, i.e., E(F) ⊂ LP .

Example. 3.2.
Continuing the Example (3.1.), the matrix of F is F ∗ = (y < f (y)) ∧ ¬(w < a) and the
Herbrand expansion is

E(F) = {(a < f (a))∧¬(a < a) = F ∗[y/a, w/a],
( f (a)< f ( f (a)))∧¬(a < a) = F ∗[y/ f (a), w/a],
(a < f (a))∧¬( f (a)< a) = F ∗[y/a, w/ f (a)],

( f (a)< f ( f (a)))∧¬( f (a)< a) = F ∗[y/ f (a), w/ f (a)], . . .}.

Given a formula F in Skolem form, a Herbrand interpretation τ= (Dτ,ατ) satisfies:

• Dτ = D(F),

• for every function symbol f ∈ Sn(F) and t1, . . . , tn ∈ D(F), f τ(t1, . . . , tn) = f (t1, . . . , tn).

By definition, the interpretation of function symbols and the domain of Herbrand interpre-
tations is fixed.

In this result, it is proven that the use of Herbrand interpretations to determine if a formula
is satisfiable is sufficient.

Lemma. 3.3.
A closed formula F in Skolem form has a model ν if and only if it has a Herbrand model τ.

PROOF.

⇐) If F has a Herbrand model then it has a model.

⇒) We define µ : D(F)→ Dν as the function that
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• maps 1̃→ µ(1̃), where 1̃ is an arbitrary constant in case F does not have any constant
and µ(1̃) ∈ Dν,

• and for each n-ary function f ∈ Sn(F) and t1, . . . , tn ∈ D(F), µ( f (t1, . . . , tn)) =
f ν(µ(t1), . . . ,µ(tn)).

It maps the elements of D(F) to elements of Dν. The interpretation of the predicates is also
taken from the interpretation ν:

(t1, . . . , tk) ∈ Pτ⇔ (µ(t1), . . . ,µ(tk)) ∈ Pν.

Now, we can observe that τ is somehow a restriction of ν to D(F). It is a valid domain and
µ(D(F)) ⊆ Dν then, τ is also a model of F .

As ν(F) = ν(∀y1 · · ·∀ynG) = 1, then for all a1, . . . , an ∈ Dν, ν[y1/a1,...,yn/an](G) = 1. Since
µ(D(F)) ⊆ Dν, for all t1, . . . , tn ∈ D(F) occurs ν[y1/µ(t1),...,yn/µ(tn)](G) = 1. As a result, by
the definition of µ and τ, for all t1, . . . , tn ∈ D(F) τ[y1/t1,...,yn/tn](G) = 1. Therefore, τ(F) =
τ(∀y1 · · ·∀ynG) = 1. □

Theorem. 3.4. (Expansion theorem)
A closed formula is satisfiable if and only if its Herbrand expansion is satisfiable.

PROOF. The Lemma (2.8.) let us compute the Skolem form of F = ∀y1 · · ·∀ynG and it is
equisatisfiable. By Lemma (3.3.) F is satisfiable if and only if there exist a Herbrand model.
It only remains to prove that F has a Herbrand model if and only if its Herbrand expansion
E(F) is satisfiable.

⇒) Assume that τ is a Herbrand model of F , then for all t1, . . . , tn ∈ D(F), taking the inter-
pretation τ[y1/t1,...,yn/tn] that evaluates yi as t i, we know that τ[y1/t1,...,yn/tn](G) = 1. Applying
τ[y1/t1,...,yn/tn], then τ(G[y1/t1, . . . , yn/tn]) = 1 for all t1, . . . , tn ∈ D(F). Associating G with
the matrix of F and bearing in mind that τ is a Herbrand interpretation, we obtain that for
every H ∈ E(F) occurs that τ(H) = 1. Therefore, τ is a model of E(F).

⇐) Assume that τ is a model of E(F). Then, for all H ∈ E(F) occurs that τ(H) = 1. As
f (t1, . . . , tn) = f τ(t1, . . . , tn) for all f ∈ Sn(F) and all t1, . . . , tn ∈ D(F), since τ is a Herbrand
interpretation, then for all t1, . . . , tn ∈ D(F), we have τ(G[y1/t1, . . . , yn/tn]) = 1. This is

Satisfiability and Gröbner basis Eva González García
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equivalent to, for all t1, . . . , tn ∈ D(F) occurs τ[y1/t1,...,yn/tn](G) = 1. Finally, we conclude that
τ is a Herbrand model of F .

□

To prove the undecidability of first order logic and that the satisfiability problem in PL is
NP-complete, we introduce the tiling problem. It allows to abstract from computer theory.
We are given a finite set of tiles D. The aim is to tile the first quadrant of the plane, as we
can see in the image I.2. Given the tiling system D= (D, d1, H, V ) a tiling T : N×N→ D by
system D must satisfy:

1. T(1, 1) = d1,

2. (T(m, n),T(m+ 1, n)) ∈ H,

3. (T(m, n),T(m, n+ 1)) ∈ V .

Figure I.2: Tiling problem

In the tiling system, D is the set of tiles with which the space is tiled, d1 is the initial tile
that is located at (1, 1), and H, V specify which pairs of tiles can be next to each other in
the horizontal or vertical direction respectively. A tiling T is a function that assigns a tile to
every position.

The tiling problem is undecidable, and the proof can be found in [32]. This result can be
used to prove the next theorem.
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Theorem. 3.5. (Church)
The satisfiability problem in first order logic is undecidable.

PROOF. The idea of the proof is to reduce the tiling problem to the satisfiability problem.
Thus, since the tiling problem is undecidable, we conclude that the satisfiability problem
for first order logic is also undecidable. For this purpose, we give a process to construct a
formula FD from a tiling system D so that there is a tiling for the tiling system D if and only
if FD is satisfiable.

Given a tiling system D= (D, d1, H, V ), we can construct the formula

FD = ∀x∀y

�

∧

d j ,dk∈D
j<k

¬(Pd j
(x , y)∧ Pdk

(x , y)) (I.1)

∧ Pd1
(a, a) (I.2)

∧
�

∨

(d j ,dk)∈H

(Pd j
(x , y)∧ Pdk

( f (x), y))

�

(I.3)

∧
�

∨

(d j ,dk)∈V

(Pd j
(x , y)∧ Pdk

(x , f (y)))

��

, (I.4)

where Pd(m, n) is meant to be true when a tile d ∈ D is assigned to the position (m, n) of
the plane.

⇒) Suppose that there is a tiling T : N×N→ D by D. It is a tiling such that

T(1,1) = d1

(T(m, n),T(m+ 1, n)) ∈ H for all m, n ∈ N
(T(m, n),T(m, n+ 1)) ∈ V for all m, n ∈ N.

Then the interpretation ν defined from T

Dν= N
aν = 1
Pνd = {(m, n) : T(m, n) = d} for all d ∈ D
f ν(z) = z + 1 for all z ∈ N.
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is a model of FD, since

1. for every m, n ∈ N and every d j, dk ∈ D such that d j ̸= dk, it does not occur that
T(m, n) = d j and T(m, n) = dk, then the subformula I.1 is satisfied;

2. as aν = 1 and T(1,1) = d1, then the subformula I.2 is satisfied;

3. for all m, n ∈ N there is (d j, dk) ∈ H (resp. V ) such that T(m, n) = d j and T(m+1, n) =
dk (resp. T(m, n+ 1) = dk), then the subformula I.3 (resp. I.4) is satisfied;

⇐) Suppose that FD is satisfiable, then there is a Herbrand model τ such that Dτ = D(FD) =
{a, f (a), f ( f (a)), . . . , f n(a), . . .}. We define the tiling T : N×N→ D as

T(m, n) = d if and only if τ(Pd( f
m(a), f n(a))) = 1.

The tiling T is well-defined since for all m, n ∈ N the subformula

¬(Pd j
( f m(a), f n(a))∧ Pdk

( f m(a), f n(a)))

assures that the position (m, n) ∈ N× N is not assigned to both d j and dk. Every position
(n, m) ∈ N×N is assigned a tile d from D since for all f m(a), f n(a) ∈ D(FD) the subformula
I.3 requires that ν(Pd( f m(a), f n(a))) = 1 for some d ∈ D. From subformula I.1 is deduced
that T(1,1) = d1.

To check that the horizontal constraints are satisfied, we observe that for every f m(a), f n(a) ∈
D(FD), the subformula I.3 is true if there exists (d j, dk) ∈ H such that τ(Pd j

( f m(a), f n(a))∧
Pdk
( f m+1(a), f n(a))) = 1. Therefore, by the definition of T we conclude that (T(m, n),T(m+

1, n)) ∈ H for all m, n ∈ N. The vertical constraints are checked analogously. □

To prove that the satisfiability problem on the propositional logic is NP-complete, we use
the bounded tiling problem. Given a tiling system D= (D, d1, H, V ), it is nothing more than
to find a tiling T : {1, . . . , s} × {1, . . . , s} → D by D for the region s× s.
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The bounded tiling problem is NP-complete. The proof can be found in [32].

Theorem. 3.6. (Cook)
The satisfiability problem in propositional logic is NP-complete.

PROOF. The satisfiability problem in propositional logic is in NP, since we can verify a
satisfying assignment in polynomials time.

To prove that it is NP-complete, we reduce the bounded tiling problem, which is NP-complete,
to the satisfiability problem in propositional logic. To do so, the formula PD,s is defined as
follows:

1. Compute FD as it was done in the proof of Church’s Theorem (3.5.)

2. Only consider the elements of Es(FD) ⊂ E(FD), where

Es(FD) = {F ∗D[x/ f j(a), y/ f k(a)] : 1⩽ j, k ⩽ s}.

3. As it can be observed, Es(FD) is a finite set. Thus, PD,s =
∧

P∈Es(FD)
P is the conjunction

of all the formulas in the bounded Herbrand expansion. It can be seen as a formula
of the propositional logic.

So defined, PD,s is satisfiable if and only if there exists a tiling for the bounded tiling problem.
□
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4 First order theories

First order theories formalize structures like numbers, lists and arrays, by the definition of
an appropriate set of axioms that enables reasoning about them. A first order theory T is
defined by

1. a signature Σ: set of constant, function and predicate symbols,

2. a set of axioms: set of closed FOL formulas whose constant, function, and predicate
symbols are taken from Σ.

A Σ-formula is a FOL formula whose constant, function and predicate symbols belong to
Σ. An interpretation is a model of a set of axioms, if the interpretation is a model for each
of the axioms. A Σ-formula is T-valid if every model of the set of axioms is also a model of
the Σ-formula. A theory consists of all T-valid Σ-formulas.

Theory of equality

The signature ΣE of the theory of equality TE, consist of a binary predicate that is meant
to be the equality =, and all constant, function, and predicate symbols. The meaning of the
predicate symbol = is defined by the axioms of TE:

1. ∀x .x = x (reflexivity)

2. ∀x , y.x = y → y = x (symmetry)

3. ∀x , y, z.x = y ∧ y = z→ x = z (transitivity)

4. for any n-ary function symbol f , (function congruence)

∀x1, . . . , xn, y1, . . . , yn.

�

∧n
i=1 x i = yi

�

→ f (x1, . . . , xn) = f (y1, . . . , yn)

5. for any n-ary predicate symbol P, (predicate congruence)

∀x1, . . . , xn, y1, . . . , yn.

�

∧n
i=1 x i = yi

�

→ P(x1, . . . , xn) = P(y1, . . . , yn).

It is easy to observe that the formula x = y∧ y = z→ g( f (x), y) = g( f (z), x) is an example
of a formula that is TE-valid, since all the models of the axioms are also models of this ΣE-
formula.
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Theory of Presburger Arithmetic

The signature ΣN = {0,1,+,=} of the theory of Presburger arithmetic TN consist of the
constants 0 and 1, the binary function + and the binary predicate =. Its axioms are:

1. ∀x .¬(x + 1= 0) (zero)

2. ∀x , y .x + 1= y + 1→ x = y (successor)

3. F(0)∧ (∀x .F(x)→ F(x + 1))→∀x .F(x) (induction)

4. ∀x .x + 0= x (plus zero)

5. ∀x , y .x + (y + 1) = (x + y) + 1 (plus successor)

where in 3, F is a ΣN-formula.

Theory of real closed fields

The theory of reals TR has signature ΣR = {0,1,+,−, ·,=,⩾} where 0, 1 are constants. Its
axioms are:

1. ∀x , y .x ⩾ y ∧ y ⩾ x → x = y (antisimetry)

2. ∀x , y, z.x ⩾ y ∧ y ⩾ z→ x ⩾ z (transitivity)

3. ∀x , y .x ⩾ y ∨ y ⩾ x (totality)

4. ∀x , y, z.(x + y) + z = x + (y + z) (+ associativity)

5. ∀x .x + 0= x (+ identity)

6. ∀x .x + (−x) = 0 (+ inverse)

7. ∀x , y .x + y = y + x (+ commutativity)

8. ∀x , y, z.x ⩾ y → x + z ⩾ y + z (+ ordered)
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9. ∀x , y, z.(x · y) · z = x · (y · z) (· associativity)

10. ∀x .x · 1= x (· identity)

11. ∀x .¬(x = 0)→∃y.x · y = 1 (· inverse)

12. ∀x , y .x · y = y · x (· commutativity)

13. ∀x , y .x ⩾ 0∧ y ⩾ 0→ x · y ⩾ 0 (· ordered)

14. ∀x , y, z.x · (y + z) = x · y + x · z (distributivity)

15. ¬(0= 1) (separate identities)

16. ∀x∃y.x = y2 ∨−x = y2 (square-root)

17. for each odd integer n,

∀x1, . . . , xn∃y.yn + x1 · yn−1 + · · ·+ xn−1 · y + xn = 0 (at least one root)

From 1 to 3,⩾ is expected to be a total order. From 4 to 7, are the axioms of a commutative
group under addition +. From 9 to 12, are the axioms of a commutative group under mul-
tiplication. In 15 is set that the additive and multiplicative identities are different. Finally,
the additional axioms of a real closed field are 8, 13, 16 and 17.

Fragments

A fragment of a theory is a syntactically restricted subset of formulas of the theory. An
example is the quantifier-free fragment of a theory T . It is the set of formulas of T without
quantifiers. We assume the convention that non-closed formulas are valid if the universal
closure is valid. Although satisfiability in FOL is undecidable, satisfiability in particular
theories or fragments of theories is sometimes decidable, which allows the automation of
these problems. The fragments of first order logic that are decidable are already known and
classified. The classification can be found in [13].
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Chapter II

Gröbner bases

We used Gaussian elimination on systems of linear equations to obtain a new set of linear
equations with the same set of solutions, but which is easier to solve. For polynomials in
one variable, the process analogous to Gaussian elimination is the Euclidean algorithm. In
the process of calculating Gröbner bases, we obtain lower degree polynomials, but this time
they are non-linear, multivariate polynomials.

We start by introducing the definition of a variety as the set of common zeros of a system of
polynomial equations.

Let K be a field and f1, . . . , fs ∈ K[X1, . . . , Xn], the set

V ( f1, . . . , fs) = {s ∈ Kn; fi(s) = 0,∀i = 1, . . . , s}

is called the variety of the system of polynomial equations f1, . . . , fs.

In the problem of satisfiability checking, it is not needed to calculate the solutions of the
system, but to check if there is any solution. This will be seen in the next chapter, and we
will see how to check this in the Hilbert’s Nullstellensatz Theorem (11.3.).

This chapter is based on [17, 28].
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5 Ideals

To compute an equivalent system of equations, we need the notion of ideal.

A subset I ⊂ K[X1, . . . , Xn] is an ideal if it satisfies:

• 0 ∈ I

• if f , g ∈ I , then f + g ∈ I

• if f ∈ I and h ∈ K[X1, . . . , Xn]. Then, hf ∈ I .

Given f1, . . . , fs ∈ K[X1, . . . , Xn], the ideal generated by f1, . . . , fs is

〈 f1, . . . , fs〉=
� s
∑

i=1

hi fi : hi ∈ K[X1, . . . , Xn]

�

.

In the next result, we check that 〈 f1, . . . , fs〉 is actually an ideal.

Lemma. 5.1.
Given f1, . . . , fs ∈ K[X1, . . . , Xn], then 〈 f1, . . . , fs〉 is an ideal of K[X1, . . . , Xn].

PROOF.

• 0 ∈ 〈 f1, . . . , fs〉 since
∑s

i=0 0 · fi = 0.

Suppose that f =
∑s

i=1 pi fi, g =
∑s

i=1 qi fi and h ∈ K[X1, . . . , Xn]. Then,

• f + g =
∑s

i=1(pi + qi) fi,

• hf =
∑s

i=1(hpi) fi.
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□

We say that an ideal I is finitely generated if there exist f1, . . . , fs ∈ K[X1, . . . , Xn] such that
I = 〈 f1, . . . , fs〉, and { f1, . . . , fs} is a basis of I .

Lemma. 5.2.
Let f1, . . . , fs ∈ K[X1, . . . , Xn] and I = 〈 f1, . . . , fs〉, then V (I) = V ( f1, . . . , fs).

PROOF.

⊂) Consider s ∈ V (I), then f (s) = 0 for all polynomials in I . As f1, . . . , fs ∈ I , we conclude
that s ∈ V ( f1, . . . , fs).

⊃) Let s ∈ V ( f1, . . . , fs), then f1(s) = · · · fs(s) = 0. As for all f ∈ I ,

f (s) =
s
∑

i=1

hi fi(s) =
s
∑

i=1

hi · 0= 0,

we conclude that s ∈ V (I). □

By definition of ideals generated by a set of polynomials, these ideals are the connecting
point of systems of equations with the same set of solutions. An ideal determines a variety,
and the different sets of generating equations of that ideal are different ways of expressing
systems of equations that have the same common zeros. The purpose is to find a set of
generating equations of an ideal such that the associate system of equations is easier to
solve.

Theorem. 5.3.
Let { f1, . . . , fs} and {g1, . . . , gt} be bases of the same ideal, so that 〈 f1, . . . , fs〉= 〈g1, . . . , gt〉.
Then, V ( f1, . . . , fs) = V (g1, . . . , gt).

PROOF. Given an ideal I , we start by probing that V ( f1, . . . , fs) = V (I) for any basis
{ f1, . . . , fs} of I .
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⊂) Given s ∈ V ( f1, . . . , fs), since

I = 〈 f1, . . . , fs〉=
� s
∑

i=1

hi fi : hi ∈ K[X1, . . . , Xn]

�

,

then for any f ∈ I we have f (s) =
∑s

i=1 hi(s) · 0= 0. Therefore, s ∈ V (I).

⊃) Given s ∈ V (I), since f1, . . . , fs ∈ I , then fi(s) = 0 for all i. Therefore, s ∈ V ( f1, . . . , fs).

Finally, as { f1, . . . , fs} and {g1, . . . , gt} are bases of I , then we have the equality V ( f1, . . . , fs) =
V (I) = V (g1, . . . , gt). □

6 Monomial orderings

We consider a relationship between monomials and its exponents as tuples of natural num-
bers,

X α = X α1
1 , . . . , X αn

n ←→ α= (α1, . . . ,αn) ∈Nn.

It is also set the order of the variables, which is their location within the tuple, the usual
case is X1 > · · ·> Xn.

To operate on non-linear, multivariate polynomials, we want to find an order to arrange the
monomials of a polynomial by their exponents. But it would be desired that this ordering
allows us to compute the division of polynomials similarly to how we used to do it for linear
equations or polynomials in one variable. Thus, we define a monomial ordering as follows.

A monomial ordering is an ordering ⪯ on Nn, which is:

• total,

• compatible: if α⪯ β and γ ∈Nn, then α+ γ⪯ β + γ,

• admissible: (0, . . . , 0) is the minimum of Nn.

From the first condition, we know that only one of the following is applied:

X α > X β X α = X β X α < X β .
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The second condition assures that when multiplying a polynomial by a monomial, the order
of the monomials does not change. As it is a total and admissible ordering, it is a well-
ordering. This is, every non-empty subset of Nn has a minimum. Therefore, any strictly
decreasing sequence has an end, this is necessary so that the algorithms defined later finish.

From the definition above, we can deduce that monomial orderings also fulfil the next prop-
erty.

Corollary. 6.1.
Let ⪯ be a compatible and admissible ordering. Given α,β ∈ Nn and αi < βi for every i,
then α⪯ β .

PROOF. If αi ⩽ βi for every i, there exists γ ∈ Nn such that α + γ = β . As 0 ⪯ γ, then
α⪯ α+ γ= β . □

Although there are more monomial orderings such as graded lex and graded reverse lex order,
here we will only define the lexicographic order and assume that it is the one used from now
on.

Given α,β ∈ Nn, we say α ≻lex β if the left-most non-zero entry of α− β ∈ Zn is positive.
The lexicographic order is defined by ≻lex .

In the image below, we can get an insight about how the monomial exponents are arranged
in a lexicographic order.

There are many monomial orders, and once a monomial order is fixed, there are n! orderings
corresponding to how the n variables are ordered. Normally, computer algebra systems are
programmed to support lex, graded lex and graded reverse orders and to choose the priority
order of the variables.

Given 0 ̸= f =
∑

α aαX
α ∈ K[X1, . . . , Xn] and a certain monomial order, we define the

following concepts:

• exponent: exp( f ) = max(α ∈Nn : aα ̸= 0).
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Figure II.1: Representation of lexicographic order for 2 variables.

• leading coefficient: LC( f ) = aexp( f ) ∈ K .

• leading monomial: LM( f ) = xexp( f ).

• leading term: LT ( f ) = LC( f ) · LM( f ).

If f = 0 ∈ K[X1, . . . , Xn], then LC( f ) = LT ( f ) = 0.

The exponent has the following properties:

Lemma. 6.2.
Given 0 ̸= f , g ∈ K[X1, . . . , Xn], then:

• exp( f g) = exp( f ) + exp(g),

• if f + g ̸= 0, then exp( f + g)⪯max(exp( f ), exp(g)),

• if exp( f )≺ exp(g), then exp( f + g) = exp(g).
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7 Division algorithm

Given the polynomial f ∈ K[X1, . . . , Xn], we would like to express it in terms of f1, . . . , fs ∈
K[X1, . . . , Xn], as it will help us to decide if f ∈ 〈 f1, . . . , fs〉.

Theorem. 7.1.
Fixed a monomial order ≻, and let F = { f1, . . . , fs} ⊂ K[X1, . . . , Xn] be an ordered set of
polynomials. Then, every f ∈ K[X1, . . . , Xn] can be written as

f = a1 f1 + · · ·+ as fs + r,

where ai, r ∈ K[X1, . . . , Xn], and either r = 0 or r is a linear combination, with coefficients
in K , of monomials, none of which is divisible by any of LT ( f1), . . . , LT ( fs). We call r a
remainder of f on division by F . Furthermore, if ai fi ̸= 0, then we have exp( f )⪰ exp(ai fi).

To get such expression, we define the division algorithm for non-linear multivariate poly-
nomials. Due to the monomial ordering definition, the result of dividing one polynomial by
another gives us a polynomial whose leading term is less than that of the starting polyno-
mial, and it is assured that the division algorithm always ends.

DIVISION_ALGORITHM( f , f1, . . . , fs):

Input: f , f1, . . . , fs ∈ K[X1, . . . , Xn]

Result: a1, . . . , as, r such that f =
∑s

i=1 ai fi + r

a1 = · · ·= as = r = 0

p = f

while p ̸= 0:

if {i; LT ( fi) divides LT (P)} ≠∅:

i = min{i; LT ( fi) divides LT (P)}

ai = ai +
LT (p)
LT ( fi)
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p = p− LT (p)
LT ( fi)

fi

else:

r = r + LT (p)

p = p− LT (p)

It is clear that when this algorithm returns remainder equals 0, in the division of f by the
set G = { f1, . . . , fs}, then f can be express as a combination of elements of G. Therefore, f
belongs to the ideal I generated by G. This is the so-called Ideal Membership problem. We
will see that for f ∈ I , it might happen that the remainder returned by the division algorithm
is not 0 for any basis of the ideal, but there exists a kind of bases that allows as to solve the
Ideal Membership problem. These bases are called Gröbner bases.

In the next example, we see that if we change the order of the divisor polynomials, the
remainder might be different.

Example. 7.2.
Given the set of polynomials G = { f1 = X Y + 1, f2 = Y 2 + 1} as a generator of the ideal
I = 〈 f1, f2〉 and f = (X Y + 1)3 = X 3Y 3 + 3X 2Y 2 + 3X Y + 1 ∈ I , we want to use the division
algorithm to divide f by G.

First, we will consider that the polynomials in G are ordered as shown before, i.e., f1 =
X Y + 1, f2 = Y 2 + 1. As a result, we get f = (X 2Y 2 + 2X Y + 1) · f1.

p X Y + 1 Y 2 + 1 r

0 X 3Y 3 + 3X 2Y 2 + 3X Y + 1 X 2Y 2 0 0
1 2X 2Y 2 + 3X Y + 1 2X Y 0 0
2 X Y + 1 1 0 0

Now, changing the order of the set of polynomials by which we divide, e.i., f1 = Y 2+1, f2 =
X Y + 1, we get a different result f = (X 3Y + 3X 2) · f1 + (−X 2 + 3) · f2 − 2X 2 − 2.
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p Y 2 + 1 X Y + 1 r

0 X 3Y 3 + 3X 2Y 2 + 3X Y + 1 X 3Y 0 0
1 −X 3Y + 3X 2Y 2 + 3X Y + 1 0 −X 2 0
2 3X 2Y 2 + X 2 + 3X Y + 1 3X 2 0 0
3 −2X 2 + 3X Y + 1 0 0 −2X 2

4 3X Y + 1 0 3 0
5 −2 0 0 −2

Comparing both results, we observe that not only the remainder is not the same, but the
coefficients are also different. We can also observe that

r = −2X 2 − 2= −2((X f2 − Y f1)
2 − f2 + 2 f1) ∈ I ,

but it is not divisible by any of the polynomials of the basis. In the next section we define
the S–polynomials; they will be useful to make sure that the remainder is not in the ideal.

8 S-polynomials

There may exist polynomials in I that are not divisible by the elements of a basis, but they
can be divided by polynomials that are a combination of polynomials in I involving the
cancellation of leading terms.

Example. 8.1.
We take the polynomial f = Y · f1 − X · f2 = −X + Y ∈ I , where f1 = X Y + 1, f2 = Y 2 + 1
and I = 〈 f1, f2〉. It turns out, that f is not divisible by any of the polynomials of the basis
G = { f1, f2}.

A polynomial f ∈ I = 〈 f1, . . . , fs〉 for which the division algorithm does not return zero when
dividing by G = { f1, . . . , fs}, is a combination of polynomials of G, where leading terms are
cancelled. Term cancellation allows the underlying monomials to appear as leading terms.
S-polynomials are combinations of polynomials with cancellation of leading terms.

Given 0 ̸= f , g ∈ K[X1, . . . , Xn].

• If exp( f ) = α and exp(g) = β , then let γ= (γ1, . . . ,γn), where γi = max(αi,βi).

The least common multiple of LM( f ) and LM(g) is X γ = LC M(LM( f ), LM(g)).
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• The S-polynomial of f and g is S( f , g) = X γ

LT ( f ) · f −
X γ

LT (g) · g.

Ideally, we want that every polynomial of the ideal is divisible by the polynomials of the
basis, so we can easily solve the ideal membership problem by just using the division al-
gorithm. It is possible to find a basis of the ideal for which any polynomial in the ideal is
divisible by the basis. It can be achieved with S-polynomials.

Lemma. 8.2.
Suppose we have

∑s
i=1 ci fi, where ci ∈ K and exp( fi) = δ ∈Nn for all i. If exp(

∑s
i=1 ci fi)≺

δ, then
∑s

i=1 ci fi is a linear combination, with coefficients in K , of the S-polynomials S( f j, fk)
for 1⩽ j < k ⩽ s. Furthermore, each S( f j, fk) has an exponent < δ.

PROOF. Denoting di = LC( fi), the leading coefficient of ci fi is cidi. Since LT (ci fi) = cidi x
δ

have exponent δ and exp
�

∑s
i=1 ci fi

�

≺ δ, we deduce that
∑s

i=1 cidi = 0.

We are interested in pi = fi/di because LC(pi) = 1. Furthermore, consider
s
∑

i=1

ci fi =
s
∑

i=1

cidi pi =c1d1(p1 − p2) + (c1d1 + c2d2)(p2 − p3) + · · ·+

(c1d1 + · · ·+ cs−1ds−1)(ps−1 − ps) + (c1d1 + · · ·+ csds)ps

As LT ( fi) = di x
δ, then xδ = LC M(LM( f j), LM( fk)). Therefore,

S( f j, fk) =
xδ

LT ( f j)
f j −

xδ

LT ( fk)
fk =

xδ

d j xδ
f j −

xδ

dk xδ
fk = p j − pk. (II.1)

Using equation II.1 and the fact that
∑s

i=1 cidi = 0, we get as a result
s
∑

i=1

ci fi = c1d1S( f1, f2) + (c1d1 + c2d2)S( f2, f3) + · · ·+ (c1d1 + · · ·+ cs−1ds−1)S( fs−1, fs)

that is a linear combination of S-polynomials. As LT (p j) = LT (pk) = xδ, then exp(p j−pk)≺
δ. By equation II.1, exp(S( f j, fk))≺ δ.

□
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9 Definition and properties

Let I ⊂ K[X1, . . . , Xn] be an ideal other than {0} and

LT (I) = {cX α : ∃ f ∈ I with LT ( f ) = cX α},

we denote by 〈LT (I)〉 the ideal generated by the elements of LT (I).

In our search for a basis of an ideal I = 〈 f1, . . . , fs〉 for which the remainder on division of
f ∈ I by { f1, . . . , fs} is always zero when using the division algorithm, we need a basis with
the following property.

Fixed a monomial order. A finite subset G = {g1, . . . , gt} of an ideal I is a Gröbner basis if

〈LT (g1), . . . , LT (gt)〉= 〈LT (I)〉.

With this property, the leading term of polynomials in the ideal is a combination of the
leading terms of the elements of the basis. Thus, every polynomial of the ideal is divisible
by a polynomial of the basis. In this way, the division algorithm will always return zero
when the polynomial is in the ideal.

Monomial ideals

For the next sort of ideal, we can determine that there is a finite set of elements of the ideal
that generate it.

An ideal I ⊂ K[X1, . . . , Xn] is a monomial ideal if there is a subset A⊂Nn (possibly infinite)
such that I consists of all polynomials which are finite sums of the form

∑

α∈A hαX
α, where

hα ∈ K[X1, . . . , Xn]. We write I = 〈X α : α ∈ A〉.

This result proves that monomial ideals are finitely generated. But it is also used to prove
that, for any ideal, there exists a Gröbner basis with a finite number of elements.
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Lemma. 9.1. (Dickson’s lemma)
A monomial ideal I = 〈X α : α ∈ A〉 can be expressed as I = 〈X α(1), . . . , X α(s)〉, where
α(1), . . . ,α(s) ∈ A is a finite set of exponents.

The Hilbert basis theorem

Now, it is proven that for any ideal, there exists a Gröbner basis with a finite number of
elements.

Theorem. 9.2.
For every ideal I ⊂ K[X1, . . . , Xn], there exists a Gröbner basis of I .

PROOF. If I = {0}, its generating set is clearly finite.

For a non-zero ideal:

Existence of a finite number of g1, . . . , gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉.
As 〈LT (I)〉 is generated by the monomials LM(g) where g ∈ I − {0}, it is a monomial ideal.
Then, we can use Dickson’s Lemma (9.1.) to deduce that 〈LT (I)〉 = 〈LM(g1), . . . , LM(gt)〉
for finitely many g1, . . . , gt ∈ I . Since, LT (g1), . . . , LT (gt) differs from LM(g1), . . . , LM(gt)
by a non-zero constant, 〈LT (I)〉= 〈LT (g1), . . . , LT (gt)〉.

〈g1, . . . , gt〉 = I , where g1, . . . , gt are the polynomials found in the previous paragraph
(Hilbert basis theorem).

⊂) 〈g1, . . . , gt〉 ⊂ I since g1, . . . , gt ∈ I .

⊃) For f ∈ I , we apply the division algorithm to divide f by {g1, . . . , gt} to get

f = a1 g1 + · · ·+ at gt + r

where r is not divisible by any LT (g1), . . . , LT (gt). Then, r = f − a1 g1 − · · · − at gt ∈ I .
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If r ̸= 0, then LT (r) ∈ 〈LT (I)〉= 〈LT (g1), . . . , LT (gt)〉, so r is divisible by one of the follow-
ing: LT (g1), . . . , LT (gt), what is a contradiction. Therefore, r = 0 and f ∈ 〈g1, . . . , gt〉.

□

The remainder resulting from dividing a polynomial by a Gröbner basis is always the same,
regardless of the order of the dividing polynomials.

Proposition. 9.3.
Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I ⊂ K[X1, . . . , Xn]. Then, there is a
unique r ∈ K[X1, . . . , Xn], such that no term of r is divisible by any of LT (g1), . . . , LT (gt),
no matter the order of the elements in G.

PROOF.

Existence. The division algorithm gives f = a1 g1+ · · ·+ at gt + r where r is not divisible by
LT (g1), . . . , LT (gs).

Uniqueness. Assume f = a1 g1 + · · · + at gt + r1 = a∗1 g1 + · · · + a∗t gt + r2. Then r2 − r1 =
(a1−a∗1)g1+· · ·+(at−a∗t )gt ∈ I . If r1 ̸= r2, then LT (r2−r1) ∈ 〈LT (I)〉= 〈LT (g1), . . . , LT (gt)〉.
This is impossible since no term of r1, r2 is divisible by any of LT (g1), . . . , LT (gt). Therefore,
r1 = r2. □

The unique remainder of f on division by G is denoted by R[ f : G].

We can conclude that given a Gröbner basis G = {g1, . . . , gt} of an ideal I ⊂ K[X1, . . . , Xn],
we can determine whether a polynomial f ∈ K[X1, . . . , Xn] belongs to the ideal I by checking
if the reminder on division of f by G is zero.

Corollary. 9.4.
Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊂ K[X1, . . . , Xn] and let f ∈
K[X1, . . . , Xn]. Then f ∈ I if and only if the remainder on division of f by G is zero.

PROOF.
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⇐) If the remainder is zero, it is trivial since f = h1 g1 + · · · + ht gt + 0 ∈ I , where hi ∈
K[X1, . . . , Xn].

⇒) If f ∈ I then the division algorithm give us the expression f = h1 g1 + · · · + ht gt + r,
where r is not divisible by any LT (g1), . . . , LT (gt) and by the Proposition (9.3.) it is unique.
As f = h1 g1 + · · · + ht gt + r ∈ I and h1 g1 + · · · + ht gt ∈ I , then r ∈ I . Suppose that
r ̸= 0, then LT (r) ∈ 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉. In this case, r is divisible by some
LT (g1), . . . , LT (gt), what is a contradiction. Therefore, r = 0. □

10 Buchberger’s algorithm

The Buchberger’s algorithm computes the Gröbner basis of a set of multivariate polynomials,
and the Buchberger’s criterion ensures the correctness of the algorithm.

Theorem. 10.1. (Buchberger’s criterion)
Let I be a polynomial ideal. Then, a basis G = {g1, . . . , gt} of I is a Gröbner basis if and only
if R[S(gi, g j) : G] = 0 for all pairs i ̸= j, where the elements in G are listed in some order.

PROOF.

⇒) Since G is a Gröbner basis and S(gi, g j) ∈ I , the remainder on division by G is zero by
Corollary (9.4.).

⇐) Given 0 ̸= f ∈ I , the aim is to show that if R[S(gi, g j) : G] = 0 for all pairs i ̸= j, then
LT ( f ) ∈ 〈LT (g1), . . . , LT (gt)〉, that is, f is divisible by some element of the basis.

Let f ∈ I = 〈g1, . . . , gt〉, there are polynomials hi ∈ K[X1, . . . , Xn] such that

f =
t
∑

i=1

hi gi. (II.2)

We define m(i) = exp(hi gi) and δ = max(m(1), . . . , m(t)), then by Lemma (6.2.),

exp( f )⪯ δ.
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Note that, if exp( f ) = δ, then exp( f ) = exp(hi gi) for some i and LT ( f ) is divisible by
LT (gi), so LT ( f ) ∈ 〈LT (g1), . . . , LT (gt)〉, what we want to prove. Considering all the pos-
sible ways that f can be written in the form (II.2), we observe that for some of those ex-
pressions we possibly get different δ. As a monomial order is a well-ordering, we take the
minimal δ. Such a δ satisfies that exp( f ) = δ, and we will prove that by contradiction.

Suppose that exp( f ) ≺ δ. The following form allows us to isolate the terms of f with
exponent δ:

f =
∑

m(i)=δ

hi gi +
∑

m(i)≺δ

hi gi =
∑

m(i)=δ

LT (hi)gi +
∑

m(i)=δ

(hi − LT (hi))gi +
∑

m(i)≺δ

hi gi. (II.3)

As the monomials in the second and third sums have exponent ≺ δ, we just need to check
the assumption exp( f )≺ δ in the first sum.

Denoting LT (hi) = ciX
α(i), we get
∑

m(i)=δ LT (hi)gi =
∑

m(i)=δ ciX
α(i)gi which has the form

described in Lemma (8.2.), where fi = X α(i)gi. Therefore, by Lemma (8.2.), it is a linear
combination of the S-polynomials S(X α( j)g j, X α(k)gk), that we can also express as

S(X α( j)g j, X α(k)gk) =
X δ

X α( j)LT (g j)
X α( j)g j −

X δ

X α(k)LT (gk)
X α(k)gk

=
X δ

LT (g j)
g j −

X δ

LT (gk)
gk

= X δ−γ jkS(g j, gk),

where X γ jk = LMC(LM(g j), LM(gk)). Thus, there are constants c jk ∈ K such that

∑

m(i)=δ

LT (hi)gi =
∑

m(i)=δ

c jkX δ−γ jkS(g j, gk). (II.4)

Now, we can use the hypothesis R[S(g j, gk) : G] = 0 and the division algorithm to get the
equality

S(g j, gk) =
t
∑

i=0

ai jk gi, (II.5)

where ai jk ∈ K[X1, . . . , Xn]. As we used the division algorithm, we know that

exp(ai jk gi)⪯ exp(S(g j, gk)) (II.6)
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for all i, j, k.

We multiply II.5 by X δ−γ jk to obtain

X δ−γ jkS(g j, gk) =
t
∑

i=0

bi jk gi, (II.7)

where bi jk = X δ−γ jk ai jk. Then, by II.6 and Lemma (8.2.)

exp(bi jk gi)⪯ exp(X δ−γ jkS(g j, gk))≺ δ. (II.8)

Substituting II.7 in into II.4, we get

∑

m(i)=δ

LT (hi)gi =
∑

m(i)=δ

c jkX δ−γ jkS(g j, gk) =
∑

m(i)=δ

c jk

� t
∑

i=0

bi jk gi

�

=
∑

m(i)=δ

h̃i gi.

By II.8, we know that for all i,
exp(h̃i gi)≺ δ.

Finally, if we substitute
∑

m(i)=δ LT (hi)gi =
∑

m(i)=δ h̃i gi into II.3, we get an expression of
f as a polynomial combination of gi ’s where all terms have exponent≺ δ. This contradicts
the minimality of δ. □

This Buchberger’s algorithm is taken from [35].

BUCHBERGERS_ALGORITHM(G∗):

Input: G∗ basis of an ideal I ⊂ K[X1, . . . , Xn]

Result: A Gröbner basis G for I with G∗ ⊂ G

G = G∗

P = {( f , g)| f , g ∈ G, f ̸= g}

while P ̸=∅:

Choose ( f , g) ∈ P

P = P − ( f , g)
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s = R[S( f , g) : G]

if s ̸= 0:

P = P ∪ {(s, f ) | f ∈ G}

G = G ∪ s

The algorithm includes the remainder of the S-polynomials that are non-zero. When includ-
ing a new polynomial, it might happen that some of the others might be removed from the
basis, and it is still a Gröbner basis.

Lemma. 10.2.
Let G be a Gröbner basis for the polynomial ideal I . If p ∈ G such that LT (p) ∈
〈LT (G − {p})〉. Then, G − {p} is also a Gröbner basis of I .

PROOF. As it is a Gröbner basis, 〈LT (G)〉 = 〈LT (I)〉. If LT (p) ∈ 〈LT (G − {p})〉, then
LT (G − {p}) = LT (G). Therefore, G − {p} is also a Gröbner basis of I . □

If G is a Gröbner basis of an ideal I , then any G∗ ⊂ I such that G ⊂ G∗ is also a Gröbner
basis of I . Therefore, we can simplify a Gröbner basis to obtain a minimal Gröbner basis.
The minimal Gröbner basis of an ideal is unique for a given monomial ordering.

Removing from G any p such that LT (p) ∈ 〈LT (G − {p})〉 and adjusting the leading coeffi-
cients to be 1, we get the minimal Gröbner basis.

A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis G such that:

• LC(p) = 1 for all p ∈ G.

• For all p ∈ G, LT (p) /∈ 〈LT (G − {p})〉.
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Chapter III

Application of Gröbner bases

In this chapter, we see some applications of Gröbner bases to the satisfiability problem. In
particular, we will see how to use them to solve the satisfiability problem in propositional
logic and the existential fragment of Presburger’s theory. Additionally, the application of
Gröbner bases to the non-linear real arithmetic can be found in [30, 31].

The content of this chapter has been taken from [8, 27, 25, 4, 12].

11 Algebraic SAT solver

In algebraic SAT solvers, formulas are translated to polynomials so that questions of satis-
fiability can be answered using algebraic methods. In what follows, we will work with the
finite field F2 and polynomials in the polynomial ring F2[X1, . . . , Xn].

11.1 From proposition to polynomial

To work with Gröbner basis, we need to express a proposition P ∈ LP as a polynomial
p ∈ F2[X1, . . . , Xn]. The truth values will be represented by the elements of the field F2 =
{0,1} and p ∈ F2[X1, . . . , Xn], where the variables X1, . . . , Xn ∈ F2 are associated with the
propositional atoms A1, . . . , An ∈ AP . The calculation of the polynomial associated to a
proposition is done by means of θ that we define as follows.
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We define θ : LP → F2[X1, . . . , Xn] to compute the polynomial associated with a proposition:

• θ (Ai) = X i for all Ai ∈AP .

• For C ∈ C,

c(X1, . . . , Xd) = θ (C(Ai1 , . . . , Aid )) =
∑

(a1,...,ad )∈Fd
2

C(a1, . . . , ad)Ga1
(θ (Ai1)) · · ·Gad

(θ (Aid )),

where G0(P) = P + 1 and G1(P) = P, for each P ∈ LP .

Given P, P1, . . . , Pd ∈ LP , we compute the associated polynomial p ∈ F2[X1, . . . , Xd] recur-
sively,

θ (P(P1, . . . , Pd)) = p(θ (P1), . . . ,θ (Pd)).

Example. 11.1.
1. When C = id, then θ (id(A)) =

∑

a∈F2
id(a)Ga(θ (A)) = 0G0(θ (A)) + 1G1(θ (A)) =

θ (A) = X .

Given P ∈ LP , then θ (id(P)) = θ (P).

2. When C = ¬, then

θ (¬(A)) =
∑

a∈F2

¬(a)Ga(θ (A)) = 1G0(θ (A)) + 0G1(θ (A))

= θ (A) + 1= X + 1.

Given P ∈ LP , then θ (¬(P)) = θ (P) + 1.

3. When C = ∧, then

θ (∧(A, B)) =
∑

(a,b)∈F2
2

∧(a, b)Ga(θ (A))Gb(θ (B))

= 0G0(θ (A))G0(θ (B)) + 0G0(θ (A))G1(θ (B)) + 0G1(θ (A))G0(θ (B))
+ 1G1(θ (A))G1(θ (B))

= θ (A)θ (B) = X Y.
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Given P1, P2 ∈ LP , then θ (P1 ∧ P2) = θ (P1)θ (P2).

4. When C = ∨ and P1, P2 ∈ LP , then θ (P1 ∨ P2) = θ (P1) + θ (P2) + θ (P1)θ (P2).

5. When C =→ and P1, P2 ∈ LP , then θ (P1→ P2) = θ (P1) + θ (P1)θ (P2) + 1.

6. When C =↔ and P1, P2 ∈ LP , then θ (P1↔ P2) = θ (P1) + θ (P2) + 1.

7. When C = ⊕ and P1, P2 ∈ LP , then θ (P1 ⊕ P2) = θ (P1) + θ (P2).

Given this conversion, we can say that p ∈ F2[X1, . . . , Xn] is satisfiable if there exists a point
(s1, . . . , sn) ∈ Fn

2 such that p(s1, . . . , sn) = 1. Thus, we can define satisfiability in terms of
polynomials as follows.

Corollary. 11.2.
Let p ∈ F2[X1, . . . , Xn], p is satisfiable if there exists s ∈ Fn

2 such that p(s) = p(s) + 1= 0.

We redefine the satisfiability problem as a set of equations. The existence of common ze-
ros is the answer to whether the formula is satisfiable. Since X1, . . . , Xn ∈ F2, we use the
polynomials X 2

i + X i for i = 1, . . . , n, whose roots are 0, 1. Then, the decision problem is
equivalent to whether there exists a solution to the following system of equations:

p(X1, . . . , Xn) = 0

X 2
1 + X1 = 0

...

X 2
n + Xn = 0

11.2 Hilbert’s Nullstellensatz

The Hilbert’s Nullstellensatz theorem gives a condition to determine whether an ideal has
or not a common set of zeros, or if that set is empty.
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Theorem. 11.3. (Hilbert’s Nullstellensatz)
Let K be an algebraically closed field and I ⊂ K[X1, . . . , Xn]. Then, V (I) = ∅ if and only if
I = K[X1, . . . , Xn].

To use this result, we just need that F2 is algebraically closed. This is not the case, but we
will use its algebraic closure F2 along with the polynomials X 2

i + X i. In this way, we can
use the Hilbert’s Nullstellensatz theorem. When I = 〈p, X 2

1 + X1, . . . , X 2
n + Xn〉, the variety

V (I) = ∅ if and only if 1 ∈ I . This is not true for general ideals I ⊂ F2[X1, . . . , Xn], as we
can see in the next example.

Example. 11.4.
Let’s consider I = 〈X 2 + X + 1〉 ⊂ F2[X ]. Since X 2 + X + 1 does not have a zero in F2, it
follows from the Lemma (5.2.) that V (I) =∅, but 1 /∈ 〈X 2 + X + 1〉.

Theorem. 11.5.
Given p ∈ F2[X1, . . . , Xn], and considering I = 〈p, X 2

1 + X1, . . . , X 2
n + Xn〉 in F2[X1, . . . , Xn]

and I = 〈p, X 2
1 + X1, . . . , X 2

n + Xn〉 in F2[X1, . . . , Xn]. Then, V (I) =∅ if and only if V (I) =∅.

PROOF. We prove that V (I) ̸=∅⇔ V (I) ̸=∅, what is equivalent to V (I) =∅⇔ V (I) =∅.

⇒) When V (I) ̸= ∅ there exists s ∈ Fn
2 such that p(s) = 0 for all p ∈ I . Given p∗ ∈ I ,

by the definition of an ideal, it can be written as p∗ = h0 · p +
∑n

i=1 hi · (X 2
i + X i), where

hi ∈ F2[X1, . . . , Xn]. It follows that p∗(s) =
∑n

i=0 hi · 0 = 0 and since s ∈ Fn
2 ⊂ F2

n
, then

s ∈ V (I).

⇐) Suppose that V (I) = ∅ while V (I) ̸= ∅. By the definition of varieties, it follows that
each s ∈ V (I) is an element of F2

n
\Fn

2. Since X 2
1 +X1, . . . , X 2

n+Xn are contained in I , a zero
s must satisfy X 2

i + X i = 0 for each i. This implies that each si ∈ {0,1}, what contradicts the
fact that s /∈ Fn

2. Therefore, V (I) ̸=∅. □
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Corollary. 11.6.
Given the ideal I ⊂ F2[X1, . . . , Xn] such that I = 〈p, X 2

1 + X1, . . . , X 2
n + Xn〉 for p ∈

F2[X1, . . . , Xn]. Then, V (I) =∅ if and only if 1 ∈ I .

PROOF.

⇐) Trivial. Since 1 ∈ I , it does not have any zero.

⇒) From Theorem (11.3.) and Theorem (11.5.), it follows that V (I) = ∅⇔ V (I) = ∅⇔
1 ∈ I .

Since I = I ∩F2[X1, . . . , Xn], if 1 ∈ I then 1 ∈ I . □

The last result gives a way to check satisfiability.

Theorem. 11.7.
Given p ∈ F2[X1, . . . , Xn], we say that p is satisfiable, if and only if, 1 /∈ I = 〈p+ 1, X 2

1 +
X1, . . . , X 2

n + Xn〉.

11.3 Adapted Buchberger criterion

Returning to Buchberger’s criterion 10.1., but now applied to the satisfiability problem. It
turns out that the S-polynomials S(X 2

i + X i, X 2
j + X j) have zero remainder when dividing by

G, which allows us to save some computations in the Buchberger’s algorithm.

Proposition. 11.8.
Let G be the ordered set {X 2

1 + X1, . . . , X 2
n + Xn}. Then, R[S(X 2

i + X i, X 2
j + X j) : G] = 0 for

1⩽ i, j ⩽ n.
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PROOF. Using the division algorithm to divide S(X 2
i + X i, X 2

j + X j) = X 2
j X i + X 2

i X j by the
ordered G, we get S(X 2

i + X i, X 2
j + X j) = X i(X 2

j + X j) + X j(X 2
i + X i) + 0, where r = 0. □

Corollary. 11.9.
Let I = 〈p, X 2

1 + X1, . . . , X 2
n + Xn〉. Then, G = {p, X 2

1 + X1, . . . , X 2
n + Xn} is a Gröbner basis

if and only if, for all i, the remainder on division of S(p, X 2
i + X i) by the ordered set {X 2

1 +
X1, . . . , X 2

n + Xn, p} is zero.

PROOF. Trivial if we bear in mind the Buchberger’s criterion (10.1.) and Proposition (11.8.)
above. □

11.4 Algorithm

In this section, we define some methods to check satisfiability using Gröbner bases together
with the adapted Buchberger’s criterion.

SAT_BASED_ON_GROEBNER_BASIS(F):

Input: P ∈ LP

Result: Whether the formula is satisfiable, true or false

Translate P to a polynomial p

Compute p = p+ 1

return ADAPTED_BUCHBERGERS_ALGORITHM(p)

The next algorithm implements the Buchberger algorithm with the simplification of the
Buchberger’s criterion and ends when it finds an S-polynomial whose remainder is zero
when dividing by G. It returns false if it finds such S-polynomial since in such case 1 /∈ G
and there is no solution to the system of equations, or true in case it does not find it.
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ADAPTED_BUCHBERGERS_ALGORITHM(p):

Input: p ∈ F2[X1, . . . , Xn]

Result: A Gröbner basis of {p, X 2
1 + X1, . . . , X 2

n + Xn}

G = {p, X 2
1 + X1, . . . , X 2

n + Xn}

P = {(p, X 2
i + X i) | i = 1, . . . , n}

while P ̸=∅:

Choose (p, g) ∈ P

P = P − (p, g)

s = R[S(p, g) : G]

if s = 1:

return false

if s ̸= 0:

P = P ∪ {(s, p) | p ∈ G}

G = G ∪ s

return true

In this project, a simple implementation of an algebraic SAT solver has also been carried
out, although the adaptation of the Buchberger’s criterion is not used. This can be found
later in the report.

12 Existential fragment of Presburger’s arithmetic

Given a formula of the existential fragment of Presburger’s theory in the form

D1 ∨ · · · ∨ Dm = (P11 ∧ · · · ∧ P1n1
)∨ · · · ∨ (Pm1 ∧ · · · ∧ Pmnm

),

where each predicate Pi j is a lineal equation of the form a1Z1+· · ·+anZn = b for a1, · · · an, b ∈
N and Z1, . . . , Zn take values in the natural numbers.
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For the formula to be satisfiable, we need at least one of the disjunctions Di to be true, but
this only occurs if there exists an i such that the system of equations represented by Di has a
solution. Therefore, we need to check whether there exists a solution s = (s1, . . . , sm) ∈ Nm

such that
As = b, where A∈ Nn×m and b ∈ Nn.

To do so, we will use a K-algebra homomorphism.

A K-algebra homomorphism is a ring homomorphism

φ : K[Y1, . . . , Ym]→ K[X1, . . . , Xn]

which is a K-vector space linear transformation. These maps are uniquely determined by

φ : Yi 7→ Fi,

where Fi ∈ K[X1, . . . , Xn] with 1⩽ i ⩽ m.

A system as follows is given, where ai j, b j ∈ N.

a11Z1 + · · ·+ a1mZm = b1

a21Z1 + · · ·+ a2mZm = b2

...

an1Z1 + · · ·+ anmZm = bn

(III.1)

To determine if there is a solution, we translate this linear equations into multivariate poly-
nomials by assigning a variable X1, . . . , Xn to each constraint. Then for each equation we
obtain

X ai1Z1+···+aimZm
i = X bi

i .

As we want all of this equation to be met, we can multiply them to get

X a11Z1+···+a1mZm
1 . . . X an1Z1+···+anmZm

n = X b1
1 . . . X bn

n .
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If we rearrange the multiplications, it is equivalent to

(X a11
1 . . . X an1

n )
Z1 . . . (X a1m

1 . . . X anm
n )

Zm = X b1
1 . . . X bn

n . (III.2)

At this point, for the polynomial rings K[Y1, . . . , Yn] and K[X1, . . . , Xn] we can define the
polynomial map

φ : K[Y1, . . . , Yn]→K[X1, . . . , Xn]
Yj 7→F j = X a11

1 . . . X an1
n ,

(III.3)

and rewrite the equation III.2 as

(φ(Y1))
Z1 . . . (φ(Ym))

Zm = φ(Y Z1
1 . . . Y Zm

m ) = X b1
1 . . . X bn

n .

Then, a solution (s1, . . . , sm) satisfies φ(Y s1
1 . . . Y sm

m ) = X b1
1 . . . X bn

n .

Lemma. 12.1.
Assuming that ai j, b j ∈ N. Then, there exists a solution s = (s1, . . . , sm) ∈ Nm of the system
III.1 if and only if X b1

1 . . . X bn
n is the image under φ of some Y s1

1 . . . Y sm
m ∈ K[Y1, . . . , Ym].

Moreover, if X b1
1 . . . X bn

n = φ(Y
s1

1 . . . Y sm
m ) then s is a solution of the system.

In the following result, it is shown that given a K-algebra homomorphism like the one we
have in III.3, the kernel of φ is equals to 〈Y1 − F1, . . . , Ym − Fm〉 ∩ K[Y1, . . . , Ym]. By the first
theorem of isomorphisms for rings, there exists an isomorphism of rings

K[Y1, . . . , Ym]/Ker(φ)→ Im(φ)

defined by
g + Ker(φ) 7→ φ(g).

Theorem. 12.2.
Let φ : K[Y1, . . . , Ym]→ K[X1, . . . , Xn] as in III.3 and considering H = 〈Y1 − F1, . . . , Ym − Fm〉.
Then, Ker(φ) = H ∩ K[Y1, . . . , Ym].
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PROOF.

⊂) If g ∈ Ker(φ) ⊂ K[Y1, . . . , Ym], then

g =
∑

α

cαY
α1

1 · · ·Y
αm

m ,

where cα ∈ K , α = (α1, . . . ,αm) ∈ Nm and only finitely many cα’s are non-zero. As g ∈
Ker(φ), then φ(g(Y1, . . . , Ym)) = g(F1, . . . , Fm) = 0. Hence,

g = g − g(F1, . . . , Fm)

=
∑

α

cαY
α1

1 · · ·Y
αm

m −
∑

α

cαFα1
1 · · · F

αm
m

=
∑

α

cα(Y
α1

1 · · ·Y
αm

m − Fα1
1 · · · F

αm
m ).

Using the next lemma which is proved in [4], we can conclude that g ∈ H ∩ K[Y1, . . . , Ym].

Lemma. 12.3.
Let R be a commutative ring and a1, . . . , an, b1, . . . , bn ∈ R. Then a1 · · · an − b1 · · · bn is in the
ideal 〈a1 − b1, . . . , an − bn〉.

⊃) If g ∈ H ∩ K[Y1, . . . , Ym], then

g(Y1, . . . , Ym) =
m
∑

i=1

(Yi − Fi(X1, . . . , Xn))hi,

where hi ∈ K[Y1, . . . , Ym, X1, . . . , Xn]. Hence,

φ(g) = g(F1, . . . , Fm) =
m
∑

i=1

(Fi(X1, . . . , Xn)− Fi(X1, . . . , Xn))hi = 0.

Therefore, g ∈ Ker(φ). □

In fact, we know that not only does φ(g + Ker(φ)) = φ(g) occur, but φ(g + H) = φ(g)
occurs as well. As the Lemma (12.1.) says, for there to be a solution of III.1, it is necessary
that X b1

1 . . . X bn
n ∈ Im(φ). This theorem gives a way to determine when a polynomial is in

the image of φ.
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Theorem. 12.4.
If we consider the ideal H = 〈Y1 − F1, . . . , Ym − Fm〉 ⊂ K[Y1, . . . , Ym, X1, . . . , Xn] and G a re-
duced Gröbner basis of H with respect to an elimination order with the X ’s priority larger
than Y ’s. Then f ∈ K[X1, . . . , Xn] is in Im(φ) if and only if there exists h ∈ K[Y1, . . . , Ym]
such that R[ f : G] = h.

PROOF.

⇒) Suppose that f ∈ K[X1, . . . , Xn] is in Im(φ), then there exists h ∈ K[Y1, . . . , Ym] such that
f = φ(h). Applying φ, we obtain f = φ(h(Y1, . . . , Ym)) = h(F1, . . . , Fm). Thus,

f (X1, . . . , Xn)− h(Y1, . . . , Ym) = h(F1, . . . , Fm)− h(Y1, . . . , Ym) ∈ K[Y1, . . . , Ym, X1, . . . , Xn].

We can observe that h(F1, . . . , Fm)− h(Y1, . . . , Ym) has pairs of monomials which are of the
form Fα1

1 · · · F
αm
m −Y α1

1 · · ·Y
αm

m and by Lemma (12.3.) f (X1, . . . , Xn)−h(Y1, . . . , Ym) ∈ H. There-
fore, we have R[ f (X1, . . . , Xn)− h(Y1, . . . , Ym) : G] = 0. Then,

R[ f (X1, . . . , Xn) : G] = R[h(Y1, . . . , Ym) : G] (III.4)

and by Proposition (9.3.) we know that the remainder is unique.

Since the X’s are larger than the Y’s, h ∈ K[Y1, . . . , Ym] can only be divided by polynomials
whose leading term only contains Y’s. Besides, R[h : G] does not contain X’s, so R[h :
G] ∈ K[Y1, . . . , Ym]. By III.4 and Proposition (9.3.), we conclude that R[ f (X1, . . . , Xn) : G] ∈
K[Y1, . . . , Ym].

⇐) Suppose that for f ∈ K[X1, . . . , Xn], there exists h ∈ K[Y1, . . . , Ym] such thatR[ f : G] = h.
Then, R[ f − h : G] = 0 and f − h ∈ H. Therefore,

f (X1, . . . , Xn)− h(Y1, . . . , Ym) =
m
∑

i=1

(Yi − Fi(X1, . . . , Xn))qi(Y1, . . . , Ym, X1, . . . , Xn).

Applying the homomorphism φ, we get

φ( f (X1, . . . , Xn)− h(Y1, . . . , Ym)) = φ(
m
∑

i=1

(Yi − Fi(X1, . . . , Xn))qi(Y1, . . . , Ym, X1, . . . , Xn))

φ( f (X1, . . . , Xn))−φ(h(Y1, . . . , Ym)) =
m
∑

i=1

φ((Yi − Fi(X1, . . . , Xn))qi(Y1, . . . , Ym, X1, . . . , Xn))
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f (X1, . . . , Xn)− h(F1, . . . , Fm)

=
m
∑

i=1

(Fi(X1, . . . , Xn)− Fi(X1, . . . , Xn))qi(F1, . . . , Fm, X1, . . . , Xn) = 0.

As f (X1, . . . , Xn)− h(F1, . . . , Fm) = 0, then f (X1, . . . , Xn) = h(F1, . . . , Fm) = φ(h(Y1, . . . , Ym)).
Finally, we conclude that f ∈ Im(φ). □

Therefore, there exists a solution of the system III.1 if and only if R[X b1
1 · · ·X

bn
n : G] =

Y s1
1 · · ·Y

sm
m for some (s1, . . . , sm) ∈ Nm.

Example. 12.5.
We want to know whether there exists a solution of the system

Z1 + Z2 = 3

Z1 + 2Z2 = 4.

Then, for each equation the variables X1, X2 are introduced,

X Z1+Z2
1 = X 3

1

X Z1+2Z2
2 = X 4

2 .

After combining all and rearranging, we get (X1X2)Z1(X1X 2
2)

Z2 = X 3
1 X 4

2 .

Now, the K-algebra homomorphism can be defined as

φ : K[Y1, Y2]→ K[X1, X2]
Y1 7→ X1X2

Y2 7→ X1X 2
2 .

Then, H = 〈Y1 − X1X2, Y2 − X1X 2
2〉. The result of computing the Gröbner basis of H with a

lex order where X1 > X2 > Y1 > Y2 is G = {g1, g2, g3} where

g1 = X1X2 − Y1

g2 = X1Y2 − Y 2
1

g3 = X1Y1 − Y2.

Then, R[X 3
1 X 4

2 : G] = Y 2
1 Y2. Therefore, the system has a solution and (2,1) is a solution.
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It is expected that if a power product X b1
1 · · ·X

bn
n ∈ K[X1, . . . , Xn] is the image under φ of

some h ∈ K[Y1, . . . , Ym], then h is also a power product Y s1
1 · · ·Y

sm
m ∈ K[Y1, . . . , Ym]. In this

lemma, we will see that this always occurs.

Lemma. 12.6.
Taking the elements defined so far. If X b1

1 · · ·X
bn
n ∈ Im(φ), then it is the image of a power

product Y s1
1 · · ·Y

sm
m .

PROOF. By Theorem (12.4.),

X b1
1 · · ·X

bn
n ∈ Im(φ) ⇐⇒ R[X b1

1 · · ·X
bn
n : G] = h ∈ K[Y1, . . . , Ym].

Moreover, φ(h) = X b1
1 · · ·X

bn
n .

On the other hand, any combination of two polynomials that are sum of two power products
is a sum of two power products, then the polynomials in G are polynomials that are sum of
two power products.

Since, any combination of a power product and a polynomial which is the sum of two power
products gives as a result a power product, then h is a power product. □

Example. 12.7.
We want to know whether there exists a solution of the system of linear equations

3Z1 + 2Z2 + Z3 + Z4 = 10

4Z1 + Z2 + Z3 = 5.

Then, for each equation the variables X1, X2 are introduced,

X 3Z1+2Z2+Z3+Z4
1 = X 10

1

X 4Z1+Z2+Z3
2 = X 5

2 .

We combine all and rearrange them to get

(X 3
1 X 4

2)
Z1(X 2

1 X2)
Z2(X1X2)

Z3(X1)
Z4 = X 10

1 X 5
2 .
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Now, the K-algebra homomorphism can be defined as

φ : K[Y1, Y2, Y3, Y4]→ K[X1, X2]

Y1 7→ X 3
1 X 4

2

Y2 7→ X 2
1 X2

Y3 7→ X1X2

Y4 7→ X1.

Then, H = 〈Y1 − X 3
1 X 4

2 , Y2 − X 2
1 X2, Y3 − X1X2, Y4 − X1〉. The result of computing the Gröbner

basis of H with a lex order where X1 > X2 > Y1 > Y2 > Y3 > Y4 is G = {g1, g2, g3, g4, g5}
where

g1 = X1 − Y4

g2 = X2Y 3
3 − Y1

g3 = X2Y4 − Y3

g4 = Y1Y4 − Y 4
3

g5 = Y2 − Y3Y4.

Then, R[X 10
1 X 5

2 : G] = Y 5
4 Y 5

3 . Therefore, the system has a solution and (0, 0,5, 5) is a
solution.
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Conclusions and future directions

In this thesis, we have introduced propositional and first order logic. We have proved Her-
brand’s expansion theorem which together with the tiling problem has helped us to show the
undecidability of the satisfiability problem in first order logic, as well as NP-completeness
in propositional logic. We have defined first order theories and given some examples of
them. We then introduced Gröbner bases and applied them to SAT and Presburger’s theory
of arithmetic.

For a more complete overview of the resolution of the existential fragment of Presburger’s
theory, it would have been good to review some other references like [6, 20], due to the
relation of Presburger’s theory to semigroups and the integer linear programming problem.
It would also have been nice to discuss the resolution of the satisfiability problem of the
theory of reals that we can find in the references [30, 31], since it also use Gröbner bases.

A simple implementation of the SAT algebraic approach has been made. To improve this
implementation, the translation from proposition to polynomial could be improved, as seen
in this article [26] where formulas in conjunctive normal form are translated. It might
also be interesting to have a look into some of the improvements that have now been seen
to the Buchberger’s algorithm [37, 33, 22, 21, 11]. There might already be Gröbner bases
calculation algorithms efficiently adapted to SAT [40]. Moreover, a more thoughtful reading
of the book [12]might be advisable. In this book several algebraic approaches to solving SAT
are presented, these are called Nullstellenstaz, Polynomial Calculus and Polynomial Calculus
Resolution.

APPLICATIONS: Many real-world problems have been formalized as SAT decision problems,
so it is used in planning and scheduling problems, as well as in theorem proving, software
and hardware verification and cryptography among others.

Since the boolean satisfiability problem is NP-complete, then any problem in NP can be mod-
elled on propositional logic. More precisely, any NP problem can be coded into propositional
logic in polynomial time and then be solved by a SAT solver. During the last two decades,
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there has been a sustained improvement in SAT solving technology. Given this fact, being
able to encode a problem into SAT is very likely to result in a practical solution.

There are a few techniques a leading contemporary SAT solver is based on: existential quan-
tification, sound and complete inference rules and systematic search in the space of truth
assignments. DPLL algorithm form the basis of most modern SAT solvers. Due to the many
refinements these algorithms have experimented, they are the most efficient algorithms thus
far. The most promising have been Conflict-Driven Clause Learning SAT solvers, they are
based on a combination of those three techniques.

We have used Gröbner bases to solve the satisfiability problem in propositional logic. Alge-
braic SAT solvers seem not to have been very successful due to the breakthrough of CDCL
solvers. The reason may be that algebraic SAT solvers has not yet been sufficiently explored.
In addition, the computation of Gröbner bases is known to be an EXPSPACE-complete prob-
lem [10]. It is expected that for this type of SAT solvers to be successful, a cut-off for the
Gröbner basis algorithm must be found, since it allows not only to decide the satisfiability
but also to enumerate the satisfying assignments. Despite this fact, for some cases, it seems
to be a good approach as stated in the book [12]. March [24] and CryptoMiniSat [39] are a
few examples of algebraic SAT solvers.

Despite the complexity of SAT and SMT solving, in practice there are SMT solvers that have
shown the feasibility of practical automated decision procedures for this problem, this has
helped to solve complex and interesting problems. A few examples of SMT solvers developed
in the industry are cvc5 [9] and Z3 [34].

May 25, 2023 Course 2021–2022. Master thesis
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Note1

• SAT Live!

• SMT-LIB

• Satisfiability Checking and Symbolic Computation

• Symbolic Computation Techniques in SMT Solving: Mathematical Beauty Meets Effi-
cient Heuristics

• Lecture videos in logic

• Symbolic computation – Wikipedia

• Real closed field – Wikipedia

• Faugère’s F4 and F5 algorithms – Wikipedia
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