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Introduction.

In this pamphlet we develop a non–commutative version of Groebner
bases; we no not establish a general theory of non–commutative Groeb-
ner bases but a very special case, hence the reader may find more gen-
eral frameworks for non–commutative Groebner bases. See for example
[10, 12].

Our development is justified mainly in our study of Kq[X1; : : : ;Xn], the
quantum polynomial ring in n indeterminates and its cofinite prime ideals.
We will do that in the forthcomming paper [9]. The study of Groebner
bases in this context is similar to the developed on commutative polyno-
mial rings and, in some sense, it may be considered as a simple class-
room exercise. The only difficulties appear when we are proving that
certain families of elements are system of generators; in these cases the
proofs are built using strongly the arithmetic of Kq[X1; : : : ;Xn].
We may consider this work as an attempt to unify and collect some re-
sults to be applied in near works.

—————–

Let us give a justification of the theory. In algebraic geometry, over an
algebraically closed field, the affine space is parameterize by the polyno-
mial ring K[X1; : : : ;Xn]; then the study of geometrical objects is realized
through algebraically objects, i.e., ideals in K[X1; : : : ;Xn]. Now to ma-
nipulate ideals a useful tool are Groebner bases. If we introduce some
deformation in the affine space, i. e., we try to study some physical phe-
nomenon as for example heat, then the coordinate ring also reveals this
deformation. The simplest example is provided if we consider the follow-
ing commutation rules for the indeterminates:

XjXi = qi;jXiXj; 1 � i < j � n; 0 6= qi;j 2 K : (1)

Thus we obtain the quantum polynomial ring; the justification of this
name can found in [11]. The elements in this new ring are the same than
in K[X1; : : : ;Xn], but the multiplication is different; in Kq[X1; : : : ;Xn] the
multiplication is defined using the relationships given in (1).

With this framework the following question arise naturally: is it possi-
ble to develop a arithmetic in Kq[X1; : : : ;Xn] similar to the arithmetic in



P. JaraK[X1; : : : ;Xn]? It is well known that the answer is yes. To develop this
arithmetic we devote the first chapter. The basis to this development
will be a division theorem. In order to establish the uniqueness of the
remainder in the division we need to introduce Groebner bases. Finally
we obtain uniqueness of certain special kinds of Groebner bases to left
ideals.

At this point we remark that the theory has been developed to left ideals,
and that a similar theory may be established to right ideals or even to
two–sided ideals, see [10].

Chapter one finishes with applications of Groebner bases of left ideals.
Let us cite the problem of deciding if an element of Kq[X1; : : : ;Xn] be-
longs to a left ideal I and the problem of deciding when two left ideals
are equal.

An extension of this theory is realized in chapter two. We study the appli-
cation of Groebner bases to finitely generated left modules over the ring
R = Kq[X1; : : : ;Xn]. It is clear that it is enough to study submodules of
finitely generated free modules. Thus the theory of Groebner bases for
modules runs parallel to the same theory for left ideals of R.

We finish this chapter studying the solutions of systems of equations or
equivalently the syzygies modules. Let us remark that if g1, : : : , gt 2 Rm

is a non–empty family, then a system of generators for Syz(g1; : : : ; gt) can
be easily built. An special case is obtained if g1, : : : , gt is a Groebner
basis for a submodule of Rm; in this case the built system of generators
is a Groebner basis for a submodule of Rt (even though it is necessary
to define a special monomial order in Rt induced by g1, : : : , gt .) This
situation allows us to compute a free resolution of a finitely generated R–
module in knowning a Groebner basis for the relationships module of M ,
i.e., the kernel of a finitely generated free presentation of M . This theory
will be used in the paper [9] to compute certain Ext groups.

—————–

The following are the references mainly used through this work:
- Adams–Loustaunau [1],
- Becker–Weispfenning [2],
- Bueso–Castro–Jara [4],
- Castro [5],
- Cox–Little–O’Shea [6],
- Kandri-Rodi–Weispfenning [10].
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Finally we point out that our main reference to orders and admissible
orders was [2], whereas [1] was our reference to Groebner bases of mod-
ules.

—————–

We would like to thank the following people their careful reading of ear-
lier versions of this notes: J. L. Bueso, J. M. Garcı́a, J. Gómez, J. Jódar, L.
Merino, E. Santos.

[9. Quantum Groebner bases] v
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Chapter 1

Groebner bases.

1.1. Orders and admissible orders.

Let Nn be the product of n copies of N . It is well known that Nn has struc-
ture of commutative monoid if we consider the addition component–
wise.

Let � be a partial order in Nn , i. e., a binary relation in Nn satisfying the
reflective, anti–symmetric and transitive properties. If � only satisfies
the reflective and transitive properties, we call it a preorder. A partial or-
der is a total order if for any �, � 2 Nn we have either � � � or � � �; in
the same way we define total preorder.

Let� be a preorder in Nn , we write a � b to express that a � b and a 6� b.

Let � be a preorder in Nn , and S � Nn be a non–empty set; an element� 2 S is minimal (resp. maximal) in S if it does not exist � 2 S such that� � � (resp. � � �). A preorder � is called artinian (resp. noetherian) if
any non–empty subset S � Nn has a minimal (resp. maximal) element. A
total artinian order is called a well order.

Let�1 and�2 be two preorders in Nn , we say that�2 extends�1 if � �1 �
implies � �2 � for any �, � 2 Nn .

Let � be a preorder in Nn . Let S � Nn be a non–empty subset; a Dickson
basis of S is a finite subset F � S such that for any � 2 S there exists� 2 F with � � �. A preorder � is said to satisfy the Dickson property if
any non–empty subset S � Nn has a Dickson basis. Orders and preorders
satisfying the Dickson property are studied and characterized in [2].[9. Quantum Groebner bases] 1
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Let �1 and �2 be preorders in Nn1 and Nn2 , respectively. We define their
product in Nn1+n2 as:(�1; �2) � (�1; �2) if

��1 �1 �1 and�2 �2 �2;
and their lexicographical product in Nn1+n2 as:(�1; �2) � (�1; �2) if

��1 �1 �1 or�1 �1 �1; �1 �1 �1 and �2 �2 �2:
We may iterate these products of preorders. If�1 and�2 are total orders,
then their product is a partial order and their lexicographical product is
a total order. We denote by� the product order, in Nn , of the usual order
in N and call it the usual order in Nn .

A total order � in Nn is called admissible if it satisfies:
(1) 0 � � for any � 2 Nn ;
(2) � � � implies � +  � � +  for any �, �,  2 Nn .

Condition (2) may be also expressed as:
(20) � � � implies � +  � � +  for any �, �,  2 Nn .

(1.1.1) Proposition.
Any admissible order in Nn extends the usual order.

To get a proof of this and related facts on admissible orders the reader
may see the book of Becker–Weispfenning, [2].

1.2. Monomial orders.

A noncommutative framework of Groebner bases was early developed,
see Bergman [3], Gateva–Ivanova [7] or Ufnarovski [13] et al. Also in the
case of differential operators rings it has been studied, see Castro [5],
Pauer [8] et al. The main aim of this part is to be available, with con-
sistent notation, the results we will use.

We may develop the theory in the case of iterated Ore extensions of a field
K , with commutativity relations of the type:

XjXi = qi;jXiXj + ri;j; i < j; 0 6= qi;j 2 K ;
where ri;j 2 K [X1; : : : ;Xj�1]. But this implies to use only very particular
monomial orders. Hence, in order the get a more compact exposition,

2 [Notas de trabajo]
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we drop the terms ri;j. In any case, the general theory is a simple exercise
from the situation we will discuss here, as this is from the commutative
case.

We call R = Kq[X1; : : : ;Xn] the polynomial ring in non commutative in-
determinates satisfying the following relationships:

XjXi = qi;jXiXj; 1 � i < j � n; 0 6= qi;j 2 K :
Any polynomial F 2 Kq[X1; : : : ;Xn] has a uniquely determined expres-
sion in the following form:

F = X�2Nn

a�X�;
where a� 2 K , for any � 2 Nn , are almost all zero and X� = X�1

1 � � �X�n
n if� = (�1; : : : ; �n).

Given F 2 Kq[X1; : : : ;Xn] we call any a�X� in the above expression, with
a� 6= 0, a term of F , and X� a monomial. There exists a bijection from
the set of all monomial to the set Nn . This bijection provides, given an
admissible order � in Nn , a total order � in the set of all monomial inKq[X1; : : : ;Xn] in the following way:

X� � X� if � � �
There exists a big difference with the commutative case: now the product
of two monomials is not necessarily a monomial but a term. For that
reason we must extend the above order on monomials to a preorder on
terms as follows:

aX� � bX� if 0 6= a; b 2 K and � � �:
Now this preorder is compatible with the product in Kq[X1; : : : ;Xn] in the
following sense; it satisfies

(1) 1 � bX� for any 0 6= bX� 2 Kq[X1; : : : ;Xn];
(2) aX� � bX� implies acX�X � bcX�X for any 0 6= aX�, bX� , cX 2Kq[X1; : : : ;Xn].

We must first to compute the commutativity rules in Kq[X1; : : : ;Xn], in
order to prove that X�X� is a term, and after that show that the relation-
ships in (2) are true.[9. Quantum Groebner bases] 3
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We call q = (qi;j)i<j and define

q(�;�) =Y
i<j

q
�i�j

i;j ; �; � 2 Nn :
It is clear that we obtain:

X�X� = q(�;�)X�+�; �; � 2 Nn :
The arithmetic of q(�;�) follows the following relationships:

q(�+�0;�+�0) = q(�;�) � q(�;�0) � q(�0;�) � q(�0;�0);
q�(�;�) = q(��;�) = q(�;��);

where the negative exponents are defined using q�1
i;j .

With these results we have a total order on non–zero monomials and a
total preorder on non–zero terms, associated to an admissible order inNn . We refer them as a monomial order and a term preorder respectively.

1.3. Division algorithm.

In the following, let � be a fixed, but arbitrary, admissible order in Nn

and we consider indifferently either the associated monomial order or
the term preorder on Kq[X1; : : : ;Xn].
(1.3.1) Lemma.
Every non–zero polynomial F 2 Kq[X1; : : : ;Xn] can be written, in a uniquely

way, as F =Pt
i=1 a�i X�i

, where�1 � : : : � �t ; 0 6= a�i 2 K ; i = 1; : : : ; t:
To fix notation let us define some elements associated to a non–zero
polynomial 0 6= F 2 Kq[X1; : : : ;Xn] written as in Lemma (1.3.1).

(i) The Newton diagram of F is:N (F) = f� 2 Nn : a� 6= 0g;
(ii) If F 6= 0, the exponent of F is:exp(F) = maxf� 2 Nn : � 2 N (F)g;

4 [Notas de trabajo]
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(iii) The degree of F is:grad(F) = maxf�1 + � � �+ �n: � = (�1; : : : ; �n) 2 N (F)g;
(iv) The leader coefficient of F is: lc(F) = aexp(F);
(v) The leader term of F is: lt(F) = aexp(F)Xexp(F);

(vi) The leader monomial of F is: lm(F) = Xexp(F).
To extend these definitions to any polynomial, we may define for F = 0
in Kq[X1; : : : ;Xn] the elementsN (F) = ?, lt(F) = 0 and lc(F) = 0.

(1.3.2) Lemma.Kq[X1; : : : ;Xn] is an integral domain and if 0 6= F , G 2 Kq[X1; : : : ;Xn],
then exp(FG) = exp(F) + exp(G).
PROOF. Let 0 6= F ;G 2 Kq[X1; : : : ;Xn], then lt(F); lt(G) 6= 0 and we
have lt(FG) = lt(F) lt(G). Hence the exponent is exp(F) + exp(G), and the
leader coefficient is lc(F) lc(G)q(exp(F);exp(G)) 6= 0. �
The following result is also immediate.

(1.3.3) Lemma.
Let 0 6= F , G 2 Kq[X1; : : : ;Xn] then the following statements are true:

(1) If F + G 6= 0, then exp(F + G) � maxfexp(F); exp(G)g;

(2) If exp(F) � exp(G), then exp(F + G) = exp(G).
Let us introduce some extra terminology. If �1, : : : , �t 2 Nn is a list of
elements in Nn , we define:�1 = Nn + �1;�2 = (Nn + �2) n�1;

...�t = (Nn + �t) n [i<t�i;� = Nn n [i�t�i:
We think there is no confusion with the notation �i for an element in Nn ,
as we will not use the powers of elements in Nn .[9. Quantum Groebner bases] 5
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(1.3.4) Lemma.
Let �1, : : : , �t be a list of elements in Nn , we have that f�1;�2; : : : ;�t ;�g
is a partition of Nn .

As a consequence we have the division algorithm in Kq[X1; : : : ;Xn].
(1.3.5) Theorem. (Division algorithm.)
Given an admissible order in Nn , for any finite list of non zero polynomi-
als

G1; : : : ;Gt 2 Kq[X1; : : : ;Xn];
we consider the partition of Nn determined by the list of elements of Nnexp(G1); : : : ; exp(Gt):
Then we have that for any 0 6= F 2 Kq[X1; : : : ;Xn] there exist unique
polynomials Q1, : : : , Qt , R 2 Kq[X1; : : : ;Xn] satisfying the following con-
ditions:

(1) F =Pt
i=1 QiGi + R;

(2) R = 0 orN (R) � �;

(3) For any index i we have:N (Qi) exp(Gi) � �i.

As a consequence, if QiGi 6= 0, then exp(QiGi) � exp(F) and if R 6= 0, thenexp(R) � exp(F).
PROOF. Existence.

We do induction on exp(F). If exp(F) = 0, then there are two possibilities:

(i) exp(F) = (0; : : : ; 0) 2 �i, for some index i or

(ii) exp(F) = (0; : : : ; 0) 2 �.

(i) In this case exp(F) =  + exp(Gi), for some  2 Nn , then exp(Gi) =(0; : : : ; 0) and Gi 2 K . We can take:8<:Qj = 0; if j 6= i;
Qi = Fi=Gi;
R = 0

6 [Notas de trabajo]
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(ii) In this case exp(F) 2 �, and we can take:�

Qi = 0; if i = 1; : : : ; t;
R = F

Let us assume now that the result is true for all the polynomials G withexp(G) � exp(F). As before, there are two possibilities:

(i) exp(F) 2 �i, for some index i or

(ii) exp(F) 2 �.

(i) In this case exp(F) =  + exp(Gi), for some  2 Nn . If we define H =
XGi then F � lc(F)lc(H)XGi is a polynomial with exponent strictly less than

exponent of F . Applying the induction hypothesis we have:

F � lc(F)lc(H)XGi =X
i

Q0
iGi + R0;

where Q0
1; : : : ;Q0

t ;R satisfying the conditions in the theorem. Then we
have an expression:

F =X
i

QiGi + R;
where 8><>:Qj = Q0

j; if j 6= i;
Qi = Q0

i + lc(F)lc(H)X;
R = R0

To prove that we have the conditions of the theorem, we observe the fol-
lowing inclusions:exp(Gi) +N (Qi)� fN (Q0

i) [ fgg+ exp(Gi)= (N (Q0
i) + exp(Gi)) [ fgg) [ f + exp(Gi)g� �i:

(ii) In this case exp(F) 2 �, then F � lt(F) is a polynomial with exponent
strictly less than the exponent of F . Hence by the induction hypothesis
we have:

F � lt(F) =X
i

Q0
iGi + R0[9. Quantum Groebner bases] 7
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where Q0

1; : : : ;Q0
t ;R0 satisfying the conditions in the theorem. Then we

have the following expression of F :

F =X
i

QiGi + R;
where �

Qi = Q0
i; if i = 1; : : : ; t;

R = R0 + lt(F)
To prove that we have the conditions of the theorem, if R 6= 0, then sinceN (0) = ?, we have:N (R) = N (R0 + lt(F)) � N (R0) [ fexp(F)g � �:
Uniqueness.

Let
F =X

i

QiGi + R =X
i

Q0
iGi + R0

be two expressions of F satisfying the conditions of the theorem. Then
we have:

0 =X
i

(Qi � Q0
i)Gi + (R� R0):

Let us analyze the exponents of the different summands in this sum:exp(R� R0) 2 N (R� R0) � N (R) [N (R0) � �:exp((Qi �Q0
i)Gi)= exp(Qi � Q0

i) + exp(Gi)� N (Qi � Q0
i) + exp(Gi)= (N (Qi) + exp(Gi)) [ (N (Q0

i) + exp(Gi))� �i:
Now, as �1, : : : , �t , � is a partition of Nn , each summand must be zero.
So, as Kq[X1; : : : ;Xn] is a domain, we have Qi = Q0

i, for any index i, and
R = R0. �
We call Q1, : : : , Qt the left quotients and R the left remainder of F rel-
ative to fG1; : : : ;Gtg. The left remainder R may be also represented by
Rl(F ; fG1; : : : ;Gtg), and if there is no confusion simply by R(F ; fG1; : : : ;Gtg)
.

In an analogous way we may define right quotients and right remainder
of F relative to fG1; : : : ;Gtg.

8 [Notas de trabajo]
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The ordering of the polynomials G1, : : : , Gt is determinant to the com-
putation of the left remainder, i. e., it can be happen that:

R(F ; fG1; : : : ;Gi; : : : ;Gj; : : : ;Gtg) 6= R(F ; fG1; : : : ;Gj; : : : ;Gi; : : : ;Gtg);
if i 6= j.

1.4. Groebner bases.

If I is a left ideal of Kq[X1; : : : ;Xn], we defineExp(I) = fexp(F): F 2 Ig:
(1.4.1) Lemma.Exp(I) is a monoideal of Nn , i.e., Nn + Exp(I) � Exp(I).
Since the usual order in Nn satisfies the Dickson property, see Becker–
Weispfenning [2], then for any non empty monoideal M there exists a
finite subset fa1; : : : ; atg � M such that

M = Nn + fa1; : : : ; atg:
In particular this is true for Exp(I) being I any left ideal in Kq[X1; : : : ;Xn].
(1.4.2) Lemma.
Let I be a non zero left ideal of Kq[X1; : : : ;Xn]. If A is a finite system of
generators of Exp(I), then any set of polynomials fF�: � 2 Ag � I such
that exp(F�) = � for any � 2 A is a systems of generators of I as left ideal.

PROOF. Since A is finite, we can assume that fF�: � 2 Ag = fG1; : : : ;Gtg.
For any 0 6= F 2 I we apply the division algorithm for the sequence
G1; : : : ;Gt . Hence we have an expression F =Pi QiGi +R. If the remain-
der R is non–zero, thenN (R) � �. On the other hand, R = F �Pi QiGi 2
I, so we have exp(R) 2 Exp(I) = Nn + A = [i�i, which is a contradiction.�
If I is a left ideal of Kq[X1; : : : ;Xn], a Groebner basis of I is a finite set of
non zero elements G = fG1; : : : ;Gtg � I satisfyingExp(I) = Nn + fexp(G1); : : : ; exp(Gt)g:[9. Quantum Groebner bases] 9
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(1.4.3) Corollary.

(1) Every non zero left ideal of Kq[X1; : : : ;Xn] has a Groebner basis;

(2) Every Groebner basis of a non zero left ideal is a system of genera-
tors.

(1.4.4) Proposition.
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and G , G 0 two Groebner
bases of I, then for any 0 6= F 2 Kq[X1; : : : ;Xn] we have:

R(F ; G ) = R(F ; G 0):
PROOF. Let us assume that, after applying the division algorithm for G
and G 0 , we have two expressions:

F = X
Gi2G QiGi + R = X

G0
j
2G 0 Q0

jG
0
j + R0;

respectively. If R 6= R0, since R� R0 2 I, thenexp(R� R0) 2 Exp(I) = [i�i = [j(�0)j:
But exp(R� R0) 2 N (R� R0) � N (R) [N (R0) � � = �0;
which is a contradiction. �
As a consequence the remainder in the division of an element F by a
Groebner basis G do not depends of the ordering of G .

——————

Now we will try to get a uniquely determined Groebner basis for any non
zero left ideal I. The following Lemma is almost trivial.

(1.4.5) Lemma.
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and G = fG1; : : : ;Gtg a
Groebner basis of I. Let F 2 G a polynomial satisfying:exp(F) 2 Nn + fexp(G): F 6= G 2 G g;
then G n fFg is a Groebner basis of I.

10 [Notas de trabajo]
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A Groebner basis G of a non zero left ideal I of Kq[X1; : : : ;Xn] is called
minimal if it satisfies:

(i) lc(F) = 1 for any F 2 G ;

(ii) exp(F) =2 Nn + fexp(G): F 6= G 2 G g for any F 2 G .

It is very simple to prove the following proposition.

(1.4.6) Proposition.
Every non zero left ideal I of Kq[X1; : : : ;Xn] has a minimal Groebner ba-
sis.

A non zero left ideal may have different minimal Groebner bases. In or-
der to provide uniqueness we introduce a new kind of Groebner bases. A
Groebner basis G of a non zero left ideal I is called reduced if it satisfies:

(i) lc(F) = 1 for any F 2 G ;

(ii) N (F) \ (Nn + fexp(G): F 6= G 2 G g) = ?.

It is clear that every reduced Groebner basis of a non zero left ideal is a
minimal Groebner basis.

(1.4.7) Theorem.
Every non zero left ideal I of Kq[X1; : : : ;Xn] has a unique reduced Groeb-
ner basis.

PROOF. If G is a minimal Groebner basis, a polynomial F 2 G is called
reduced if N (F) \ (Nn + fexp(G): F 6= G 2 G g) = ?:
It is obvious that if F 2 G is reduced, then it is reduced in every minimal
Groebner basis G 0 such that F 2 G 0 andfexp(G): G 2 G g = fexp(G): G 2 G 0g:
We define for any F 2 G the following elements:

F 0 = R(F ; G n fFg);G 0 = (G n fFg) [ fF 0g:[9. Quantum Groebner bases] 11
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We claim G 0 is also a Groebner basis of I. If exp(F) 6= exp(F 0), then we
obtain from the relations:

F = X
F 6=G2G QGG + R(F ; G n fFg) = X

F 6=G2G QGG + F 0
and exp(F) = maxffexp(QGG): F 6= G 2 G g [ fexp(F 0)gg;
and from the fact that all the exponents are different, that there exists
G 2 G n fFg such that exp(F) = exp(QGG), which is a contradiction with
the fact that G is a minimal Groebner basis.

Then we have that G 0 is a Groebner basis and also that F 0 is reduced. Ap-
plying this process to each polynomial in G , we obtain a reduced Groeb-
ner basis.

In order to prove the uniqueness, if G and G 0 are reduced Groebner bases,
then Exp(I) = Nn + Exp(G ) = Nn + Exp(G 0):
If F 2 G then we have the following relations:exp(F) =  + exp(G0); G0 2 G 0 ;  2 Nn ;exp(G0) = 0 + exp(G); G 2 G ; 0 2 Nn ;
so we have exp(F) = 0+  + exp(G). Since G is minimal, then  = 0 = 0.
Then exp(F) = exp(G0) and we have the equality:exp(G ) = exp(G 0):
For any F 2 G , there exists G0 2 G 0 such that exp(F) = exp(G0). Then
F � G0 has all its terms less than exp(F). Since F � G0 2 I then we have
R(F � G0; G ) = 0. Now G and G 0 are reduced and exp(G ) = exp(G 0), thenN (F � G0) � � = Nn n Exp(I);
To prove this inclusion let us consider the following development:N (F � G0) \ (Nn + exp(G ))= N (F � G0) \ ([fNn + exp(L): L 2 G g)= [fN (F � G0) \ (Nn + exp(L)): L 2 G g= [fN (F � G0) \ (Nn + exp(L)): F 6= L 2 G g= N (F � G0) \ (Nn + fexp(L): F 6= L 2 G g)� (N (F) \ (Nn + fexp(L): F 6= L 2 G g))[(N (G0) \ (Nn + fexp(L): G0 6= L 2 G 0g)) = ?
Then R(F � G0; G ) = F � G0, and F = G0. �
This uniqueness will be useful to study equality of left ideals inKq[X1; : : : ;Xn].

12 [Notas de trabajo]



P. Jara
1.5. Buchberger algorithm.

We are now interested in characterizing and computing Groebner bases.

(1.5.1) Proposition.
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and G = fG1; : : : ;Gtg be
a finite family of polynomials in I. Then the following statements are
equivalent:

(a) G is a Groebner basis of I;

(b) For any 0 6= F 2 I we have R(F ; G ) = 0.

PROOF. (a))(b). If R(F ; G ) 6= 0, then exp(R(F ; G )) 2 Exp(I) \ � = ?,
which is a contradiction.

(b))(a). Let 0 6= F 2 I, by the division algorithm, with respect to G , there
exist Q1, : : : , Qt , R 2 Kq[X1; : : : ;Xn] such that:

F =Pi QiGi; andexp(Gi) +N (Qi) � �i:
As a consequence, exp(QiGi) 6= exp(QjGj) if i 6= j. So exp(F) is the maxi-
mum of the exponents of the summands QiGi. Therefore there exists an
index i such thatexp(F) = exp(QiGi) 2 �i � exp(Gi) + Nn ;
and exp(F) 2 fexp(G1); : : : ; exp(Gt)g+ Nn . �
Since this characterization of Groebner bases involves all the polynomi-
als in the left ideal, it is not very practical. Our goal now is to look for
more practical criterion to characterize Groebner bases.

Using the arithmetical rules in the quantum polynomial ringKq[X1; : : : ;Xn]
we will define the minimum common multiple of a pair of monomials.
Let X� and X� be monomials in Kq[X1; : : : ;Xn], we definei = maxf�i; �ig; 1 � i � n:
Let  = (1; : : : ; n) 2 Nn , then we call X = mcmfX�;X�g the minimum
common multiple of X� and X� . We have that X is really a multiple inKq[X1; : : : ;Xn] of X� and X� ; it satisfies:

X = q�(�;��)X��X� = q�(�;��)X��X� :[9. Quantum Groebner bases] 13
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With this baggage we may define the semisyzygies or s–polynomials in the
ring Kq[X1; : : : ;Xn]. Given 0 6= F , G 2 Kq[X1; : : : ;Xn], with exp(F) = X�
and exp(G) = X� , the s–polynomial defined by F and G is:

S(F ;G) = q�(�;��)lc(F) X��F � q�(�;��)lc(G) X��G:
(1.5.2) Lemma.
Let

Pt
i=1 ciX

�i
Fi be an expression, where Fi are polynomials inKq[X1; : : : ;Xn],

ci 2 K and �i 2 Nn , satisfying:exp(X
i

ciX
�i

Fi) � �; where � = exp(X�i

Fi); for any index i:
Then there exist elements cjk 2 K such that:X

i

ciX
�i

Fi =X
jk

cjkX��jk

S(Fj;Fk); and exp(X��jk

S(Fj;Fk)) < �;
where Xjk = mcmfXexp(Fj);Xexp(Fk)g.

PROOF. Let us assume that exp(Fi) = �i, then �i + �i = �. We do the
following development:X

i

ciX
�i

Fi =X
i

ci lc(Fi)X�i
Filc(Fi) =X

i

ci lc(Fi)q(�i;�i)Hi;
where we define Hi by satisfying the equation X�i

Filc(Fi) = q(�i;�i)Hi We may

complete this development in the following way:X
i

ciX
�i

Fi =X
i

ci lc(Fi)q(�i;�i)Hi == c1 lc(F1)q(�1;�1)(H1�H2)+(c1 lc(F1)q(�1;�1)+c2 lc(F2)q(�2;�2))(H2�H3)+� � �� � �+ (c1 lc(F1)q(�1;�1) + � � �+ ct�1 lc(Ft�1)q(�t�1;�t�1))(Ht�1 �Ht)++(c1 lc(F1)q(�1;�1) + � � �+ ct lc(Ft)q(�t ;�t ))Ht :
Let us consider now the product X��jk

S(Fj;Fk). We will develop it and
obtain a multiple of Hj �Hk.

X��jk

S(Fj;Fk) =
14 [Notas de trabajo]



P. Jara= X��jk

 
q�(�j;jk��j)lc(Fj) Xjk��j

Fj � q�(�k ;jk��k)lc(Fk) Xjk��k

Fk

! == q�(�j;jk��j)lc(Fj) X��jk

Xjk��j

Fj � q�(�k;jk��k)lc(Fk) X��jk

Xjk��k

Fk == q�(�j;jk��j)lc(Fj) q(jk��j;��jk)X���j

Fj� q�(�k;jk��k)lc(Fk) q(jk��k;��jk)X���k

Fk == q�(�j;jk��j)+(jk��j;��jk)lc(Fj) X���j

Fj � q�(�k;jk��k)+(jk��k;��jk)lc(Fk) X���k

Fk == q�(�j;jk��j)+(jk��j;��jk)X�j
Fjlc(Fj) � q�(�k;jk��k)+(jk��k;��jk)X�k

Fklc(Fk) == q�(�j;jk��j)+(jk��j;��jk)+(�j;�j)Hj�q�(�k;jk��k)+(jk��k;��jk)+(�j;�j)Hk == q(jk;��jk)(Hj �Hk):
Then we have:

q�(jk;��jk)X��jk

S(Fj;Fk) = Hj �Hk:
Now since

P
i ci lc(Fi)q(�i;�i) = 0 as exp(PCiX

�i
Fi � �, we have:X

i

ciX
�i

Fi =
c1 lc(F1)q(�1;�1)q�(12;��12)X��12

S(F1;F2)++(c1 lc(F1)q(�1;�1) + c2 lc(F2)q(�2;�2))q�(23;��23)X��23

S(F2;F3) + � � �� � �+ (c1 lc(F1)q(�1;�1) + � � �+ ct�1 lc(Ft�1)q(�t�1;�t�1))
q�(t�1;t ;��t�1;t)X��t�1;t

S(Ft�1;Ft):
Therefore we have the first part of the theorem. To get the second part we
take into account that every Hi is a monic polynomial with exp(Hi) = �,
so exp(Hi �Hj) < � and the result holds. �
(1.5.3) Theorem. (Buchberger)
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and G a finite system of
generators of I. Then the following statements are equivalent:

(a) G is a Groebner basis of I;[9. Quantum Groebner bases] 15
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(b) Fixed an ordering in G , for any i 6= j we have: R(S(Gi;Gj); G ) = 0.

PROOF. (a))(b). It is obvious.

(b))(a). Let 0 6= F 2 I, then F =PQiGi and we have:exp(F) � maxfexp(QiGi): i = 1; : : : ; tg:
We will see that it is possible to reach the equality. Let us call� = maxfexp(QiGi): i = 1; : : : ; tg;�i = exp(QiGi):
If exp(F) � �, we decompose F in the following way:

F =Pi QiGi ==P�i=� QiGi +P�i<� QiGi ==P�i=� lt(Qi)Gi +P�i=�(Qi � lt(Qi))Gi +P�i<� QiGi:
the two last sums are negligible; its exponent is less than �. Thereof we
can change

P�i=� lt(Qi)Gi by another expression. Using Lemma (1.5.2)
we have: X�i=� lt(Qi)Gi =X

jk

cjkX��jk

S(Gj;Gk);
with exp(X��jk

S(Gj;Gk)) � �. The remainders of the division of S(Gj;Gk)
by G1, : : : , Gt are null, so we have:

S(Gj;Gk) =X
i

QjkiGi; with Qjki 2 Kq[X1; : : : ;Xn];
and, by the division algorithm, we have:exp(QjkiGi) � exp(S(Gj;Gk)):
Therefore we find an expression of the following type:

F =X
i

Q0
iGi; with exp(Q0Gi) � �:

Repeating the process as many times as it would be necessary, we get an
expression like

F =X
i

QiGi;
16 [Notas de trabajo]
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where exp(F) = maxfexp(QiGi): i = 1; : : : ; tg, so exp(F) = exp(QiGi) for
some index i, i. e.:exp(F) = exp(QiGi) = exp(Qi) + exp(Gi) 2 Nn + fexp(G1); : : : ; exp(Gtg:
and G is a Groebner basis. �
We are now looking for a method to compute a Groebner basis of any non
zero left ideal I of Kq[X1; : : : ;Xn].
(1.5.4) Theorem. (Buchberger algorithm.)
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and let fG1; : : : ;Gtg be a
system of generators. It is possible to build a Groebner basis of I if we
follow the following steps:

(1) First we define G 0 = fG1; : : : ;Gtg;

(2) Second we define G n+1 = G n [ fR(S(F ;G); G n) 6= 0: F ;G 2 G ng for
any n 2 N .

Then there exists an index i such that G i = G i+1 and we have that G i is a
Groebner basis of I.

PROOF. Let G 0 = fG1; : : : ;Gtg, if R(S(F ;G); G 0) = 0 for any pair F ;G 2G 0 , then we have a Groebner basis. In the contrary, there exist F , G 2G 0 such that R(S(F ;G); G 0) 6= 0. If we call Gt+1 = R(S(F ;G); G ), thenN (Gt+1) � �. If we define:G (1) = fG1; : : : ;Gt ;Gt+1g;
then we get a partition �1; : : : ;�t ;�t+1;�(1);
where �t+1 [ �(1) = �. Hence if R(F ; G 0) = 0, for F 2 Kq[X1; : : : ;Xn],
then R(F ; G (1)) = 0. If R(S(Gi;Gj); G 0) = 0 we also have R(S(Gi;Gj); G (1)) =
0.

If for any F , G 2 G (1) we have R(S(F ;G); G (1)) = 0, then we have a Groeb-
ner basis. In the contrary there exists a new Gt+2 = R(S(F ;G); G (1)) 6= 0.

We define G (2) = fG1; : : : ;Gt+1;Gt+2g and haveN (Gt+2) � �(1).[9. Quantum Groebner bases] 17
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If in some step we obtain a Groebner basis, the process finishes. In the
contrary we obtain an infinite strictly ascending chain of systems of gen-
erators: G 0 � G (1) � � � �
Associated with this chain we have an strictly ascending chain of monoideals:Nn + exp(G 0) � Nn + exp(G (1)) � � � �
As a consequence of Dickson’s lemma this chain must stabilize. So there
exists an index n such thatexp(G (n)) + Nn = exp(G (n+1)) + Nn ;
and we have: exp(Gt+n+1) 2 exp(G (n)) + Nn = Nn n�(n);
but exp(Gt+n+1) 2 �(n), which is a contradiction. �
In the above process we obtain a system of generators of I which is a
Groebner basis, and perhaps it has too many polynomials. Now we are
going to optimize the process to obtain a Groebner basis. Following The-
orem (1.4.7), it is possible to get a reduced Groebner basis.

1.6. Application of Groebner bases.

(1.6.1) Remark. (Membership problem.)
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and let fF1; : : : ;Frg be a
system of generators of I; given F 2 Kq[X1; : : : ;Xn], the problem is to
determine if F 2 I.

To solve this problem we compute a Groebner basis G = fG1; : : : ;Gtg of
I; then we have F 2 I if and only if R(F ; G ) = 0.

It is possible to obtain an expression of F as a K –linear combination of
the original generators F1, : : : , Fr of I. To do that we only need to take
into account that, by the division algorithm, there exists an expression

F = Q1G1 + � � �+ QtGt ;
where the polynomials Gi are s–polynomials obtained from the polyno-
mials Fj, so the desired expression can be computed.

18 [Notas de trabajo]
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(1.6.2) Remark. (Equality of ideals.)
Let I1 and I2 be non zero left ideals of Kq[X1; : : : ;Xn] with systems of gen-
erators fF1; : : : ;Frg and fH1; : : : ;Hsg, respectively. The problem is to de-
termine when I1 = I2. .

To solve this problem we compute reduced Groebner bases G 1 and G 2 of
I1 and I2, respectively. By the uniqueness of reduced Groebner bases we
have I1 = I2 if and only if G 1 = G 2 .

Cofinite left ideals.

We study now cofinite left ideals, i. e., left ideals I such thatKq[X1; : : : ;Xn] =I
is finitely dimensional K –vector space.

(1.6.3) Remark. (A C –basis of the quotient.)
A method to compute a basis of Kq[X1; : : : ;Xn] =I.

Given an element F+I of Kq[X1; : : : ;Xn] =I, with respect to a given Groeb-
ner basis of I we have a representative R such that N (R) � Nn n Exp(I).
So we can write down R in the following way:

R =X� c�X�;
where � =2 Nn + fexp(G): G 2 G g = Exp(I) and c� 2 C . Hence we have
that fX� : � 2 Nn nExp(I)g is a linearly independent system of generators
of Kq[X1; : : : ;Xn] =I.

As a byproduct it is possible to determine when a left ideal is cofinite: a
left ideal I is cofinite if and only if the cardinal of Nn n Exp(I) is finite.

This result will be extended when we study the Gelfand–Kirillov dimen-
sion of a quotient Kq[X1; : : : ;Xn] =I.

As we know a non zero left ideal I is cofinite if and only if Nn n Exp(I) is
finite. We are now looking for a simpler characterization.

(1.6.4) Proposition. (Characterization of cofinite left ideals.)
Let I be a non zero left ideal of Kq[X1; : : : ;Xn] and G a reduced Groebner
basis of I. Then the following statements are equivalent:

(a) I is cofinite;[9. Quantum Groebner bases] 19
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(b) For any indeterminate Xi there exists Gj 2 G and �i 2 N such thatlt(Gj) = X

�i
i .

PROOF. (a))(b). Since I is cofinite, given Xi there exists �i 2 N such
that X

�i
i is the leader term of a polynomial in I. Hence (0; : : : ; �i; : : : ; 0) 2Exp(I) = exp(G ) + Nn . Let us call �j = exp(Gj) for any Gj 2 G . There exist

j 2 f1; : : : ; tg and  2 Nn such that(0; : : : ; �i; : : : ; 0) = �j + ;
then �j

h = 0 = h if h 6= i. Therefore exp(Gj) = (0 : : : ; �i; : : : ; 0) for some�i 2 N , i. e., lm(Gj) = X m
i for some m 2 N .

(b))(a). Let us consider � 2 Nn n Exp(I). By the hypothesis, for any
Xi there exists Gj such that lt(Gj) = X

�i
i . If �i � �i, then we have an

expression of the following type:� = (0; : : : ; �i; : : : ; 0) + (�1; : : : ; �i � �i; : : : ; �n) 2 exp(Gj) + Nn � Exp(I);
which is a contradiction, so for any index i we have �i < �i . As a conse-
quence there exist finitely many elements� 2 NnnExp(I) and I is cofinite.�
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Chapter 2

Groebner bases of modules.

The theory of Groebner bases for modules may be reduced to the theory
of Groebner bases for polynomial rings, see Adams–Loustaunau [1]. Let
us introduce here some notation and results on this theory. Their proofs
are easily from similar proofs in the case of polynomial rings, hence most
of them will be omitted.

2.1. Division algorithm.

Let us represent Kq[X1; : : : ;Xn] by R, and consider M the free R–module
of rank s, i. e., M �= Rs. If fe1; : : : ; esg is a R–basis of Rs, then every element
of Rs can be uniquely written as:

sX
i=1

Riei;
where Ri 2 R for any index i = 1; : : : ; s. Given an admissible order in Nn

or equivalently a monomial order in R, every element Ri may be written
uniquely as a sum of multiples of monomials

Ri = tiX
j=1

cijMij; with exp(Mi1) � � � � � exp(Miti
); 0 6= cij 2 K

Joining both results we obtain an expression:

sX
i=1

tiX
j=1

cijMijei[9. Quantum Groebner bases] 21
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As a consequence, it is natural to consider the elements cijMijei as the
atoms of Rs, where Mij is a monomial of R and e1, : : : , es is a basis of Rs.
We call these elements terms in Rs. We call a monomial in Rs an expres-
sion X�ei, � 2 Nn . They may be parameterize by the set Nn � f1; : : : ; sg;
we will denote this set by Nn

s , their elements are represented by (�; i), be-
ing � 2 Nn and i 2 f1; : : : ; sg. If s = 1, then Nn

1 = Nn .

For any admissible order in Nn we obtain two orders in Nn
s ; they are the

lexicographical and reverse lexicographical order of the admissible order
given in Nn and the usual order in f1; : : : ; sg, and call them the associated
TOP, “term over position”, and POT, “position over term”, orders.

TOP: (�; i) � (�; j) if

�� � � or� = � and i < j

POT: (�; i) � (�; j) if

�
i < j or
i = j and � � �

The POT and TOP orders satisfies the following properties:

(1) They are total orders in Nn
s ;

(2) There exists an action of Nn over Nn
s defined by:Nn � Nn

s
�! Nn

s ; �(�; (�; i)) = (�+ �; i):
We denote �(�; (�; i)) = � + (�; i) . This action satisfies:

(a) 0 6= � 2 Nn and (�; i) 2 Nn
r implies (�; i) � (� + �; i);

(b) (�1; i1) � (�2; i2) implies (�+�1; i1) � (�+�2; i2) for any (�1; i1),(�2; i2) 2 Nn
s and � 2 Nn ;

As a consequence (0; i) � (�; i) for any i 2 f1; : : : ; rg and � 2 Nn . A
total order in Nn

s satisfying these properties is called an admissible
order in Nn

s and associate to it we have a monomial order in Rs.

An admissible order in Nn
s is lying over an admissible order in Nn if,

in addition, it satisfies:
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(c) �1 � �2 in Nn implies (�1 + �; i) � (�2 + �; i) in Nn

s for any(�; i) 2 Nn
s .

In fact we will only consider admissible orders in Nn
r lying over a fixed,

but arbitrary admissible order in Nn ; we call them only admissible orders
in Nn

r .

(2.1.1) Lemma.
For any admissible order in Nn we have that the POT and the TOP are
admissible orders in Nn

s .

There exists a maplog : fnon zero terms in Rsg ! Nn
s ; log(aX�ei) = (�; ei):

This map satisfies the following property:log((bX�)(aX�ei)) = log(bX�) + log(aX�ei)
We may define then a preorder in the set of all non zero terms

aX�ei � bX�ej if log(aX�ei) � log(bX�ej):
This preorder satisfies the following properties:

(1) It is a total preorder;

(2) ei � aX�ei for any 0 6= a 2 K , � 2 Nn and i 2 f1; : : : ; sg;

(3) aX�ei � bX�ej implies cXaX�ei � cXbX�ej for any non–zero

aX�ei, bX�ej, cX ;

(4) aX� � bX� implies aX�cXei � bX�cXej for any non–zero aX�,

bX� , cXei.

(2.1.2) Lemma.
Let x 2 Rs be a non zero element, then x may be written, in a uniquely
way, as:

x = tX
j=1

a(�j;ij)X�j

eij
; 0 6= a(�j;ij) 2 K ; j = 1; : : : ; t; (�1; i1) � � � � � (�t ; it);

where (�j; ij) 2 Nn
s .[9. Quantum Groebner bases] 23
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Then we may define for any 0 6= x 2 Rs the following elements:

(i) The Newton diagram of x is:N (x) = f(�; i) 2 Nn
s : a(�;i) 6= 0g;

(ii) If x 6= 0, the exponent of x is:exp(x) = maxf(�; i) 2 Nn
s : (�; i) 2 N (F)g;

(iii) The leader coefficient of x is: lc(x) = aexp(x);
(iv) The leader term of x is: lt(x) = aexp(x)X�ei, where exp(x) = (�; i);
(v) The leader monomial of x is: lm(x) = X�ei, where exp(x) = (�; i).

As in the polynomial case we defineN (0) = ?, lc(0) = 0 and lt(x) = 0.

(2.1.3) Proposition.
Let 0 6= x; x0 2 Rs and 0 6= F 2 R, then the following statements holds:

(1) exp(Fx) = exp(F) + exp(x);
(2) If x + x0 6= 0, then exp(x + x0) � maxfexp(x); exp(x0g;

(3) If exp(x) < exp(x0), then exp(x + x0) = exp(x0).
Given a list (�1; i1); : : : ; (�t ; it) of elements in Nn

s , we define�1 = Nn
s + (�1; i1);�2 = (Nn

s + (�2; i2)) n�1;
...�t = (Nn

s + (�t ; it)) n [i<t�i;� = Nn
s n [i�t�i:

(2.1.4) Lemma.
With the above notation, for any list (�1; i1); : : : ; (�t ; it) of elements in Nn

s

we have that �1, : : : , �t , � is a partition of Nn
s .

(2.1.5) Theorem. (Division algorithm in Rs)
Given an admissible order in Nn

s , for any list m1, : : : , mt of non zero ele-
ments in Rs we consider the list exp(m1), : : : , exp(mt) of elements in Nm

s .
then for any 0 6= m 2 Rs there exist polynomials Q1, : : : , Qt 2 R and
r 2 Rs, uniquely determined, satisfying the following statements:
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(1) m =Pt

i=1 Qimi + r;

(2) r = 0 orN (r) � �;

(3) For any index i we haveN (Qi) + exp(mi) � �i

As a consequence, if Qimi 6= 0, then exp(Qimi) � exp(m), and r 6= 0
implies exp(r) � exp(m).
The polynomials Q1, : : : , Qt are called the quotients of m with respect to
m1, : : : , mt , and r is called the remainder . We represent this remainder
by r(m; fm1; : : : ;mtg).
2.2. Groebner bases.

Let us consider in Nn
s a fixed, but arbitrary, admissible order. For any non

zero submodule N � Rs we defineExp(N) = fexp(n): 0 6= n 2 Ng:
A non–empty subset Y � Nn

s is called stable if it satisfies:Nn + Y � Y

(2.2.1) Lemma.
For any non zero submodule N of Rs the set Exp(N) is stable.

PROOF. Given n 2 N and � 2 Nn . We have X�n 2 N and exp(X�n) =exp(X�) + exp(n) = � + exp(n). Hence Exp(N) is stable. �
(2.2.2) Proposition.
For any non zero submodule N of Rs there exist finitely many elements(�1; i1), : : : , (�t ; it) 2 Exp(N) such thatExp(N) = Nn + f(�1; i1); : : : ; (�t; it)g:
PROOF. We call Yi = f� 2 Nn : (�; i) 2 Exp(N)g. Since each Yi is an non
empty subset of Nn , it has a Dickson basis with respect to the usual order

in Nn . Let �i1 , : : : , �iti a Dickson basis of Yi. Then the set

Y = f(�i1 ; i); : : : ; (�iti ; i): i = 1; : : : ; sg[9. Quantum Groebner bases] 25
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is a Dickson basis with respect to either TOP or POT order induced in Nn

s

by the usual order in Nn . In particular we obtain:Exp(N) = Nn + Y : �
Let N � Rs be a non zero submodule. We call a Groebner basis of N any
non empty subset fm1; : : : ;mtg � N such that Nn+fexp(m1); : : : ; exp(mt)g =Exp(N).
(2.2.3) Lemma.
Let N � Rs be a non zero submodule, any Groebner basis of N is a system
of generator.

PROOF. Given m 2 N and G = fm1; : : : ;mtg be a Groebner basis, by the
division algorithm, we have:

m = Q1m1 + � � � ;Qtmt + r:
If r 6= 0, thenN (r) 2 � = Nn

s n [t
i=1�i = Nn

s n Exp(N). On the other hand,
since r 2 N, then exp(r) = Exp(N); which is a contradiction. �
(2.2.4) Corollary.
Any non zero submodule of Rs has a Groebner basis.

(2.2.5) Proposition.
Let N � Rs be a non zero submodule and G and G 0 Groebner bases of N,
then for any m 2 Rs we have:

r(m; G ) = r(m; G 0):
PROOF. Let 0 6= m 2 Rs, by the division algorithm we have:

m = X
mi2G Qimi + r(m; G ) = X

mj2G 0 Qjmj + r(m; G 0)
If r(m; G ) 6= r(m; G 0), then x = r(m; G ) � r(m; G 0) 2 N, hence exp(x) 2Exp(N). On the other hand, we have:exp(x) 2 N (x) � N (r(m; G )) [ N (r(m; G 0) � � = �0 = Nn

s n Exp(N);
which is a contradiction. �
We will introduce some special Groebner bases in order to prove their
uniqueness.
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(2.2.6) Lemma.
Let N � Rs be a non zero submodule and G a Groebner basis. If x 2 G
satisfies: exp(x) 2 Nn + fexp(m): x 6= m 2 G g, then G n fxg is a Groebner
basis of N.

Let N � Rs be a non zero submodule and G a Groebner basis of N, we say
that G is minimal if it satisfies:

(i) lc(m) = 1 for any m 2 G ;

(ii) exp(x) =2 Nn + fexp(m): x 6= m 2 G g for any x 2 G .

(2.2.7) Proposition.
Any non zero submodule of Rs has a minimal Groebner basis.

Let N � Rs be a non zero submodule and G a Groebner basis, we say thatG is reduced is it satisfies:

(i) lc(m) = 1 for any m 2 G ;

(ii) N (x) \ Nn + fexp(m): x 6= m 2 G g 6= ? for any x 2 G .

(2.2.8) Proposition.
Any non zero submodule of Rs has a reduced Groebner basis.

Groebner bases may be easily characterized as follows:

(2.2.9) Proposition.
Let N � Rs be a non zero submodule and G � N a finite family, then the
following statements are equivalent:

(a) G is a Groebner basis;

(b) r(m; G ) = 0 for any 0 6= m 2 N;

(c) For any m 2 N there exists an expression m = P
mi2G Qimi such

that exp(m) = maxfexp(Qimi): mi 2 G g.

Given terms X�ei and X�ej in Rs we define their minimum common mul-
tiple as X�ijei, where X is the minimum common multiple of X� and

X� in R.[9. Quantum Groebner bases] 27
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Let m, n 2 Rs, the s–polynomial or semisyzygy of m and n is defined as:

S(m;n) = q�(�;��)X���ij
1lc(m)m� q�(�;��)X���ij

1lc(n)n;
being exp(m) = (�; i) and exp(n) = (�; j).

(2.2.10) Theorem. (Buchberger theorem)
Let N � Rs be a non zero submodule and G = fm1; : : : ;mtg a finite sys-
tem of generators of N, then the following statements are equivalent:

(a) G is a Groebner basis of N;

(b) For any i 6= j we have r(S(mi;mj); G ) = 0.

(2.2.11) Theorem. (Buchberger algorithm)
Let N � Rs be a non zero submodule and fm1; : : : ;mtg a system of gen-
erators. A Groebner basis of N can be reached as follows:G 0 = fm1; : : : ;mtg;

...G n+1 = G n [ fr(S(m;n): m;n 2 G ng
Then there exists an index n such that G n = G n+1 , in this case G n is a
Groebner basis of N.

2.3. Applications.

(2.3.1) Remark. (Membership problem.)
Let N � Rs be a non zero submodule and fn1; : : : ;nlg a system of gen-
erators, given m 2 Rs, the problem is to decide if m 2 N. To solve this
problem we compute a Groebner basis G = fm1; : : : ;mtg of N then we
have m 2 N if and only if r(m; G ) = 0.

In addition, since the elements mi are R–linear combination of fn1; : : : ;nlg,
it is possible to obtain an expression

m = Q1n1 + � � �+ Qlnl

in the case in which m 2 N.
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(2.3.2) Remark. (Equality of submodules.)
Let N1 and N2 be non zero submodules of Rs with systems of generatorsfn1; : : : ;nlg and fh1; : : : ;hkg respectively. The problem is to determine
when N1 = N2.

To solve this problem we compute reduced Groebner bases G 1 and G 2 of
N1 and N2 respectively. By the uniqueness of reduced Groebner bases we
have N1 = N2 if and only if G 1 = G 2 .

(2.3.3) Remark. (Cofinite submodules.)
As in the case of ideals, a K –basis of Rs=N is indexed in the set Nn

s nExp(N).
In addition, a finiteness criterion can be done: for any indeterminate Xj

and any index i there exists a m 2 N such that lm(m) = X n
j ei for some

n 2 N .

More applications.

Let us consider R = Kq[X1; : : : ;Xn] and new indeterminates Y1, : : : , Ym.
Let N � R[Y1; : : : ;Ym]t be a submodule, we are interested in an elimina-
tion theorem in order to determine a Groebner basis of N \ Rt when a
Groebner basis of N is known.

(2.3.4) Theorem.
Let G be a Groebner basis of N � R[Y1; : : : ;Ym]t with respect to a TOP
monomial order and the lexicographical order in R[Y1; : : : ;Ym], being Yj’s
bigger than Xi’s. Then G \ Rt is a Groebner basis of N \ Rt .

PROOF. We always have the inclusion G \ Rt � N \ Rt . On the other
hand, given 0 6= m 2 N \ Rt , there exists g 2 G such that lm(g) di-
vides lm(m). Since m has only indeterminates X1, : : : , Xn, then the same
holds for lm(m), the coordinate of g in which appears lm(g), and since
the monomial order is TOP, in the coordinates of g only appear indeter-
minates X1, : : : , Xn. As a consequence g 2 G \ Rt . �
As a direct application let us show how to compute a Groebner basis of
an intersection of submodules.

(2.3.5) Proposition. (Intersection of submodules.)
Let N1 and N2 be non–zero submodules of Rs with generators f1, : : : , fh

and g1, : : : , gk respectively. Let Y a new indeterminate, commuting with
R, and let us define

L = R(Yf1; : : : ;Yfh; (1� Y )g1; : : : ; (1� Y )gk) � R[Y ]s;[9. Quantum Groebner bases] 29
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then N1 \N2 = L \ Rs.

PROOF. Let m 2 N1 \N2, then m = Ym+ (1� Y )m 2 L\Rs. Conversely,
let m 2 L \ Rs, then m =Pi Yfi +Pj(1� Y )gj. If we evaluate Y in 1 then

we obtain m =Pi fi 2 N1; and evaluating in 0 then m =Pj gj 2 N2. �
(2.3.6) Remark. (Annihilator of an element.)
As a consequence, to get a Groebner basis of N1\N2 it is enough to com-
pute a Groebner basis G of L in R[Y ]s with respect to a TOP monomial
order in which Y is biggest that each Xi lexicographically. Then a Groeb-
ner basis of N1 \N2 is G \ Rs.

Another useful application involve the computation of the annihilator of
elements in Rs.

(2.3.7) Proposition.
Let N be a non–zero submodule of a Rs and 0 6= m 2 Rs, then(N : m) = fQ 2 R: Qm 2 N \ Rmg:
PROOF. Easy. �
(2.3.8) Remark.
As a consequence to compute a system of generator of (N : m) it is enough
to compute a system of generator of N \ Rm and divide each element by
m. Hence the quotients produce a system of generators of (N : m). In-
deed, let Q 2 (N : m) and x1, : : : , xl a system of generators of N \ Rm; let
xi = Him, Hi 2 R, i = 1; : : : ; l. We may write Qm =Pi Cixi =Pi CiHim,
being Ci 2 R. At least one of the coordinates of m is non–zero as m is non
zero. Hence Q =Pi CiHi as R is a domain.

2.4. Syzygy modules.

Let us consider a linear map f : Rt ! Rm. Then, fixed bases fe1; : : : ; etg
in Rt and fl1; : : : ; lmg in Rm respectively, f is determined by a matrix with
coefficients in R. Let

f (ei) = mX
j=1

aijlj; i = 1; : : : ; t
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then the matrix of f is A(f ) = 0B@a11 � � � aim

...
...

at1 � � � atm

1CA.

We call the kernel of A(f ) the syzygy module of f , and represent it bySyz(f ). Hence we have:Syz(f ) = f(bi)i 2 Rt : (bi)i(aij)ij = 0g8><>:b1a11 + � � �+ btat1 = 0
...
b1a1m + � � �+ btatm = 0

(2.1)

i.e., Syz(f ) is the set of all solutions to the system of linear equations (2.1).

The problem, we are interested, is to determine a system of generators ofSyz(f ).
First case.

Let us consider f : Rt ! R defined by

f (ei) = ciX
�i ; 0 6= ci 2 K ; �i 2 Nn ; i = 1; : : : ; t:

(2.4.1) Proposition.
For any i 6= j 2 f1; : : : ; tg we define Xij = mcmfX�i ;X�jg = Xij

, thenfq�(�i;ij��i)Xij��i

ei � fq�(�j;ij��j)Xij��j

ei: 1 � i < j � tg
is a system of generators of Syz(c1X�1 ; : : : ; ctX�t ) .

PROOF. First we prove that each element is a syzygy:

q�(�i;ij��i)Xij��i

ciX
�i � q�(�j;ij��j)Xij��j

cjX
�j = X � X = 0

To prove that it is a system of generators, let (H1; : : : ;Ht) 2 Syz(c1X�1 ; : : : ; ctX�t ),
then

H1c1X�1 + � � �+ Htctx�t = 0[9. Quantum Groebner bases] 31
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For any � 2 Nn the coefficient of X� must be zero, hence we may assume

that each Hi has the following form: Hi = c0iX�i
, being either c0i = 0 or�i + �i = �.
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Let c0i1

, : : : , c0is
the only non–zero coefficients and assume that �i1 � � � � ��is . then we have:Pt

i=1 Hiei=Pt
i=1 c0iX�i

ei=Ps
j=1 c0ij

X�ij
eij= c0i1

q�(12��i1 ;��12)X��12
X12��i1 ei1

+ � � �+c0is�1
q�(s�1s��is�1 ;��s�1s)X��s�1s

Xs�1s��is
eis�1

+ c0is
X�is

eis= c0i1
ci1

q�(12��i1 ;��12)+(�i1 ;12��i1 )X��12 q�(�i1 ;12��i1 )
ci1

X12��i1 ei1+c0i2
ci2

q�(23��i2 ;��23)+(�i2 ;23��i2 )X��23 q�(�i2 ;23��i2 )
ci2

X23��i2 ei2+ � � �+ c0is
X�is

eis= c0i1
ci1

q�(12;��12)+(�i1 ;���i1 )X��12 q�(�i1 ;12��i1 )
ci1

X12��i1 ei1+c0i2
ci2

q�(23;��23)+(�i2 ;���i2 )X��23 q�(�i2 ;23��i2 )
ci2

X23��i2 ei2
+ � � �+ c0is

X�is
eis= c0i1

ci1
q�(12;��12)+(�i1 ;���i1 )X��12�

q�(�i1 ;12��i1 )
ci1

X12��i1 ei1
+ q�(�i2 ;12��i2 )

ci2
X12��i2 ei2

�+�c0i1
ci1

q�(12;��12)+(�i1 ;���i1 )X��12 q�(�i2 ;12��i2 )
ci2

X12��i2+ c0i2
ci2

q�(23;��23)+(�i2 ;���i2 )X��23 q�(�i2 ;23��i2 )
ci2

X23��i2

�
ei2+ � � �+ c0is

X�is
eis= � � �+ �c0i1

ci1
q�(23;��23)+(�i1 ;���i1 )X��23+ c0i2

ci2
q�(23;��23)+(�i2 ;�;�i2 )x��23

�
q�(�i2 ;23��i2 )

ci2
X23��i2 ei2+ � � �+ c0is

X�is
eis= � � �+ ��c0i1

ci1
q(�i1 ;���i�1) + � � �+ c0is�1

cis�1
q(�is�1 ;���is�1 )�

q�(s�1s;��s�1s)X��s�1s q�(�is ;s�1s��is )
cis

Xs�1s��is + c0is
X���is

�
eis= � � �+ ��c0i1

ci1
q(�i1 ;���i�1) + � � �+ c0is�1

cis�1
q(�is�1 ;���is�1 )�

q�(�is ;���is ) 1
cis

X���is + c0is
X���is

�
eis= � � �+ �c0i1

ci1
q(�i1 ;���i�1) + � � �+ c0is�1

cis�1
q(�is�1 ;���is�1 ) + c0is

cisq(�is ;���is )�
q�(�is ;���is ) 1

cis
X���is

eis :[9. Quantum Groebner bases] 33
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The sum in the parenthesis is zero as

H1c1X�1 + � � �+ HtctX�t = 0

Hi1
ci1

X�i1 + � � �+ HiscisX
�is = 0

c0i1
X���i1 ci1

X�i1 + � � �+ c0is
X���is

cisX
�is = 0�

c0i1
ci1

q(�i1 ;���i1 ) + � � �+ c0is
cisq(�is ;���is )�X� = 0

and c0i1
ci1

q(�i1 ;���i1 ) + � � �+ c0is
cisq(�is ;���is ) = 0 �

Second case.

Let us consider f : Rt ! R defined by

f (ei) = Gi; 0 6= Gi 2 R; i = 1; : : : ; t;
being fG1; : : : ;Gtg a Groebner basis in R and lc(Gi) = 1 for any index i.

Let lm(Gi) = X�i
, i = 1; : : : ; t.

In this case we call Xij
the minimum common multiple of X�i

and X�j

and define the s–polynomials of Gi and Gj, i < j, as usual:

S(Gi;Gj) = q�(�i;ij��i)Xij��i

Gi � q�(�j;ij��j)Xij��j

Gj

Since fG1; : : : ;Gtg is a Groebner basis, by the division algorithm there
exists an expression of S(Gi;Gj) as follows:

S(Gi;Gj) =Pt
h=1 QijhGh; Qijh 2 Rlm(S(Gi;Gj)) = maxflm(QijhGh): 1 � h � tg � Xij

Hence we define new elements

sij = q�(�i;ij��i)Xij��i

ei � q�(�j;ij��j)Xij��j

ej � tX
h=1

Qijheh 2 Rt

It is clear that sij is a syzygy of G1, : : : , Gt as

q�(�i;ij��i)Xij��i

Gi � q�(�j;ij��j)Xij��j

Gj � tX
h=1

QijhGh = 0
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(2.4.2) Theorem.
The family fsij: 1 � i < j � tg is a system of generators of Syz(G1; : : : ;Gt).
PROOF. Let h = Pt

i=1 Hiei 2 Syz(G1; : : : ;Gt) which is not generated by
the set fsij: 1 � i < j � tg. We may take h such that

X� = maxflm(HiGi: 1 � i � tg is minimal

Let us call S = fi 2 f1; : : : ; tg: lm(HiGi) = X�g and for any i 2 f1; : : : ; tg
we define

H 0
i = �Hi if i =2 S;

Hi � lm(Hi) if i 2 S:
Let us call lm(Hi) = ciX

�i
, 0 6= ci 2 K , i 2 S. Since h is a syzygy it satisfies:X

i2S

ciX
�i

X�i = 0; �i + �i = �:
Hence X

i2S

ciX
�i

ei 2 Syz(X�i : i 2 S):
As a consequenceX

i2S

ciX
�i

ei = X
i < j

i; j 2 S

Qij

�
q�(�i;ij��i)Xij��i

ei � q�(�j;ij��j)Xij��j

ej

�
being Qij 2 R. Each coordinate in the left part is homogeneous and sat-

isfies �i + �i = �. Then we may consider each Qij homogeneous and a

K –multiple of X��ij
. Therefore we obtain:

h =Pt
i=1 =Pi2S ciX

�i
ei +Pt

i=1 H 0
i ei=P

i < j
i; j 2 S

Qij

�
q�(�i;ij��i)Xij��i

ei � q�(�j;ij��j)Xij��j
ej

�+Pt
i=1 H 0

i ei=P
i < j

i; j 2 S

Qijsij +Pt
i=1 H 0

iei +P i < j
i; j 2 S

Qij(Pt
h=1 Qijheh):[9. Quantum Groebner bases] 35
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If we define

p = tX
i=1

Piei = tX
i=1

H 0
iei + X

i < j
i; j 2 S

Qij( tX
h=1

Qijheh)
then p 2 Syz(G1; : : : ;Gt) and it is not an R–linear combination of fsij: 1 �
i < j � tg. We reach to a contradiction if we prove thatmaxflm(PiGi): 1 � i < j � tg � X�
For any l 2 f1; : : : ; tgwe have:lm(PlGl)= lm(H 0

l X�l �P
i < j

i; j 2 S

QijQijlX
�l)� maxflm(H 0

l X�l); lm(P
i < j

i; j 2 S

QijQijlX
�l)g

We have lm(H 0
l X�l) � X�l

by the definition of H 0
l . Also, by construction,

Qij is a K –multiple of X��ij
, thenlm(QijQijlX

�l) � lm(QijS(Gi;Gj)) � lm(X��ij

Xij) = X�:
As a consequence lm(PlGl) � X�, which is a contradiction with the elec-
tion of h. �
Third case.

Let us consider f : Rs ! R defined by

f (ej) = Fj; 0 6= Fj 2 R; j = 1; : : : ; s:
In this case we compute a Groebner basis for the left ideal of R gener-
ates by F1, : : : , Fs. Let fG1; : : : ;Gtg such a Groebner basis in R, we may
assume lc(Gi) = 1 for any index i.

There exist expressions

Gi =Ps
j=1 AijFj; i = 1; : : : ; t; Aij 2 R and

Fj =Pt
i=1 BjiGi; j = 1; : : : ; s; Bji 2 R:
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Now we may define matrices A = 0B@A11 � � � A1s

...
...

At1 � � � Ats

1CA and B = 0B@B11 � � � B1t
...

...
Bs1 � � � Bst

1CA
and obtain matrix identities0B@G1

...
Gt

1CA = 0B@A11 � � � A1s
...

...
At1 � � � Ats

1CA0B@F1
...

Fs

1CA and

0B@F1
...

Fs

1CA = 0B@B11 � � � B1t
...

...
Bs1 � � � Bst

1CA0B@G1
...

Gt

1CA
If we consider the linear map g: Rt ! R defined by

g(ei) = Gi; i = 1; : : : ; t;
and compute a system of generators fg1; : : : ; glg of Syz(G1; : : : ;Gtg, us-
ing the second case. To get a system of generators of Syz(F1; : : : ;Fs) we
proceed as follows:

Let h 2 Syz(G1; : : : ;Gt), if h = Pt
i=1 Hiei, we have the following matrix

equation:

0 = (H1 � � �Ht)0B@G1
...

Gt

1CA = (H1 � � �Ht)0B@A11 � � � A1s
...

...
At1 � � � Ats

1CA0B@F1
...

Fs

1CA :
Hence (H1 � � �Ht)0B@A11 � � � A1s

...
...

At1 � � � Ats

1CA is a syzygy for F1, : : : , Fs.

On the other hand, let us consider the following expression:(1s � BA)0B@F1
...

Fs

1CA = 0B@F1
...

Fs

1CA� BA

0B@F1
...

Fs

1CA = 0B@F1
...

Fs

1CA� B

0B@G1
...

Gt

1CA = 0

Hence the rows f1, : : : , fs of the matrix 1s � BA are syzygies for F1, : : : , Fs.

(2.4.3) Theorem.
With the above notation the family fg1A; : : : ; glA; f1; : : : ; fsg is a system of
generators of Syz(F1; : : : ;Fs).
PROOF. Given h 2 Syz(F1; : : : ;Fs), h =Ps

j=1 Hjej, we have

0 = (H1; : : : ;Hs)0B@F1
...

Fs

1CA = (H1; : : : ;Hs)B0B@G1
...

Gt

1CA[9. Quantum Groebner bases] 37
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Hence (H1; : : : ;Hs)B 2 Syz(G1; : : : ;Gt). As a consequence(H1; : : : ;Hs)B = (Q1; : : : ;Ql)0B@g1

...
gl

1CA
and (H1; : : : ;Hs)BA = (Q1; : : : ;Ql)0B@g1

...
gl

1CAA

Then we have:(H1; : : : ;Hs)= (H1; : : : ;Hs)� (H1; : : : ;Hs)BA + (H1; : : : ;Hs)BA= (H1; : : : ;Hs)(1s � BA)� (H1; : : : ;Hs)BA= H1; : : : ;Hs)0B@f1
...
fs

1CA+ (Q1; : : : ;Ql)0B@g1
...

gl

1CAA

and the result follows. �
Four case.

Let us consider f : Rt ! Rm defined by

f (ei) = gi; 0 6= gi 2 Rm i = 1; : : : ; t;
being fg1; : : : ; gtg a Groebner basis in Rm and lc(gi) = 1 for any index i.

Let lm(gi) = X�i
ldi

= X (�i;di), i = 1; : : : ; t, and define Xij�didj
the mini-

mum common multiple of lm(gi) and lm(gj). the s–polynomial of gi and
gj is:

S(gi; gj) = q�(�i;ij��i)Xij��i�didj
gi � q�(�j;ij��j)Xij��j�didj

gj

Since fg1; : : : ; gtg is a Groebner basis, in the division of S(gi; gj)we obtain:

S(gi; gj) =Pt
h=1 Qijhgh; Qijh 2 Rlm(S(gi; gj)) = maxflm(Qijhgh): 1 � h � tg

and define

sij = q�(�i;ij��i)Xij��i�didj
ei � q�(�j;ij��j)Xij��j�didj

ej � tX
h=1

Qijheh;
it is clear that sij 2 Syz(g1; : : : ; gt).
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(2.4.4) Proposition.
The set fq�(�i;ij��i)Xij��i�didj

edi
�q�(�j ;ij��j)Xij��j�didj

edj
: 1 � i < j �

tg is a system of generators of Syz(X (�i;di): 1 � i � t) .

PROOF. It is clear that each element is that set is a syzygy, as if di 6= dj,
then �didj

= 0, and if di = dj, then

q�(�i;ij��i)Xij��i

edi
� q�(�j;ij��j)Xij��j

edi
= Xij

edi
� Xijedi

= 0:
On the other hand, let h = (H1; : : : ;Ht) Syz(X (�i;di): 1 � i � tg. We have:

H1X�1

ldi
+ � � �+ HtX�t

ldt
= 0

We may assume that every Hi is homogeneous and it has the following

form: HiciX
�i

. Since fl1; : : : ; lmg is a R–basis, if we consider the di1
, : : : ,

dis such that ldi1
= � � � = ldis

, then we obtain a syzygy of fX�i1 ; : : : ;X�isg.

Applying the first case we have that
Ps

j=1 Hij
eij

is generated byfq�(�ij ;jh��ij )Xjh��ij
eij
� q�(�ih ;jh��ih)Xjh��ih

eih
: 1 � j < h � sg:

We may repeat the process and finally we get the result. �
As a consequence we obtain

(2.4.5) Theorem.
With the above notation we have that fsij: 1 � i < j � tg is a system of
generators of Syz(g1; : : : ; gt) .

Fifth case.

Let us consider f : Rs ! Rm defined by

f (ej) = fj; 0 6= fj 2 Rm; j = 1; : : : ; s:
In this case we compute a Groebner basis for the submodule of Rm gen-
erates by f1, : : : , fs. Let fg1; : : : ; gtg such a Groebner basis. As usual we
may assume that lm(gi) = 1 for any index i.

There exist matrices A = (Aij)ij and B = (Bji)ji with coefficient in R such
that0B@g1

...
gt

1CA = 0B@A11 � � � A1s
...

...
At1 � � � Ats

1CA0B@f1
...
fs

1CA and

0B@f1
...
fs

1CA = 0B@B11 � � � B1t
...

...
Bs1 � � � Bst

1CA0B@g1
...

gt

1CA[9. Quantum Groebner bases] 39
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Let x1, : : : , xl be a system of generators of Syz(g1; : : : ; gt), then, as in the
third case, for any index j we have that xjA is a syzygy of f1, : : : , fs. Also
the rows y1, : : : , ys of the matrix 1s � BA are sysygies.

(2.4.6) Theorem.
With the above notation the set fx1A; : : : ; xlA; y1; : : : ; ysg is a system of
generators of Syz(f1; : : : ; fs).
Groebner bases for syzygies.

(2.4.7) Proposition. (Schreyer–1980)
Let g1, : : : , gs 2 Rt and � be a monomial order in Rt . We define a new
order on monomial in Rs as follows:

X�ei � X�ej if

�lm(X�gi) � lm(X�gj) orlm(X�gi) = lm(X�gj) and j < i

Then � is a monomial order in Rs.

PROOF. It is clear that � is a total order on monomials in Rs. To prove
that it is a monomial order we proceed as follows:
(1) Given 0 6= � 2 Nn and (�; i) 2 Nn

s , then lm(X�X�gi) � lm(X�gi, hence(�; i) � (� + �; i).
(2) Given � 2 Nn and (�1; i1) � (�2; i2) 2 Nn

s , then

(2–a) If lm(X�1
gi1

) � lm(X�2
gi2

), then lm(X�X�1
gi1

) � lm(X�X�2
gi2

). There-
fore (� + �1; i1) � (� + �2; i2).
(2–b) If lm(X�1

gi1
) = lm(X�2

gi2
), then lm(X�X�1

gi1
) = lm(X�X�2

gi2
) and

i2 < i1, therefore (�+ �1; i1) � (�+ �2; i2).
(3) Given � � � 2 Nn , for any index i we have lm(X�gi) � lm(X�gi).
Therefore (�; i) � (�; i). �
The monomial order defined in the above Proposition is called the mono-
mial order induced by g1, : : : , gs in Rs.

(2.4.8) Theorem.
Let G = fg1; : : : ; gtg be a Groebner basis in Rm, then the system of gen-
erators fsij: 1 � i < j � tg of Syz(g1; : : : ; gt), defined in Theorem (2.4.5)
is a Groebner basis of Syz(g1; : : : ; gt) with respect to the monomial order
in Rt induced by g1, : : : , gt . In addition we have:lm(sij) = Xij��i

ei; 1 � i < j � t; being lm(gi) = X�i :
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PROOF. First we prove that lm(sij) = Xij��i

ei. Sincelm(Xij��i

gi) = lm(Xij��j

gj = Xij ;
and i < j, then we have Xij��j

ej � Xij��i
ei. Let X� a monomial in a

summand Qijheh, then we have:lm(X�gh) � lm(S(gi; gj)) � lm(Xij��i

gi):
Hence X�eh � Xij��i

ei.

Second we prove that in fact we obtain a Groebner basis. Let h 2 Syz(g1; : : : ; gt)
defined by h = Pt

l=1 Hlel, Hl 2 R and let lt(Hl) = c�l X�l
, then lm(h) =

X�i
ei for some index i. We define

S = fl 2 f1; : : : ; tg: lm(X�l

gl) = lm(X�i

gi)g
For any l 2 S we have l � i. We define a new element in Rt as follows:

h0 =X
l2S

clX
�l

el

Since h is a syzygy then
P

l2S clX
�l lt(gl) = 0. Hence h0 is a syzygy offlt(gl): l 2 Sg, in fact it is a syzygy of flt(g1); : : : ; lt(gt)g. We obtain that h0

is generated by the setfq�(�l;lh��l)Xlh��l

el � q�(�h;lh��h)Xlh��h

eh: l;h 2 S; l < hg
Let h0 =Plh Qlhq�(�l;lh��l)Xlh��l

el � q�(�h;lh��h)Xlh��h
eh), Qlh 2 R.

Since lm(h0) = lm(h) = X�i
ei, this term appears in the right side in the

expression of h0. We obtain this term using the leader terms of Qlh, hence
we have:

ciX
�i

ei =Ph lt(Qih)Xih��i
ei;

h 2 S; h > i; X�i = lm(lt(Qih)Xih��i)
Therefore, there exists a summand, hence an index h, such that lm(sih) =
Xih�i

ei. As a consequence lm(sih)divides lm(h), hence fsij: 1 � i < j � tg
is a Groebner basis. �[9. Quantum Groebner bases] 41
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bases in algebras of solvable type, J. Symb. Comp. 9 (1990), 1–26.[9. Quantum Groebner bases] 43



[11] S. P. Smith, Quantum groups: An introduction and Survey for ring
theorists, Non Commutative Rings, S. Montgomery, L. Small (Ed-
itors). Mathematical Sciences Research Institute Publ., 24, 1991,
pp. 131–178.

[12] V. Ufnarovski, Combinatorial and asymptotic methods af algebra, Al-
gebra VI.(Encycl. Math. Sci., vol 57), Springer–Verlag, 1995.

[13] , Introduction to noncommutative gröbner bases theory,
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