Review Article

Candida Species Detection in Potentially Malignant and Malignant Disorders of the Oral Mucosa: A Meta-analysis

Abstract

Background: Candida species, mainly Candida albicans, have been related to dysplastic changes and malignant transformation of different oral mucosal lesions. Objective: The objective was to assess the possible influence of *Candida* detection in oral leukoplakia (OL), oral lichen planus (OLP), and oral cancerous lesions. Search Methods: A PubMed search through February 2018, using the following MESH terms, was performed: "Candida," "precancerous conditions," "mouth," and "mouth neoplasms." Selection Criteria: The selection criteria included studies with findings on Candida detection in premalignant and malignant oral lesions. Data Collection and Analysis: For continuous outcomes, the estimates of effects of an intervention were expressed as mean differences using the inverse variance method and for dichotomous outcomes, the estimates of effects of an intervention were expressed as odds ratios using Haenszel-Mantel method, both with 95% confidence intervals. Results: Fifteen studies on Candida detection in premalignant and malignant oral lesions were included in this meta-analysis. Nearly 61.5% of oral cancers, 32.2% of OLs, and 29.1% of OLP lesions were infected by Candida species. Candida infection does not increase the risk for developing OL (P = 0.32) or OLP (P = 0.31). A higher mean age, male gender, tobacco consumption, and location of the lesions on tongue or floor of the mouth were factors that did not have a significant influence on developing Candida-infected OL. Dysplastic OLs were 10.62 times more likely to be Candida-infected lesions. A greater number of OL lesions infected by Candida species than OLP lesions were found (P < 0.01). Having oral cancer increased 4.92-fold risk of Candida infection. No statistically significant association between Candida-infected oral cancer lesions and Candida-infected OL lesions was observed (P = 0.21). Conclusions: Candida infection worsens the biological behavior of potentially malignant and malignant lesions of the oral cavity.

Keywords: Candida, mouth neoplasms, oral leukoplakia, oral lichen planus

Introduction

Although the possible association of *Candida* species with oral precancer and cancer has been widely studied, the real role of these fungi in developing these lesions has not yet been established.^[1]

In the case of oral leukoplakia (OL), there is some controversy over whether *Candida* species are actually involved in its development and/or malignant transformation or they are just a coincident finding in OLs. However, *Candida*-infected OLs have a malignant transformation risk between 9% and 40%, while in noninfected OLs, this risk is lower (2%–6%).^[2]

The joint action of several factors such as tobacco consumption for breakdown of epithelial integrity causes the activation of certain biotypes of *Candida* with a great capacity to produce nitrosamines, such N-nitrosobenzylmethylamine, which as can induce dysplastic changes in the oral epithelium and a greater likelihood of malignant transformation. Candida species are also capable of producing other substances that can contribute to oral carcinogenesis process such as acetaldehyde, proteinases, certain or pro-inflammatory mediators.^[3]

According to the evidence available, *Candida* species, especially *Candida albicans*, might have an indirect etiological role in oral cancer always coupled with other etiological factors. The ability of *Candida* species to directly produce a carcinoma without the participation of other etiological factors is currently unrealistic.^[4] The purpose of this study was to assess the role of *Candida* species

How to cite this article: Rodriguez-Archilla A, Alcaide-Salamanca MJ. *Candida* species detection in potentially malignant and malignant disorders of the oral mucosa: A meta-analysis. J Dent Res Rev 2018;5:35-41.

Alberto Rodriguez-Archilla, Maria J. Alcaide-Salamanca

Department of Oral Medicine. Faculty of Dentistry, University of Granada, Granada, Spain

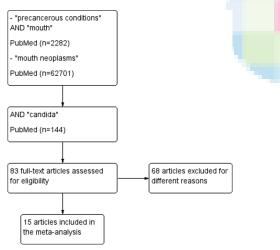
Address for correspondence: Prof. Alberto Rodriguez-Archilla, Faculty of Dentistry, Colegio Maximo, s/n. Campus De Cartuja, 18071-Granada, Spain. E-mail: alberodr@ugr.es

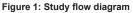
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

detection in the biological behavior of the potentially malignant and malignant disorders of the oral mucosa.

Methods


A PubMed search of studies on *Candida* species detection related to premalignant and malignant oral lesions to February 2018 was conducted. Search strategies included the combination of the following terms from the Medical Subject Headings (MeSH): "*Candida*"(MeSH terms) AND ("precancerous conditions"[MeSH Terms] AND "mouth"[MeSH Terms]) OR "mouth neoplasms"[MeSH Terms]).


The inclusion criteria were all types of studies with results, except clinical cases; studies performed in populations not affected by certain systemic diseases or conditions (HIV infection, blood dyscrasias, diabetes, etc.); and studies with full-text availability. Exclusion criteria were studies with irrelevant or no usable data and studies with important biases.

After applying the inclusion and exclusion criteria, a total of 15 studies were included in this meta-analysis [Figure 1].

Statistical analysis

For the meta-analysis, the data were processed with the statistical software RevMan 5.3 (The Cochrane

Collaboration, Oxford, UK). For the continuous variables, the inverse of the variance was used for the mean difference (MD) with 95% confidence intervals (CI). For the dichotomous variables, the odds ratio (OR) was used with the Haenszel–Mantel Chi-square formula with 95% CI. Heterogeneity was determined according to the P values and the Higgins statistic (I²). In cases of high heterogeneity, the random effects model was applied. The significance level was set at P < 0.05.

Results

Table 1 summarizes the descriptive characteristics of the 15 included studies in the meta-analysis.

Nine studies^[6,9-15,19] assessed *Candida* species detection in OL lesions. *Candida* species were found in 347 (32.2%) out of 1078 OLs.

Three studies^[14,15,6] analyzed *Candida* species detection in patients with OL and in controls without this lesion [Figure 2]. *Candida* infection does not increase the risk for developing OL, without statistically significant association (OR: 8.20 [95% CI: 0.13, 531.81], P = 0.32).

The possible influence of other factors related to *Candida*-infected OLs was also considered [Table 2]. A higher mean age, male gender, tobacco consumption, and location of the lesions on tongue or floor of the mouth were factors that did not have a significant influence on developing *Candida*-infected OLs. In contrast, *Candida*-infected OLs were 10.62 times more likely to be dysplastic lesions, with statistically significant differences (P < 0.001).

Six studies^[6-8,11,12,14] investigated *Candida* species detection in oral lichen planus (OLP) lesions. *Candida* species were found in 127 (29.1%) out of 437 OLP patients.

Four studies^[6-8,10] assessed *Candida* species detection both in patients with OLP and a control group without these lesions [Figure 3]. *Candida* detection was greater in patients with OLP, although no statistically significant association was found (OR: 1.79 [95% CI: 0.58, 5.55], P = 0.31).

Another four studies^[6,10-12] evaluated *Candida* detection in patients with OLP compared to patients with OL [Figure 4].

	Oral leukop	lakia	Controls			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Artico 2014	7	28	14	32	35.4%	0.43 [0.14, 1.29]	
Sarkar 2014	18	40	1	21	33.3%	16.36 [2.00, 134.00]	_ →
Spolidorio 2003	149	391	0	90	31.3%	111.59 [6.87, 1811.13]	*
Total (95% CI)		459		143	100.0%	8.20 [0.13, 531.81]	
Total events	174		15				
Heterogeneity: Tau ² =	= 12.46; Chi ² =	28.09,	df = 2 (P	< 0.000	001); I ² = 9	33%	0.01 0.1 1 10 100
Test for overall effect	Z = 0.99 (P =	0.32)					0.01 0.1 1 10 100 Controls Oral leukoplakia

Figure 2: Study data and forest plot graph for Candida detection in oral leukoplakia patients and controls without this lesion

Author	Year	Country	Study design	characteristics of in Study populations	Procedures	Remarks	
	xva1	Jound y	Study utsign	or samples	- 100044103		
Nagy <i>et al</i> . ^[5]	1998	Hungary	Case-control	21 OSCC	Evaluation of the	38.1% of OSCC and 0%	
			study	21 controls	biofilm flora of the tumor surface and of the healthy mucosa	of controls samples were infected by C. <i>albicans</i>	
Spolidorio <i>et al</i> . ^[6]	2003	Brazil	Case-control	391 OL	PAS staining of the	41.4% of Candida-infecte	
			study	54 OLP	biopsy samples	lesions showed severe	
				109 OSCC		dysplasia	
				90 controls			
Zeng et al. ^[7]	2009	China	Case-control	300 OLP	Candida albicans	44.3% of erosive forms	
			study	128 controls	carriage from oral isolates	of OLP were <i>C. albicans</i> positive	
Masaki <i>et al</i> . ^[8]	2011	Japan	Case-control	15 OLP	Different Candida	OLP lesions more infecte	
			study	7 controls	species carriage from oral isolates	by <i>Candida</i> species, mainly non-C. <i>albicans</i> species	
Rehani et al. ^[9]	2011	India	Case-control	10 OL	Isolation of	More isolation of C.	
			study	10 OSCC	<i>Candida</i> species	<i>albicans</i> in OL patients an	
				10 nonsmoker	through a culture on Sabouraud's	OSCC patients	
				controls	dextrose agar of oral	No significant difference between smokers and	
				10 smoker controls	swabs and saliva samples	nonsmokers	
Abdulrahim <i>et al</i> . ^[10]	2013	Ireland	Case-control	78 OL	Identification of	76.9% of OL showed	
			study	110 controls	<i>Candida</i> species from oral rinse and oral swab samples using	moderate-to-severe dysplasia	
					CHROMagar medium test		
Gall et al.[11]	2013	Italy	Cross-sectional	32 OL	PAS and GMS	Non- C. albicans species	
			study	22 OLP	staining of the biopsy	detected in 6.2% of OL,	
				48 OSCC	samples Identification of	4.5% of OLP, and 20.8% of OSCC samples	
					Candida species	P***	
					using API 20 C AUX system		
Hebbar <i>et al.</i> ^[12]	2013	India	Cross-sectional	23 OL	Oral swabs cultured	Correlation	
			study	8 OLP	on a medium not	between higher Candida	
				10 OSCC	specified	colonization and increasin	
					PAS staining of the biopsy samples	severity of dysplasia	
Wu <i>et al</i> . ^[13]	2013	China	Cross-sectional study	396 OL	PAS staining of the biopsy samples	15.9% of OL infected by <i>Candida</i> species	
Artico <i>et al</i> . ^[14]	2014	Brazil	Case-control	21 OL	Identification of	Higher colonization by	
			study	38 OLP	Candida species from	Candida species in contro	
				32 controls	oral swabs using CHROMagar medium test	compared to other two groups	
Sarkar and	2014	India	Case-control	40 OL	Oral swabs for	No significant	
Rathod ^[15]			study	21 controls	stained smears and for	difference was found	
					culture on SDA with chloramphenicol	between nondysplastic and dysplastic lesions according to <i>Candida</i> detection	

				able 1: Contd		
Author	Year	Country	Study design	Study populations or samples	Procedures	Remarks
Alnuaimi et al.[16]	2015	Australia	Cross-sectional	104 nonoral cancer	Oral swabs for	Noncancer patients'
			study	52 oral cancer	culture on SDA with chloramphenicol	characteristics not described
					Identification of <i>Candida</i> species from oral swabs using CHROMagar medium test	
Alnuaimi <i>et al</i> . ^[17]	2016	Australia	Cross-sectional	51 nonoral cancer	Identification of	Candida were more detected
			study	39 oral cancer		in oral cancer patients than nonoral cancer ones
					Ethanol-derived acetaldehyde production assay	
De Sousa et al. ^[18]	2016	Brazil	Case-control	59 OGC	Oral swabs for culture	Candida species from OGC
			study	32 controls	on SDA	patients showed better
					identification of Candida species from oral swabs using CHROMagar medium test	adherence to mucosal surfaces than did the control group
Dilhari et al. ^[19]	2016	Sri Lanka	Cross-sectional	80 OL	Oral swabs for	Patients with tobacco
	2010	511 Lanka	study		culture on SDA with chloramphenicol	consumption (smoking, betel-quid chewing) had more Candida-infected OL lesions

OL: Oral leukoplakia, OLP: Oral lichen planus, OSCC: Oral squamous cell carcinoma, OGC: Orogastric cáncer, C. *albicans: Candida albicans*, PAS: Periodic acid-Schiff, GMS: Grocott's methenamine silver, SDA: Sabouraud's dextrose agar, API: API 20 C, AUX: Yeast identification system

Factor	n	Reference value	MD/OR	95% CI	I ² (%)	P
	"				1 (70)	1
Mean age ^[10,19,13]	3	Higher in Candida-infected OLs patients	MD: 3.50	-1.06-8.06	61	0.13
Gender ^[10,19,13]	3	Male	OR: 1.41	0.79-2.53	31	0.25
Tobacco consumption ^[10,19]	2	Yes	OR: 1.92	0.70-5.30	48	0.21
Lesion location ^[10,13]	2	Lesion location different to tongue or floor of the mouth	OR: 0.79	0.27-2.35	65	0.67
Epithelial dysplasia ^[10,15,13]	3	Dysplastic lesions	OR: 10.62	1.98-56.82	84	< 0.001*

*Statistically significant. *n*: Number of studies, MD: Mean difference, OR: Odds ratio, 95% CI: 95% confidence interval, I²: Higgins statistic for heterogeneity

There was a greater number of OL lesions infected by *Candida* than OLP lesions with statistically significant differences (OR: 2.22 [95% CI: 1.35, 3.66], P < 0.01).

Five studies^[5,6,16-18] considered *Candida* species detection in oral squamous cell carcinoma (OSCC) lesions. *Candida* species were found in 182 (61.5%) out of 299 OSCC patients. These same five studies^[5,6,16-18] analyzed *Candida* detection in patients with OSCC and in a control group [Figure 5]. *Candida* infection was 4.92-fold more frequent in OSCC patients in comparison with controls. Statistical analysis showed highly significant differences (OR: 4.92 [95% CI: 1.98, 12.26], P < 0.001). Finally, three studies^[11,12,6] assessed the detection of *Candida* species in OSCC patients compared to OL patients. Although a higher percentage of positive *Candida* cases was found in patients with oral cancer, no statistically significant association was observed (OR: 1.28 [95% CI: 0.87, 1.88], P = 0.21).

Discussion

In the present meta-analysis on the role of *Candida* species detection in potentially malignant and malignant disorders of the oral mucosa, data from 14 studies have been included.

	Oral lichen pl	anus	Contro	ols		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	I M-H, Random, 95% CI
Artico 2014	11	38	14	32	31.5%	0.52 [0.19, 1.41]]
Masaki 2011	8	15	2	7	18.8%	2.86 [0.42, 19.65]]
Spolidorio 2003	9	54	0	90	11.3%	37.79 [2.15, 663.89]	
Zeng 2009	86	300	26	128	38.3%	1.58 [0.96, 2.59]	」
Total (95% CI)		407		257	100.0%	1.79 [0.58, 5.55]	
Total events	114		42				
Heterogeneity: Tau ² =	0.81; Chi ² = 9.9	97, df = 3	3 (P = 0.0	2); l² =	70%		
Test for overall effect:	Z = 1.00 (P = 0.	31)					0.01 0.1 1 10 100 Controls Oral lichen planus

Figure 3: Study data and forest plot graph for Candida detection in oral lichen planus patients and controls without this lesion

	Oral leukop	ral leukoplakia 🛛 Oral lichen planus			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Artico 2014	7	28	11	38	31.2%	0.82 [0.27, 2.47]	
Galle 2013	22	32	10	22	16.5%	2.64 [0.86, 8.12]	
Hebbar 2013	13	23	3	8	8.6%	2.17 [0.42, 11.30]	
Spolidorio 2003	149	391	9	54	43.6%	3.08 [1.46, 6.48]	
Total (95% CI)		474		122	100.0%	2.22 [1.35, 3.66]	◆
Total events	191		33				
Heterogeneity: Chi ² =	3.96, df = 3 (P = 0.27		0.01 0.1 1 10 100			
Test for overall effect	Z= 3.14 (P=	0.002)					Oral lichen planus Oral leukoplakia

Figure 4: Study data and forest plot graph for Candida detection in oral leukoplakia patients compared to oral lichen planus patients

	OSCC pat	ients	Contro	ols		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Alnuaimi 2015	36	52	44	104	29.3%	3.07 [1.51, 6.21]	
Alnuaimi 2016	39	52	51	104	28.9%	3.12 [1.49, 6.51]	
de Souza 2016	50	62	20	34	26.0%	2.92 [1.15, 7.39]	
Nagy 1998	8	21	0	21	7.6%	27.07 [1.44, 508.17]	
Spolidorio 2003	49	109	0	90	8.2%	148.09 [8.96, 2446.83]	`
Total (95% CI)		296		353	100.0%	4.92 [1.98, 12.26]	-
Total events	182		115				
Heterogeneity: Tau ² =	0.61; Chi ² :	= 12.36,	0.01 0.1 1 10 100				
Test for overall effect:	Z = 3.43 (P	= 0.000	0.01 0.1 1 10 100 Controls OSCC patients				

Figure 5: Study data and forest plot graph for Candida detection in oral squamous cell carcinoma patients and controls without oral cancer

Comparing *Candida* species detection both in patients with OL and controls, no statistically significant differences were observed. In two studies,^[6,15] significantly higher percentages of patients with OL and positive *Candida* cultures than controls without this lesion were found.

However, one of these studies^[15] had twice as many patients with OL than controls, whereas in the other one,^[6] the population distribution by gender was very unequal. These imbalances in the populations studied have been able to affect the results. In contrast, Artico *et al.*^[14] observed a higher prevalence of positive *Candida* cultures in the control group compared to OL patients. In this study, the characteristics of the two population groups were very similar and homogeneous. The presence of oral lesions did not increase the susceptibility to infection by *Candida* species.^[14]

In an attempt to establish the possible influence of Candida infection on the biological behavior of OLs, several factors such as age, gender, tobacco consumption. and the location of the lesion or the presence of epithelial dysplasia were investigated. None of them had significant influence except epithelial dysplasia that is quite more frequent in Candida-infected oral leukoplakias. Three studies^[10,15,13] are consistent with our results, indicating that Candida infection is closely related to dysplastic leukoplakias that also present a high risk of malignant transformation. Candida invasion may lead to epithelial dysplasia in OL. When it infects a lesion, Candida releases substances, enzymes, and cytokines that may induce keratinolysis and increase chorionic inflammation, altering both the epithelial cells and the epithelial architecture, producing the dysplastic changes. It would be interesting to know if the resolution of Candida

infection might reverse these dysplastic changes in a long-term follow-up of the lesions. $\ensuremath{^{[20]}}$

Although in our study, there was a greater number of patients with OLP than controls with positive Candida culture, the results did not reach statistical significance. In fact, three studies^[6-8] were in agreement with our results, while, Artico et al.[14] isolated Candida species in 56% of controls without oral lesions, in 29% of patients with OLP, and in 25% of patients with other oral lesions. There was a statistically significant association between positive Candida culture in patients without oral lesions compared to the OLP group (P = 0.03) and individuals with other oral lesions (P = 0.02). However, few studies have assessed the prevalence of oral colonization by Candida species in healthy controls and patients with oral lesions (mainly OL and OLP) which have proven that the presence of oral lesions by themselves does not rise the predisposition to colonization by Candida species.^[7]

The possible role of *Candida* infection in potentially malignant lesions of the oral mucosa such as OL and OLP was also analyzed. Among the *Candida*-infected oral lesions, there was a greater number of OL patients than OLP patients with a statistically significant relationship (P < 0.01). Three studies^[6,11,12] coincided with this result and only one^[14] does not agree because a slightly higher frequency of *Candida*-infected OLP lesions (29%) compared to *Candida*-infected OL lesions (25%) was seen, although no statistical significance was found.

Regarding OSCC and *Candida* detection, we found no statistically significant association (P = 0.15). Five studies investigated the positive or negative *Candida* species culture in OSCC patients with oral cancer. Three of them^[16-18] found significantly higher percentages of *Candida*-infected oral cancers, further evidencing that the genotypic diversity of the different *C. albicans* strains may play an important role in oral carcinogenesis.^[18] However, the other two studies^[5,6] observed a greater number of oral cancer cases not infected by *Candida* species, without evidencing the possible causal relationship between *Candida* detection and tumoral progression. New studies are required in larger populations that may establish the true implication of these fungi in oral carcinogenesis.^[6]

In this meta-analysis, *Candida* infection was 4.92 times more frequent in OSCC patients compared to healthy controls with statistically significant differences (P < 0.001). Five studies^[6,16-18,5] that considered *Candida* infection both in OSCC patients and healthy controls support this finding. Having oral cancer predisposes to infection by *Candida* species.

Finally, when relating OSCC patients with OL patients, more OSCC patients than OL patients had *Candida*-infected lesions, although without statistically significant influence. Two studies^[12,6] coincided with our results and found

more OSCC patients with *Candida*-infected lesions. In contrast, Gall *et al.*^[11] found a slightly higher prevalence of *Candida*-infected lesions among OL patients, but no statistically significant association was observed. It should be considered that in this study there was a greater number of cases of premalignant lesions than cancer lesions. Moreover, these premalignant lesions showed high degrees of epithelial dysplasia, which gives them a biological behavior very close to that of neoplastic lesions. All studies point to a relevant role of *Candida* infection in the transformation and tumoral progression in potentially malignant and malignant lesions of the oral cavity.

All findings of this meta-analysis must be interpreted with caution due to the high heterogeneity of the studies included and the presence of different bias. The differences among studies could be conditioned by the study design, the methods used to collect data, the type of analysis used, the characteristics of the study populations, and samples or the duration of the studies.

Conclusions

In this meta-analysis, 61.5% of OSCCs, 32.2% of OLs, and 29.1% of OLP were infected by *Candida* species. Dysplastic oral leukoplakias were 10.62 times more likely to be *Candida*-infected lesions, with a worse biological behavior. Oral cancer increased the risk of *Candida* infection by 4.92 folds. In contrast, OLP patients did not present a raised risk than controls for *Candida* infection.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

- Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS, *et al.* Role of oral microbiome on oral cancers, a review. Biomed Pharmacother 2016;84:552-8.
- 2. Scully C, el-Kabir M, Samaranayake LP. *Candida* and oral candidiasis: A review. Crit Rev Oral Biol Med 1994;5:125-57.
- Hettmann A, Demcsák A, Decsi G, Bach Á, Pálinkó D, Rovó L, *et al.* Infectious agents associated with head and neck carcinomas. Adv Exp Med Biol 2016;897:63-80.
- 4. Sanjaya PR, Gokul S, Gururaj Patil B, Raju R. *Candida* in oral pre-cancer and oral cancer. Med Hypotheses 2011;77:1125-8.
- Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol 1998;34:304-8.
- Spolidorio LC, Martins VR, Nogueira RD, Spolidorio DM. Frequencia de *Candida* sp. em biopsias de lesoes da mucosa bucal. Pesqui Odontol Bras 2003;17:89-93.
- 7. Zeng X, Hou X, Wang Z, Jiang L, Xiong C, Zhou M, *et al.* Carriage rate and virulence attributes of oral *Candida albicans* isolates from patients with oral lichen planus: A study in an ethnic Chinese cohort. Mycoses 2009;52:161-5.
- 8. Masaki M, Sato T, Sugawara Y, Sasano T, Takahashi N.

Detection and identification of non-*Candida albicans* species in human oral lichen planus. Microbiol Immunol 2011;55:66-70.

- Rehani S, Rao NN, Rao A, Carnelio S, Ramakrishnaiah SH, Prakash PY, *et al.* Spectrophotometric analysis of the expression of secreted aspartyl proteinases from *Candida* in leukoplakia and oral squamous cell carcinoma. J Oral Sci 2011;53:421-5.
- Abdulrahim MH, McManus BA, Flint SR, Coleman DC. Genotyping *Candida albicans* from candida leukoplakia and non-candida leukoplakia shows no enrichment of multilocus sequence typing clades but enrichment of ABC genotype C in *Candida* leukoplakia. PLoS One 2013;8:e73738.
- Gall F, Colella G, Di Onofrio V, Rossiello R, Angelillo IF, Liguori G, *et al. Candida* spp. in oral cancer and oral precancerous lesions. New Microbiol 2013;36:283-8.
- Hebbar PB, Pai A, Sujatha D. Mycological and histological associations of *Candida* in oral mucosal lesions. J Oral Sci 2013;55:157-60.
- Wu L, Feng J, Shi L, Shen X, Liu W, Zhou Z, et al. Candidal infection in oral leukoplakia: A clinicopathologic study of 396 patients from Eastern China. Ann Diagn Pathol 2013;17:37-40.
- Artico G, Freitas RS, Santos Filho AM, Benard G, Romiti R, Migliari DA, *et al.* Prevalence of *Candida* spp. xerostomia, and hyposalivation in oral lichen planus – A controlled study. Oral

Dis 2014;20:e36-41.

- Sarkar R, Rathod GP. Clinicopathologic assessment of *Candida* colonization of oral leukoplakia. Indian J Dermatol Venereol Leprol 2014;80:413-8.
- Alnuaimi AD, Wiesenfeld D, O'Brien-Simpson NM, Reynolds EC, McCullough MJ. Oral candida colonization in oral cancer patients and its relationship with traditional risk factors of oral cancer: A matched case-control study. Oral Oncol 2015;51:139-45.
- 17. Alnuaimi AD, Ramdzan AN, Wiesenfeld D, O'Brien-Simpson NM, Kolev SD, Reynolds EC, *et al. Candida* virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis 2016;22:805-14.
- de Sousa LV, Santos VL, de Souza Monteiro A, Dias-Souza MV, Marques SG, de Faria ES, *et al.* Isolation and identification of *Candida* species in patients with orogastric cancer: Susceptibility to antifungal drugs, attributes of virulence *in vitro* and immune response phenotype. BMC Infect Dis 2016;16:86.
- Dilhari A, Weerasekera MM, Siriwardhana A, Maheshika O, Gunasekara C, Karunathilaka S, *et al.* Candida infection in oral leukoplakia: An unperceived public health problem. Acta Odontol Scand 2016;74:565-9.
- Nankivell P, Williams H, Matthews P, Suortamo S, Snead D, McConkey C, *et al.* The binary oral dysplasia grading system: Validity testing and suggested improvement. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;115:87-94.

