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ABSTRACT. The main objective of this paper is to introduce the singly periodic genus
one helicoid. We will exhibit some Weierstrass representations and a uniqueness theorem
for it.
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1. INTRODUCTION AND PRELIMINARIES

One of the fundamental problems in classical theory of minimal surfaces is the exis-
tence of complete examples in the three dimensional Euclidean space. Complete minimal
surfaces of finite total curvature have some very special properties that are not shared by
general minimal surfaces. Osserman began the study of this family of surfaces. He proved
that a complete immersed minimal surface whose total curvature is finite must have finite
topology (see [9]). Therefore a such surface,

X = (X1,X2,X3) : M −→ R3 ,

is conformally equivalent to a compact Riemann surfaceM punctured in a finite number
of pointsP1, . . . , Pr :

M = M \ {P1, . . . , Pr} .

These points are called the ends ofM.

1.1. The Weierstrass representation.We denote byg : M → C = C ∪ {∞} the stere-
ographically projected Gauss map ofX and byΦ3 the holomorphic differential defined
as

Φ3 = dX3 + idX∗
3 ,

whereX∗
3 denotes the harmonic conjugate function ofX3.

In this setting, the pair(g,Φ3) is usually called the Weierstrass data of the minimal
surface, andX can be expressed up to translations as

(1) X = Re

∫ z (1

2

(
1

g
− g

)
,
i

2
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+ g

)
, 1

)
Φ3 ,
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whereRe stands for real part andz is a conformal parameter onM . The pair(g,Φ3)
satisfies certain compatibility conditions:

(A) The zeros ofΦ3 coincide with the poles and zeros ofg, and the order of a point as
zero ofΦ3 is the same than its order as zero or pole ofg;

(B) Given a closed curveγ ⊂ M , then
∫

γ

gΦ3 =

∫

γ

Φ3

g
, Re

∫

γ

Φ3 = 0 .

The condition (B) is usually called the period problem. Conversely, we can construct
minimal surfaces by the following way:

Theorem 1. Let M be a Riemann surface,g : M → C a meromorphic function andΦ3

a holomorphic 1-form onM satisfying the compatibility conditions (A) and (B). Then the
mapX : M → R3 defined as(1) is a conformal minimal immersion. Moreover, the pair
(g,Φ3) corresponds with the Weierstrass data ofX.

1.2. Periodic minimal surfaces. A classical example of minimal surface is the helicoid
(Figure 1), which was discovered in 1776 by Meusnier. Its Weierstrass representation is
given by

M = C∗ , g = z , Φ3 =
i

z
dz .

The helicoid is connected and invariant under a vertical translation. We say that a minimal
surface is periodic if it is connected and invariant under a group of isometries that acts
freely onR3.

FIGURE 1. The helicoid

An end of a complete surface of finite topology is necessarily annular. That is, it is
homeomorphic to a punctured disk. On the other hand, an annular end of a properly
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embedded periodic minimal surface of finite topology has to be asymptotic to an end of
a helicoid, to a flat annulus or to a plane (see [3], [7]). We shall say that the end is a
helicoidal end, a Scherk end, or a planar end, respectively.

2. THE SINGLY PERIODIC GENUS ONE HELICOID

In the last few years, one of the most active focus in the study of minimal surfaces has
been the genus one helicoid. The existence of such a surface was proved by Hoffman,
Karcher and Wei in [4], and it was the first example of an embedded minimal surface with
infinite total curvature and finite topology.

One important step in the discovery of the genus one helicoid was the construction by
Hoffman, Karcher and Wei of the singly periodic genus one helicoid (see [5]), which will
be represented asH1.

2.1. Geometric description. H1 is a complete embedded singly periodic minimal sur-
face which is invariant under a vertical translation so that the quotient has genus one and
two ends. Moreover,H1 contains a vertical line, its ends in the quotient by the vertical
translation are helicoidal ends, and the quotient has two parallel horizontal lines that are
different in half of the period and each meeting the vertical line in a single point. You can
see three fundamental pieces ofH1 and their lines in Figure 2.

As a consequence of the existence of such lines, the Schwarz Reflection Principle guar-
antees that the nontrivial symmetries of the surface, modulo vertical translations, consist
of:

• 180o rotation about the vertical line.
• 180o rotation about the horizontal lines, the symmetry does not depend on the line

because they are different in half of the period.
• The composition of the two previous ones, which is a 180o rotation about a line

orthogonal to all the lines on the surface and passing through their point of inter-
section.

Now, it is easy to check that the total curvature of the quotient surface isC = −8π. In
fact, since the surface is a torus punctured twice, its Euler characteristic isχ = −2 and
since both ends are helicoidal ends we obtain that its total winding number isW = 2.
Therefore, taking into account thatC = −2π(W − χ) we conclude thatC = −8π.

2.2. Determination of the Weierstrass data. Hoffman, Karcher and Wei proved in [5,
Theorem 1] that this geometric description leads to an explicit two-parameter family of
Weierstrass data:

Theorem 2. Any surface satisfying the previous geometric description is representable
with Weierstrass data of the form

(2) g(x, y) =
y − r

√
i

y + r
√

i
, Φ3(x, y) =

x − iλ

x− i
λ

√
i

x2 − 1 + 2ix cos θ

dx

y
,
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FIGURE 2. H1 and its lines

on the rombic torus

T =

{
(x, y) ∈ C2 ∣∣ y2 =

−2x sin θ

x2 − 1 + 2ix cos θ

}
,

punctured at the two points verifyingx = i/λ, wherer is given by

(3) λ +
1

λ
= −2 cos θ +

2 sin θ

r2
,

with λ ∈ (0, 1) andθ ∈ (0, π).

They also proved (see [5, Theorem 2]) that there existλ ∈ (0, 1) andθ ∈ (0, π) such
that the Weierstrass data (2) satisfy the period problem. By this way, they obtained the
existence of the singly periodic genus one helicoid.

2.3. A first approach to the uniqueness ofH1. In order to give a uniqueness result for
H1, Ferrer and Mart´ın have obtained the following result (see [2, Remark 4]):
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Theorem 3. Any complete, periodic, minimal surface containing a vertical line, whose
quotient by vertical translations has genus one, contains two parallel horizontal lines,
has two helicoidal ends and total curvature−8π isH1.

The contribution of Ferrer and Mart´ın consists of giving another approach to the proof
of the uniqueness of the period problem, they proved that there is only one pair of this
parameter that solves the period problem. In order to do it, they show an alternative
Weierstrass representation forH1. They proved that there existb ∈]0, 1[ andρ ∈]0, π[
such thatH1 is representable by the data

(4) g̃(u, v) =
u + b2

b2u + 1
, Φ̃3(u, v) =

1

2u

v − c1i

v + c1i

du

v
,

on the torus

T̃ =

{
(u, v) ∈ C2 ∣∣ v2 = u +

1

u
− 2 cos ρ

}

punctured at the two points withv = −ic1, where

c1 =
1

b

√
b4 + 1 + 2b2 cos ρ .

2.4. One more step on the uniqueness ofH1. After this, we have proved the following
uniqueness theorem forH1 that improves the aforementioned one (see [1, Theorem 2]).
The improvement consists of removing one symmetry:

Theorem 4. Any properly embedded, singly periodic minimal surface that is symmetric
respect to a vertical line, whose quotient by a vertical translation has genus one, two
helicoidal ends and total curvature−8π isH1.

In this work, we use another Weierstrass representation forH1. We consider suitables
a ∈ (0, 1), η ∈ (0, 2π) and we have the Weierstrass data

(5) ĝ(α, β) = α , Φ̂3(α, β) =
β +

√
a

β −
√

a

i

(α − eiη)(α − e−iη)

dα

β
,

on the torus

T̂ =

{
(α, β) ∈ C2 ∣∣ β2 =

(α − a)(aα − 1)

(α − eiη)(α − e−iη)

}

punctured at the two points satisfyingβ =
√

a.

3. APPENDIX

In this section we will show that all the Weierstrass representations exhibited along this
paper are equivalent.

Proposition 1. The Weierstrass representations given by tha data (4) on the torusT̃ and
by (5) onT̂ are aquivalent.
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Proof. Takea = b2 andη ∈ (0, 2π) such that

eiη =
eiρ + b2

b2eiρ + 1
.

Now, the mapF : T̂ → T̃ defined as

F(α, β) =

(
b2 − α

b2α − 1
,
−ibc1

β

)
,

is a conformal biholomorphism which identifies the Weierstrass data (4) with (5), up to
multiplying Φ̂3 by a real constant. Therefore, taking into account (1) we conclude the
proof of the proposition. �

Proposition 2. The Weierstrass representations given by the data (2) on the torusT and
by (4) onT̃ are aquivalent.

Proof. Chooseθ = ρ and consider the torus

T =

{
w2 = (z − 1)(z + 1)

(
z − i

sin ρ

1 + cos ρ

)(
z + i

sin ρ

1 + cos ρ

)}
,

and the mapF1 : T → T given by

F1(z,w) =

(
i(1 + cos ρ)

(
w + z2 − cos ρ

1 + cos ρ

)
,

√
i

sin ρ

1 + cos ρ

1

z

)
.

Then,F1 is a conformal biholomorphism which gets the Weierstrass data (2) on to the
data

(6) g1(z,w) =
1 − r

√
1+cosρ

sinρ
z

1 + r
√

1+cosρ
sinρ

z
, Φ1

3(z,w) =
w + z2 − λ+cosρ

1+cos ρ

w + z2 − 1/λ+cosρ
1+cos ρ

τ 1 ,

on the torusT , whereτ 1 is a holomorphic 1-form onT .

In the same way, the mapF2 : T → T̃ defined as

F2(z,w) =

(
1 − z

1 + z
, −2i cos(ρ/2)

w

z2 − 1

)

is a conformal biholomorphism which identifies the data (4) with the Weierstrass data on
T

(7) g2(z,w) =
1 − 1−b2

1+b2
z

1 + 1−b2

1+b2
z

, Φ2
3(z,w) =

1
2

c1
cos(ρ/2)

(z2 − 1) + w
1
2

c1
cos(ρ/2)

(z2 − 1) − w
τ 2 ,
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whereτ 2 is a real multiple ofτ 1. Therefore, choosing

r =
1 − b2

1 + b2

√
sin ρ

1 + cos ρ
,

and using (3), it is a straightforward computation to check thatg1 = g2 andΦ1
3 = λ τ1

τ2 Φ
2
3.

Hence, taking into account (1) we obtain that the Weierstrass data (6) and (7) are equiva-
lent. This fact finishes the proof. �
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