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ABSTRACT. In the last forty years, interest of many geometers and analysts has concen-
trated on the global theory of complete minimal surfaces. Because there were no suf-
ficiently complicated examples for exact investigation, this new development proceeded
only slowly. However, last few years have seen an important progress on many long-
standing problems in global theory of complete minimal surfaces inR

3. One of these
has been the Calabi-Yau problem, which dates back to the 1960s. Calabi asked whether
or not it is possible for a complete minimal surface inR

3 to be contained in the ball
B = {x ∈ R

3 | ‖x‖ < 1}. Much work has been done on it over the past four decades.
The most important result in this line was obtained by N. Nadirashvili in [24] where he
constructed a complete minimal surface inB.

After Nadirashvili’s work, Calabi-Yau problem continues generating literature. Ques-
tions related with embeddedness and properness of completed bounded minimal surfaces
has been particularly interesting. In this survey we pretend to review the most important
advances in this area.
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1. INTRODUCTION

By the maximum principle for harmonic functions, there are no compact minimal sur-
faces inR

3. Moreover, a basic observation of the classical examples ofcomplete nonflat
minimal surfaces (catenoid, helicoid, Riemann minimal examples, ...) reveals that one
cannot bound any coordinate function for these surfaces. Even more, none of these exam-
ples is contained in a halfspace. These facts motivated E. Calabi to conjecture in 1965,
the following:

Conjecture 1 (Calabi). There are no complete bounded minimal surfaces inR3.

Conjecture 2 (Calabi). A complete nonflat minimal surface inR3 has an unbounded
projection in every straight line. In particular it cannot be contained in a halfspace.

Both conjectures turned out to be false. The first example of acomplete minimal sur-
face with a bounded coordinate function was a disk constructed by L. P. Jorge and F.
Xavier in 1980 [7].

Other examples of complete minimal surfaces in a slab were constructed by F. J. López
[8] and by H. Rosenberg and E. Toubiana [25]. Rosenberg and Toubiana obtained a
complete minimal cylinder in a slab, and López constructedexamples of this type, with
arbitrary genus.

On the other hand, F. F. Brito [2] developed an alternative method of construction for
this kind of surfaces, by using lacunary series. Using this method, Costa and Simoes [5]
obtained examples with higher genus.

The analytic arguments introduced by Jorge and Xavier in their construction were quite
ingenious, and have been present in almost all the papers devoted to find complete min-
imal surfaces with some kind of boundedness on their coordinates. In particular, their
idea of using a labyrinth of compact sets around the boundaryof a simply connected
domain, jointly with Runge’s theorem in order to get completeness, was afterward used
by N. Nadirashvili [24] in a more elaborated way to constructan example of a complete
minimal surface in a ball ofR3.

Theorem 1 (Nadirashvili). There exists a complete minimal immersionf : D → B from
the open unit diskD into the open unit ballB ⊂ R3. Furthermore the immersion can be
constructed with negative Gaussian curvature.
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Nadirashvili’s idea consists of constructing, in a recursive way, a sequence of minimal
disks (with boundary):

fn : D −→ BRn
,

so that:
(1) ‖fn − fn−1‖ <

1

n2 , in D1−1/n;

(2) distfn
(0, ∂D) ≈

n
∑

k=1

1

k
;

(3) Rn ≈

√

√

√

√

n
∑

k=1

1

k2

To get the immersionfn from the previous onefn−1, we deform the original immer-
sion around its boundary. The deformation acts tangentially to the sphere of radiusRn−1

in such a way that we increase the intrinsic distance in1/n. Hence, it is clear that the
new immersion is contained in a bigger ball of radiusRn =

√

R2
n−1

+ 1/n2. Property 1

gives us that the sequence{fn}n∈N is a Cauchy sequence of harmonics maps, and so it
converges{fn}n∈N → f . Property 2 easily gives the completeness of the limit immersion
f , and Property 3 trivially implies that the limit immersion is bounded.

These conjectures were revisited in Yau’s 2000 millennium lecture where Yau stated
the following questions:
(A) Are there complete embedded minimal surfaces in a ball ofR3?
(B) Are there complete proper minimal immersionsf : D → B?, where by proper we

mean thatf−1(C) is compact for anyC ⊂ B compact.
(C) How is the asymptotic behavior ?
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(D) How is the spectrum of the Laplacian operator ?

Questions (A) and (B) have been extensively studied in the last few years. As we will see
along this survey paper, both problems are intrinsically related.

2. THE CALABI -YAU PROBLEM FOR EMBEDDED MINIMAL SURFACES

Regarding the existence of complete embedded minimal surfaces in a ball, T. Colding
and W. Minicozzi [3] have proved that a complete embedded minimal surface with finite
topology inR3 must be properly embedded inR3. In particular it cannot be contained in
a ball.

Theorem 2 (Colding, Minicozzi). A complete embedded minimal surface with finite topol-
ogy inR3 must be proper (inR3.)

Very recently, Colding-Minicozzi result has been generalized in two different direc-
tions. On one hand W. H. Meeks III, J. Pérez and A. Ros [19] have proved that ifM is a
complete embedded minimal surface inR3 with finite genus and a countable number of
ends, thenM is properly embedded inR3.

Theorem 3 (Meeks, Pérez, Ros). If M is a complete embedded minimal surface inR3

with finite genus and a countable number of ends, thenM is proper.

On the other hand, Meeks and Rosenberg [21] have obtained that if a complete embed-
ded minimal surfaceM has injectivity radiusIM > 0, thenM is proper in space. This is
a consequence of a more general result that asserts

Theorem 4 (The minimal lamination closure theorem; Meeks, Rosenberg). LetM be a
complete embedded minimal surface in a Riemannian 3-manifold N , such that the injec-
tivity radius ofM is positive. Then,M has the structure of aC1,α-minimal lamination of
N .

As a consequence of the above results, it is natural to conjecture:

Conjecture 3 (Meeks). If M ⊂ R3 is a complete embedded minimal surface with finite
genus, thenM is proper.

I would like to mention that the conjecture seems to be false under the assumption of
infinite genus, as Meeks, Pérez and Traizet are working in the existence of a nontrivial
minimal lamination ofR3 with leaves which are non proper, and with infinite genus. In
particular, they would be able to construct a complete embedded minimal surface which
is contained in a half space.
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3. COMPLETE BOUNDED MINIMAL SURFACES WITH NON-TRIVIAL TOPOLOGY

In relation with Question (B), López, Martı́n and Morales have got several results in
this line. Summarizing all the information, we have:

Theorem 5 (López, Martı́n, Morales). There are examples of complete bounded minimal
surfaces with arbitrary finite topology (orientable or not.)

After Colding-Minicozzi and Meeks-Pérez-Ros theorems, the construction of a com-
plete minimal surface in a ball with infinite genus has becomerather interesting, because
if an embedded example exists, then it must have infinite genus.

4. COMPLETE PROPER MINIMAL IMMERSIONS IN BOUNDED REGIONS OFR3

The topological property of being proper has played an important role in the theory of
minimal submanifolds and a great number of classical results in the subject assume that
the submanifold is proper.

It is trivial to see that a compact submanifold is automatically proper. On the other
hand, there is no reason to expect a general immersion (or even embedding) to be proper.
However it was long thought that a minimal immersion (or embedding) should be better
behaved. This principle was captured by the Calabi-Yau problem. As we mentioned
before, the immersed version of this conjecture turned out to be false. In contrast with
Nadirashvili’s existence result, Colding and Minicozzi have proved that any complete
embedded minimal surface with finite topology is proper. From the definition of proper, it
is clear that a minimal surface properly immersed in Euclidean space must be unbounded,
so Nadirashvili’s surfaces are neither embedded nor proper. However, we can ask about
the possibility of constructing complete minimal immersionsf : M → B that were proper
in unit ball, in the sense thatf−1(K) is compact for any compactK ⊂ B.

After that, Martı́n and Morales [12] introduced an additional ingredient into Nadi-
rashvili’s machinery in order to produce a complete minimaldisk which is properly im-
mersed in a ball ofR3. An example of a complete proper minimal annulus which lies
between two parallel planes was constructed earlier by H. Rosenberg and E. Toubiana in
[25]. This example is related to the previous construction of Jorge and Xavier.

Recently, Martı́n and Morales [13] have answered the question to the existence of com-
plete simply connected minimal surfaces which are proper inconvex regions of space. To
be more precise, their main Theorem establishes that:

Theorem 6 (Martı́n, Morales). If B ⊂ R3 is a convex domain (not necessarily bounded
or smooth), then there exists a complete proper minimal immersionψ : D → B.

Convex domains are a huge and very well known family of domains in Euclidean space.
However, one can question whether the convexity hypothesisis necessary or not. A result
proved by Nadirashvili shows that convexity cannot be removed from the hypotheses of
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Theorem 6. Nadirashvili found a domain of space in which there are no complete proper
minimal immersions with finite topology. Nadirashvili havecalled it theMagic Cage.

5. THE TYPE PROBLEM AND UNIVERSAL REGIONS FOR MINIMAL SURFACES

We would also like to mention that, in some sense, Theorem 6 isrelated with an intrin-
sic question associated to the underlying complex structure: the so calledtype problem
for a minimal surfaceM , i.e. whetherM is hyperbolic or parabolic (as we have already
noticed, the elliptic (compact) case is not possible for a minimal surface). Classically, a
Riemann surface without boundary is calledhyperbolicif it carries a nonconstant posi-
tive superharmonic function, andparabolic if it is neither compact nor hyperbolic. In the
case of a Riemann surface with boundary, we say thatM is parabolic if every bounded
harmonic function onM is determined by its boundary values, otherwiseM is called
hyperbolic. It turns out that the parabolicity for Riemann surfaces without boundary is
equivalent to the recurrence of Brownian motion on such surfaces. If the boundary ofM
is nonempty, thenM is parabolicif, and only if, there exists a pointp in the interior ofM
such that the probability of a Brownian path beginning atp, of hitting the boundary∂M
is 1.

In this setting, given a connected regionW ⊂ R3 which is either open or the closure of
an open set, we say thatW isuniversal for surfacesif every complete, connected, properly
immersed minimal surfaceM ⊂ W is either recurrent (∂M = ∅) or a parabolic surface
with boundary. The open question of determining which regions of space are universal for
surfaces has been proposed by W. H. Meeks and J. Pérez in [16]. Theorem 6 implies that
a convex domain ofR3 is notuniversal for surfaces.In contrast with this result, on one
hand, Martı́n, Meeks and Nadirashvili [10] proved the existence of bounded open regions
of R

3 which do not admit complete properly immersed minimal surfaces with an annular
end. In particular, these domains do not contain a complete properly immersed minimal
surface with finite topology.

On the other hand, it is known [4] that the closure of a convex domain is universal for
surfaces. This is a consequence of the following theorem by Collin, Kusner, Meeks, and
Rosenberg:

Theorem 7 (Collin, Kusner, Meeks, Rosenberg). Let M be a connected properly im-
mersed minimal surface inR3, possibly with boundary. Then, every component of the
intersection ofM with a closed halfspace is a parabolic surface with boundary. In par-
ticular, if M has empty boundary and intersects some plane in a compact set, thenM is
recurrent.

Until recently, complete minimal surfaces of hyperbolic type played a marginal role
in the global theory of minimal surfaces. However, the following recent result by A.
Alarcón, L. Ferrer and F. Martı́n [1] suggests that complete hyperbolic minimal surfaces
in R3 are present in some of the most interesting aspects of minimal surfaces theory.
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Theorem 8 (Density theorem; Alarcón, Ferrer, Martı́n). Properly immersed, hyperbolic
minimal surfaces of finite topology are dense in the space of all properly immersed mini-
mal surfaces inR3, endowed with the topology of smooth convergence on compact sets.

As a particular case of this theorem, we can obtain the following existence result that
improves Theorem 6.

Theorem 9 (Alarcón, Ferrer, Martı́n). For any convex domainD in R
3 (not necessarily

bounded or smooth) there exists a complete proper minimal immersionψ : M → D,
whereM is an open Riemann surface with arbitrary finite topology.

One of the most interesting applications of the Density Theorem is the construction
of the first example of a complete minimal surface properly immersed inR3 with an
uncountable number of ends.

Theorem 10 (Alarcón, Ferrer, Martı́n). There exists a domainΩ ⊂ C and a complete
proper minimal immersionψ : Ω → R3 which has uncountably many ends.

6. THE ASYMPTOTIC BEHAVIOR

To finish, we would like to comment some interesting problemsrelated with the as-
ymptotic behavior of a complete proper minimal immersion. Given a complete minimal

diskM in R3, we define the limit set asL(M)
def
= M \M . If M is proper in the ball, then

it is not difficult to see thatL(M) is a closed connected subset ofS2. In general, if we
deal with a minimal surface of finite topology, the number of connected components of
the limit set is less than or equal to the number of ends of our immersion. Furthermore, it
is very easy to check that this limit set has no isolated points. In general, it would be very
interesting to know more about the behavior of this limit set.

Recently, Martı́n and Morales [14] improved their originaltechniques and were able
to show that every bounded domain withC2,α-boundary admits a complete properly im-
mersed minimal disk whose limit set is close to a prescribed simple closed curve on the
boundary of the domain. In this line of results, Martı́n and Nadirashvili [15] found Jordan
curves in Euclidean space spanning complete minimal surfaces. Moreover they proved
that Jordan curves of this kind are dense in the space of Jordan curves with the Hausdorff
metric.

Theorem 11 (Martı́n, Nadirashvili). There exist complete conformal minimal immersions
f : D → R3 so that they admit a continuous extension to the closed diskF : D → R3.
The mapF|S1 is an embedding andF (S1) is a non-rectifiable Jordan curve with Hausdorff
dimension 1.

Moreover, for any Jordan curveΓ in R3 and anyε > 0, there exists a minimal immer-
sion satisfying the above conditions and such that the Hausdorff distance betweenΓ and
F (S1) is smaller thanε.
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