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ABSTRACT. In the last forty years, interest of many geometers andyatsahas concen-
trated on the global theory of complete minimal surfacescaBee there were no suf-
ficiently complicated examples for exact investigatiors thew development proceeded
only slowly. However, last few years have seen an importangq@ss on many long-
standing problems in global theory of complete minimal acek inR3. One of these
has been the Calabi-Yau problem, which dates back to thesl3B&labi asked whether
or not it is possible for a complete minimal surfaceRA to be contained in the ball
B = {x € R®|||z| < 1}. Much work has been done on it over the past four decades.
The most important result in this line was obtained by N. Kestivili in [24] where he
constructed a complete minimal surfaceiin

After Nadirashvili’'s work, Calabi-Yau problem continuesrgerating literature. Ques-
tions related with embeddedness and properness of comletsnded minimal surfaces
has been particularly interesting. In this survey we preterreview the most important
advances in this area.
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1. INTRODUCTION

By the maximum principle for harmonic functions, there anecompact minimal sur-
faces inR®. Moreover, a basic observation of the classical examplesiplete nonflat
minimal surfaces (catenoid, helicoid, Riemann minimalregkes, ...) reveals that one
cannot bound any coordinate function for these surfacesn Ewre, none of these exam-
ples is contained in a halfspace. These facts motivated BbC@ conjecture in 1965,
the following:

Conjecture 1 (Calabi) There are no complete bounded minimal surface&’n

Conjecture 2 (Calabi) A complete nonflat minimal surface & has an unbounded
projection in every straight line. In particular it cannoelzontained in a halfspace.

Both conjectures turned out to be false. The first exampleanfimaplete minimal sur-
face with a bounded coordinate function was a disk congcuby L. P. Jorge and F.
Xavier in 1980 [7].

Other examples of complete minimal surfaces in a slab werstoacted by F. J. Lopez
[8] and by H. Rosenberg and E. Toubiana [25]. Rosenberg andthidoa obtained a
complete minimal cylinder in a slab, and Lépez construetegimples of this type, with
arbitrary genus.

On the other hand, F. F. Brito [2] developed an alternativéhou of construction for
this kind of surfaces, by using lacunary series. Using threshmd, Costa and Simoes [5]
obtained examples with higher genus.

The analytic arguments introduced by Jorge and Xavier iin tio@struction were quite
ingenious, and have been present in almost all the papeosedketo find complete min-
imal surfaces with some kind of boundedness on their coatd# In particular, their
idea of using a labyrinth of compact sets around the boundagy simply connected
domain, jointly with Runge’s theorem in order to get comeieiss, was afterward used
by N. Nadirashvili [24] in a more elaborated way to constraictexample of a complete
minimal surface in a ball oR?.

Theorem 1 (Nadirashvili) There exists a complete minimal immersjonD — B from
the open unit disk into the open unit balB c R3. Furthermore the immersion can be
constructed with negative Gaussian curvature.
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Nadirashvili’s idea consists of constructing, in a rectgsvay, a sequence of minimal
disks (with boundary):

fon:D— Bg,,
so that:

(D) Ifn = faall < 7%2’ iNDy_1/n;
|

2) dist; (0,0D) ~ Y~

(2) dist, (0, OD) ;k

To get the immersiorf,, from the previous ong,,_;, we deform the original immer-
sion around its boundary. The deformation acts tangeytialthe sphere of radiug,,_;
in such a way that we increase the intrinsic distancé/in Hence, it is clear that the

new immersion is contained in a bigger ball of radiRis = /R? |, + 1/n?. Property 1

gives us that the sequenéé, },.cn is a Cauchy sequence of harmonics maps, and so it
convergeq f,. }.en — f. Property 2 easily gives the completeness of the limit inzioer
f, and Property 3 trivially implies that the limit immersianbounded.

These conjectures were revisited in Yau’s 2000 millenniantdre where Yau stated
the following questions:

(A) Are there complete embedded minimal surfaces in a bak*ef
(B) Are there complete proper minimal immersiofisD — B?, where by proper we

mean thatf ! (C') is compact for any”’ ¢ B compact.
(C) How is the asymptotic behavior ?
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(D) How is the spectrum of the Laplacian operator ?

Questions (A) and (B) have been extensively studied in thtefdav years. As we will see
along this survey paper, both problems are intrinsicallgtesl.

2. THE CALABI-YAU PROBLEM FOR EMBEDDED MINIMAL SURFACES

Regarding the existence of complete embedded minimalssfa a ball, T. Colding
and W. Minicozzi [3] have proved that a complete embeddedmahsurface with finite
topology inR? must be properly embeddedR¥. In particular it cannot be contained in
a ball.

Theorem 2 (Colding, Minicozzi) A complete embedded minimal surface with finite topol-
ogy inR? must be proper (ifR3.)

Very recently, Colding-Minicozzi result has been geneediin two different direc-
tions. On one hand W. H. Meeks Ill, J. Pérez and A. Ros [19¢hmoved that if\/ is a
complete embedded minimal surfacelf with finite genus and a countable number of
ends, thenV/ is properly embedded iR3.

Theorem 3 (Meeks, Pérez, Ros)f M is a complete embedded minimal surfaceRih
with finite genus and a countable number of ends, theis proper.

On the other hand, Meeks and Rosenberg [21] have obtaineid éheomplete embed-
ded minimal surfacé/ has injectivity radiud,; > 0, then) is proper in space. This is
a consequence of a more general result that asserts

Theorem 4 (The minimal lamination closure theorem; Meeks, Rosenbdrgt M be a

complete embedded minimal surface in a Riemannian 3-ndnifpsuch that the injec-
tivity radius of M is positive. Then)/ has the structure of &'-minimal lamination of
N.

As a consequence of the above results, it is natural to ciomgac

Conjecture 3 (Meeks) If M c R? is a complete embedded minimal surface with finite
genus, ther/ is proper.

| would like to mention that the conjecture seems to be faimteuthe assumption of
infinite genus, as Meeks, Pérez and Traizet are workingerettistence of a nontrivial
minimal lamination ofR?® with leaves which are non proper, and with infinite genus. In
particular, they would be able to construct a complete emiéedninimal surface which
is contained in a half space.
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3. COMPLETE BOUNDED MINIMAL SURFACES WITH NONTRIVIAL TOPOLOGY

In relation with Question (B), Lopez, Martin and Moralesvh got several results in
this line. Summarizing all the information, we have:

Theorem 5 (Lopez, Martin, Morales)There are examples of complete bounded minimal
surfaces with arbitrary finite topology (orientable or not.

After Colding-Minicozzi and Meeks-Pérez-Ros theorerhsg, ¢onstruction of a com-
plete minimal surface in a ball with infinite genus has becoatleer interesting, because
if an embedded example exists, then it must have infinite ggenu

4. COMPLETE PROPER MINIMAL IMMERSIONS IN BOUNDED REGIONS OR?

The topological property of being proper has played an igmrole in the theory of
minimal submanifolds and a great number of classical resualthe subject assume that
the submanifold is proper.

It is trivial to see that a compact submanifold is automdifgaroper. On the other
hand, there is no reason to expect a general immersion (oreaubedding) to be proper.
However it was long thought that a minimal immersion (or eddeg) should be better
behaved. This principle was captured by the Calabi-Yaulpmb As we mentioned
before, the immersed version of this conjecture turned @t false. In contrast with
Nadirashvili’'s existence result, Colding and Minicozzivegoroved that any complete
embedded minimal surface with finite topology is proper.nrthe definition of proper, it
is clear that a minimal surface properly immersed in Eudidgpace must be unbounded,
so Nadirashvili’'s surfaces are neither embedded nor prdpawvever, we can ask about
the possibility of constructing complete minimal immersg : M — B that were proper
in unit ball, in the sense thgt™! (K) is compact for any compadt C B.

After that, Martin and Morales [12] introduced an addifbingredient into Nadi-
rashvili's machinery in order to produce a complete miniaiak which is properly im-
mersed in a ball oR3. An example of a complete proper minimal annulus which lies
between two parallel planes was constructed earlier by ldeRmerg and E. Toubiana in
[25]. This example is related to the previous constructibdooge and Xavier.

Recently, Martin and Morales [13] have answered the questi the existence of com-
plete simply connected minimal surfaces which are propeonvex regions of space. To
be more precise, their main Theorem establishes that:

Theorem 6 (Martin, Morales) If B c R? is a convex domain (not necessarily bounded
or smooth), then there exists a complete proper minimal irsioey : D — B.

Convex domains are a huge and very well known family of dosiaiicuclidean space.
However, one can question whether the convexity hypothesiscessary or not. A result
proved by Nadirashvili shows that convexity cannot be resadvom the hypotheses of
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Theorem 6. Nadirashvili found a domain of space in whichelee no complete proper
minimal immersions with finite topology. Nadirashvili hagalled it theMagic Cage

5. THE TYPE PROBLEM AND UNIVERSAL REGIONS FOR MINIMAL SURFACES

We would also like to mention that, in some sense, Theorenmédased with an intrin-
sic question associated to the underlying complex stractiire so calledype problem
for a minimal surfacél/, i.e. whetherM is hyperbolic or parabolic (as we have already
noticed, the elliptic (compact) case is not possible for aimal surface). Classically, a
Riemann surface without boundary is callegberbolicif it carries a nonconstant posi-
tive superharmonic function, anmrabolicif it is neither compact nor hyperbolic. In the
case of a Riemann surface with boundary, we say ilhas parabolicif every bounded
harmonic function onV/ is determined by its boundary values, otherwideis called
hyperbolic. It turns out that the parabolicity for Riemann surfaces withboundary is
equivalent to the recurrence of Brownian motion on suchesd. If the boundary a¥/
is nonempty, thed/ is parabolicif, and only if, there exists a poiptin the interior of M/
such that the probability of a Brownian path beginning,abf hitting the boundary M
is 1.

In this setting, given a connected regidh C R? which is either open or the closure of
an open set, we say thidf is universal for surfaces every complete, connected, properly
immersed minimal surfac&/ C W is either recurrentdM = ()) or a parabolic surface
with boundary. The open question of determining which regiof space are universal for
surfaces has been proposed by W. H. Meeks and J. Pérez inTH&)rem 6 implies that
a convex domain oR? is notuniversal for surfacesln contrast with this result, on one
hand, Martin, Meeks and Nadirashvili [10] proved the eise of bounded open regions
of R? which do not admit complete properly immersed minimal stefawith an annular
end. In particular, these domains do not contain a compleieeply immersed minimal
surface with finite topology.

On the other hand, it is known [4] that the closure of a convaxalin is universal for
surfaces. This is a consequence of the following theoremddynCKusner, Meeks, and
Rosenberg:

Theorem 7 (Collin, Kusner, Meeks, Rosenberd)et M be a connected properly im-
mersed minimal surface iR3, possibly with boundary. Then, every component of the
intersection ofM/ with a closed halfspace is a parabolic surface with boundamypar-
ticular, if M has empty boundary and intersects some plane in a compac¢hsat\/ is
recurrent.

Until recently, complete minimal surfaces of hyperbolipgéyplayed a marginal role
in the global theory of minimal surfaces. However, the foilog recent result by A.
Alarcon, L. Ferrer and F. Martin [1] suggests that congletperbolic minimal surfaces
in R? are present in some of the most interesting aspects of misimiaces theory.
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Theorem 8 (Density theorem; Alarcon, Ferrer, MartirProperly immersed, hyperbolic
minimal surfaces of finite topology are dense in the spacd pf@perly immersed mini-
mal surfaces ilR?, endowed with the topology of smooth convergence on comgiact s

As a particular case of this theorem, we can obtain the fafigwexistence result that
improves Theorem 6.

Theorem 9 (Alarcon, Ferrer, Martin) For any convex domai® in R? (not necessarily
bounded or smooth) there exists a complete proper minimalersiony : M — D,
where M is an open Riemann surface with arbitrary finite topology.

One of the most interesting applications of the Density Taepis the construction
of the first example of a complete minimal surface properlynignsed inR? with an
uncountable number of ends.

Theorem 10 (Alarcon, Ferrer, Martin) There exists a domaift ¢ C and a complete
proper minimal immersion : Q — R? which has uncountably many ends.

6. THE ASYMPTOTIC BEHAVIOR

To finish, we would like to comment some interesting probleglated with the as-

ymptotic behavior of a complete proper minimal immersioive@ a complete minimal

disk M in R3, we define the limit set a5( M) o M\ M. If M is proper in the ball, then

it is not difficult to see thaf (M) is a closed connected subsetS3f In general, if we
deal with a minimal surface of finite topology, the number ohgected components of
the limit set is less than or equal to the number of ends ofroanersion. Furthermore, it
is very easy to check that this limit set has no isolated goinmtgeneral, it would be very
interesting to know more about the behavior of this limit set

Recently, Martin and Morales [14] improved their origitathniques and were able
to show that every bounded domain witi-“-boundary admits a complete properly im-
mersed minimal disk whose limit set is close to a prescrilegle closed curve on the
boundary of the domain. In this line of results, Martin aratiMashvili [15] found Jordan
curves in Euclidean space spanning complete minimal sesfaMoreover they proved
that Jordan curves of this kind are dense in the space of datdaes with the Hausdorff
metric.

Theorem 11 (Martin, Nadirashvili) There exist complete conformal minimal immersions
f : D — R? so that they admit a continuous extension to the closed/diskD — R3.
The mapFjs: is an embedding an#(S') is a non-rectifiable Jordan curve with Hausdorff
dimension 1.

Moreover, for any Jordan curvE in R? and anye > 0, there exists a minimal immer-
sion satisfying the above conditions and such that the Harfsdistance betweeh and
F(S') is smaller thare.
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