The Quotient Algebra A/Iis Isomorphic to a Subalgebra of A^{**} (This is a part of a joint work with Prof. A. To-Ming Lau)

A. Ülger

Table of Contents

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

э

Abstract. Let A be an arbitrary Banach algebra with a bounded approximate identity. We consider A^{**} as a Banach algebra under one of the Arens multiplications. The main result of this talk is the following theorem.

Abstract Theorem

> **Theorem.** Let I be a closed ideal of A with a bounded right approximate identity. Then there is an idempotent element u in A^{**} such that the space Au is a closed subalgebra of A^{**} and the quotient algebra A/I is isomorphic to Au.

Introduction The Quotient Algebra A/I is Isomorphic to a Subalgebra of A^{**}

Notation. Let A be a Banach algebra.

A. First Arens Product on A^{**} We equip A^{**} with the first Arens multiplication, which is defined in three steps as follows.

Introduction A. First Arens Product on A^{**}

1- For a in A and f in $A^{\ast},$ the element f.a of A^{\ast} is defined by

$$< f.a, b > = < f, ab > (b \in A).$$

2- For m in A^{**} and $f \in A^*$, the element m.f of A^* is defined by

$$< m.f, a > = < m, f.a > (a \in A).$$

Introduction A. First Arens Product on A^{**}

3- For n,m in $A^{\ast\ast}$ the product nm in $A^{\ast\ast}$ is defined by

$$< nm, f > = < n, m.f > (f \in A^*).$$

For m fixed, the mapping $n \mapsto nm$ is weak^{*}-weak^{*} continuous.

Introduction B. Bounded Right Approximate Identity

B.BRAI (=Bounded Right Approximate Identity). Let (e_i) be a BRAI in A. That is, this is a bounded net and, for $a \in A$, $||ae_i - a|| \rightarrow 0$. Then every weak* cluster point of the net (e_i) in A^{**} is a right identity. That is,

For $m \in A^{**}$, me = m.

Image: A mathematical states of the state

Introduction C. Right Identity

C. Let I be a closed ideal of A with a BRAI (ε_i) . Then any weak* cluster point of this net is a right identity in I^{**} .

Table of Contents

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

э

Lemma 1

From Now On

A is a Banach algebra with a BAI, e is a fixed right identity in A^{**} , I is a closed ideal of A with a BRAI and $\varepsilon \in I^{**}$ is a right identity of I^{**} . We let

$$u = e - e\varepsilon$$
.

Lemma 1

Lemma - 1. u is an idempotent and, for $a \in A$, a is in I iff au = 0.

Proof.
i)
$$u^2 = (e - e\varepsilon)(e - e\varepsilon)$$

 $= e - e\varepsilon - e\varepsilon + e\varepsilon = \varepsilon$
 $= e - e\varepsilon - e\varepsilon + e\varepsilon = e - e\varepsilon = u.$

ii) Let $a \in A$. If $a \in I$ then $a\varepsilon = a$ so that $au = a(e - e\varepsilon) = 0$. Conversely, if au = 0 then $a = a\varepsilon$ so that $a \in A \cap I^{**} \subseteq I$. A. Ülger A/I is isomorphic to a Subalgebra of A^{**}

Lemma – 2. Let
$$u.A^* = \{u.f : f \in A^*\}$$
.
The set $u.A^*$ is a weak^{*} closed subspace of A^* and $u.A^* = I^{\perp}$.

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Introduction Main Result Some Consequences Lemma 2 Proof

Proof. It is enough to prove the last assertion: $u.A^* = I^{\perp}$.

For
$$a \in I$$
 and $f \in A^*$,
 $\langle a, u.f \rangle = \langle au, f \rangle = 0$. So $u.A^* \subseteq I^{\perp}$.
To prove the reverse inclusion, let $g \in I^{\perp}$.
Then, for any $a \in I$, $\langle a, g \rangle = 0$.

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

< ∃→

Lemma 2 Proof

Let
$$a \in A$$
. As $a\varepsilon \in I^{\perp\perp}$, $\langle a\varepsilon, g \rangle = 0$.
Hence $\langle a, u.g \rangle = \langle au, g \rangle =$
 $\langle a - a\varepsilon, g \rangle = \langle a, g \rangle$

so that u.g = g. Hence g is in $u.A^*$ and $u.A^* = I^{\perp}$.

Thus
$$(A/I)^* = u.A^*$$
.

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

<ロ> (四) (四) (三) (三) (三)

Theorem 3

Theorem – **3.** The space Au is a closed subalgebra of A^{**} and the quotient algebra A/I is isomorphic to Au

Proof

Proof. Let a and b be in A. Since
$$u = e - e\varepsilon$$
, as one can see easily, $aubu = abu$ so that Au is a subalgebra of A^{**} .

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

・ロト ・日ト ・日

< ≣⇒

E 990

Theorem 3 Proof

Let now $\varphi: A/I \to A^{**}$ be the mapping defined by $\varphi(a + I) = au$. This is a well-defined one-to-one linear operator since au = 0 iff $u \in I$. It is also a homomorphism.

The range of φ is Au. For the moment we do not know whether Au is closed or not in A^{**} .

Theorem 3 Proof

Our aim is to see that both φ and φ^{-1} are continuous. From this it will follow that the space Au is closed in A^{**} and φ is a Banach algebra isomorphism.

Since
$$(A/I)^* = I^{\perp}$$
 and $I^{\perp} = u.A^*$, for any $a \in A$,

$$||a + I|| = Sup_{||u \cdot f|| \le 1}| < a + I, u \cdot f > |=$$

$$Sup_{||u.f|| \le 1}| < au, f > |.$$

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 3 Proof

> Since $u.A^*$ is closed in A^* , by the open mapping theorem applied to the linear operator $f \mapsto u.f$, there is a $\beta > 0$ such that

$$u.A_1^* \supseteq \beta.(u.A^*)_1.$$

Introduction Main Result Some Consequences Theorem 3 Proof

Hence

$$\begin{split} Sup_{||u.f|| \le 1}| &< au, f > |\\ &\le \frac{1}{\beta} Sup_{||f|| \le 1}| < au, f > | = \frac{1}{\beta} ||au||\\ \text{so that} \quad ||a + I|| \le \frac{1}{\beta} ||au||. \end{split}$$

A. Ülger A/I is Isomorphic to a Subalgebra of A^{**}

A B > 4
 A
 B > 4
 A

∢ ≣⇒

æ

Introduction Main Result Some Consequences Theorem 3 Proof

That is, $||au|| = ||\varphi(a + I)|| \ge \beta.||a + I||.$ This shows that φ^{-1} is continuous.

Theorem 3 Proof

Now, since $||u.f|| \le ||u||.||f||$, $||au|| = Sup_{||f||\le 1}| < au, f > | =$ $Sup_{||f||\le 1}| < a + I, u.f > |$ $\le ||a + I||.||u.f|| \le ||u||.||a + I||$

so that

$$||au|| = ||\varphi(a+I)|| \le ||u|| \cdot ||a+I||.$$

Theorem 3 Proof

This proves that φ is continuous. Hence φ is and isomorphism, Au is closed in A^{**} and the Banach algebras A/I and Au are isomorphic.

Remarks

Remark - 1. If I is a closed left ideal of A and has a BRAI then the spaces A/I and Au are still isomorphic but as Banach spaces.

Remarks

Remark - 2. As is well-known, every separable Banach space X is isomorphic to a quotient space of ℓ^1 . This result shows that the hereditary properties of ℓ^1 do not pass to its quotient spaces.

For the same reason, it is not realistic to expect that the quotient algebra A/I be isomorphic to a subalgebra of A.

Actually, if A is commutative and semisimple and if the Gelfand spectrum of A is connected then A has no proper idempotent so that, even if I is complemented in A, the quotient algebra A/I has no chance to be isomorphic to a subalgebra of the form Au of A

Remarks

On the other hand, even if A has no proper idempotent, in general there are lots of idempotent elements in the second dual of A.

Table of Contents

Consequence 1.

1. For any closed ideal I of A with a BRAI, the algebra A/I has all the hereditary properties of the Banach space A^{**} . For instance, if the space A^{**} is weakly sequentially complete then so is A/I.

Consequence 1.

Recall that the dual space of any von Neumann algebra is weakly sequentially complete. In particular, the spaces $L^1(G)^{**}$ and $A(G)^{**}$ are weakly sequentially complete.

Consequence 2.

2. Let $\varphi : A \to B$ be an onto homomorphism from A onto some Banach algebra B. If the ideal $Ker(\varphi)$ has a BRAI then B is isomorphic to a subalgebra of A^{**} .

Consequence 3.

3. Let $q: A \to A/I$ be the quotient mapping. Let K be a subset of A. Then the set q(K) is closed (or compact, or weakly compact) in A/I iff Ku is closed/compact/weakly compact in Au.

Checking these properties in Au might be easier than checking the same properties in the quotient space A/I. Consequence 4.

4. Suppose that A is commutative. Determining the multiplier algebra of A/I is equivalent to determining the multiplier algebra of Au.

Thank You For Listening