Compact operator synthesis and spectral synthesis in harmonic analysis

Lyudmila Turowska
Chalmers University of Technology and University of
Gothenburg
(joint with Victor Shulman and Ivan Todorov)

Granada, May 21, 2013

Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, \widehat{G} its dual. Let $A(G)$ be the Fourier algebra of $G, A(G)=\mathcal{F} L^{1}(\widehat{G})$, $\mathcal{F}(f)(g)=\int_{\widehat{G}} f(\chi) \overline{\chi(g)} d \chi$.
The space of pseudomeasures $P M(G)=A(G)^{*} \widehat{=} L^{\infty}(\widehat{G})$

Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, \widehat{G} its dual. Let $A(G)$ be the Fourier algebra of $G, A(G)=\mathcal{F} L^{1}(\widehat{G})$, $\mathcal{F}(f)(g)=\int_{\widehat{G}} f(\chi) \overline{\chi(g)} d \chi$.
The space of pseudomeasures $P M(G)=A(G)^{*} \equiv L^{\infty}(\widehat{G})$ $F \in P M(G)$ is called a pseudofunction if $\hat{F} \in C_{0}(\widehat{G})$. The space of all pseudofunctions will be denoted by $\operatorname{PF}(G)$.

Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, \widehat{G} its dual.
Let $A(G)$ be the Fourier algebra of $G, A(G)=\mathcal{F} L^{1}(\widehat{G})$,
$\mathcal{F}(f)(g)=\int_{\widehat{G}} f(\chi) \overline{\chi(g)} d \chi$.
The space of pseudomeasures $P M(G)=A(G)^{*}=L^{\infty}(\widehat{G})$
$F \in P M(G)$ is called a pseudofunction if $\hat{F} \in C_{0}(\widehat{G})$. The space
of all pseudofunctions will be denoted by $\operatorname{PF}(G)$.
The support supp F of $F \in P M(G)$ is the set

$$
\{x \in G: f F \neq 0 \text { whenever } f(x) \neq 0, f \in A(G)\}
$$

Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, \widehat{G} its dual.
Let $A(G)$ be the Fourier algebra of $G, A(G)=\mathcal{F} L^{1}(\widehat{G})$,
$\mathcal{F}(f)(g)=\int_{\widehat{G}} f(\chi) \overline{\chi(g)} d \chi$.
The space of pseudomeasures $P M(G)=A(G)^{*}=L^{\infty}(\widehat{G})$
$F \in P M(G)$ is called a pseudofunction if $\hat{F} \in C_{0}(\widehat{G})$. The space
of all pseudofunctions will be denoted by $\operatorname{PF}(G)$.
The support supp F of $F \in P M(G)$ is the set

$$
\{x \in G: f F \neq 0 \text { whenever } f(x) \neq 0, f \in A(G)\}
$$

For a closed subset $E \subset G$ let

$$
\begin{aligned}
P M(E) & =\{F \in P M(G): \text { supp } F \subset E\}, \\
N(E) & =\{\text { measures } \mu \in M(G): \text { supp } \mu \subset E\}^{w^{*}}
\end{aligned}
$$

Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, \widehat{G} its dual.
Let $A(G)$ be the Fourier algebra of $G, A(G)=\mathcal{F} L^{1}(\widehat{G})$,
$\mathcal{F}(f)(g)=\int_{\widehat{G}} f(\chi) \overline{\chi(g)} d \chi$.
The space of pseudomeasures $P M(G)=A(G)^{*} \equiv L^{\infty}(\widehat{G})$
$F \in P M(G)$ is called a pseudofunction if $\hat{F} \in C_{0}(\widehat{G})$. The space
of all pseudofunctions will be denoted by $\operatorname{PF}(G)$.
The support supp F of $F \in P M(G)$ is the set

$$
\{x \in G: f F \neq 0 \text { whenever } f(x) \neq 0, f \in A(G)\}
$$

For a closed subset $E \subset G$ let

$$
\begin{aligned}
P M(E) & =\{F \in P M(G): \text { supp } F \subset E\}, \\
N(E) & =\{\text { measures } \mu \in M(G): \operatorname{supp} \mu \subset E\}^{w^{*}}
\end{aligned}
$$

E is a set of spectral synthesis if $N(E)=P M(E)$.

Definition
We call a closed set $E \subseteq G$ a set of essential spectral synthesis if

$$
P M(E) \cap P F(G)=N(E) \cap P F(G),
$$

equivalently, $\langle F, \varphi\rangle=0$ if $F \in P F(E)$ and $\varphi \in A(G), \varphi=0$ on E.

Definition
We call a closed set $E \subseteq G$ a set of essential spectral synthesis if

$$
P M(E) \cap P F(G)=N(E) \cap P F(G)
$$

equivalently, $\langle F, \varphi\rangle=0$ if $F \in P F(E)$ and $\varphi \in A(G), \varphi=0$ on E.
There exist sets of essential spectral synthesis that are not of spectral synthesis:

Definition

We call a closed set $E \subseteq G$ a set of essential spectral synthesis if

$$
P M(E) \cap P F(G)=N(E) \cap P F(G),
$$

equivalently, $\langle F, \varphi\rangle=0$ if $F \in P F(E)$ and $\varphi \in A(G), \varphi=0$ on E.
There exist sets of essential spectral synthesis that are not of spectral synthesis:

1. There exist sets of uniqueness $E \subset \mathbb{T}$, (i.e. $\operatorname{PF}(E)=\{0\}$) that are not sets of spectral synthesis.

Definition

We call a closed set $E \subseteq G$ a set of essential spectral synthesis if

$$
P M(E) \cap P F(G)=N(E) \cap P F(G),
$$

equivalently, $\langle F, \varphi\rangle=0$ if $F \in P F(E)$ and $\varphi \in A(G), \varphi=0$ on E.
There exist sets of essential spectral synthesis that are not of spectral synthesis:

1. There exist sets of uniqueness $E \subset \mathbb{T}$, (i.e. $\operatorname{PF}(E)=\{0\}$) that are not sets of spectral synthesis.
2. Let $G=\mathbb{R}^{n}, S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$.

- S^{n-1} is not a set of spectral synthesis iff $n \geq 3$ (Herz, Schwartz, Varopoulos).
- S^{2} is a set of essential spectral synthesis (Varopoulos).
- S^{n-1} is a not a set of essential spectral synthesis if $n \geq 4$:
- S^{n-1} is a not a set of essential spectral synthesis if $n \geq 4$: Let μ be the normalized surface area measure on S^{n-1}.
- $\hat{\mu}(t)=O\left(\frac{1}{|t|(n-1) / 2}\right)$, as $|t| \rightarrow \infty$ and hence $t_{1} \hat{\mu}(t) \in C_{0}\left(\mathbb{R}^{n}\right)$ if $n \geq 4$ and $Q:=\frac{\partial \mu}{\partial x_{1}}$ is a pseudofunction.
- Q is supported in S^{n-1}.
- Let $f(x)=x_{1}\left[\exp \left(-|x|^{2}+1\right)-\exp \left(-2|x|^{2}+2\right)\right]$. Then $f \in A\left(\mathbb{R}^{n}\right)$ and f vanishes on S^{n-1}. Moreover

$$
\langle Q, f\rangle=-\left\langle\mu, \frac{\partial f}{\partial x_{1}}\right\rangle=-\int 2 x_{1}^{2} d \mu \neq 0 .
$$

Generalized Fuglede-Putnam theorem

Fuglede-Putnam Theorem: If $A \in \mathcal{B}(H), B \in \mathcal{B}(K)$ are normal operators and $X \in \mathcal{B}(K, H)$ then

$$
A X=X B \text { if and only if } A^{*} X=X B^{*}
$$

Generalized Fuglede-Putnam theorem

Fuglede-Putnam Theorem: If $A \in \mathcal{B}(H), B \in \mathcal{B}(K)$ are normal operators and $X \in \mathcal{B}(K, H)$ then

$$
A X=X B \text { if and only if } A^{*} X=X B^{*}
$$

Let $\left\{A_{i}\right\} \in \mathcal{B}(H),\left\{B_{i}\right\} \in \mathcal{B}(K)$ be commuting families of normal operators. Is it true that

$$
\begin{equation*}
\sum_{i} A_{i} X B_{i}=0 \text { if and only if } \sum_{i} A_{i}^{*} X B_{i}^{*}=0 \tag{1}
\end{equation*}
$$

for all $X \in \mathcal{B}(K, H)$?

Generalized Fuglede-Putnam theorem

Fuglede-Putnam Theorem: If $A \in \mathcal{B}(H), B \in \mathcal{B}(K)$ are normal operators and $X \in \mathcal{B}(K, H)$ then

$$
A X=X B \text { if and only if } A^{*} X=X B^{*}
$$

Let $\left\{A_{i}\right\} \in \mathcal{B}(H),\left\{B_{i}\right\} \in \mathcal{B}(K)$ be commuting families of normal operators. Is it true that

$$
\begin{equation*}
\sum_{i} A_{i} X B_{i}=0 \text { if and only if } \sum_{i} A_{i}^{*} X B_{i}^{*}=0 \tag{1}
\end{equation*}
$$

for all $X \in \mathcal{B}(K, H)$?
Answer: No. (V.Shulman, 1991)

Generalized Fuglede-Putnam theorem

Fuglede-Putnam Theorem: If $A \in \mathcal{B}(H), B \in \mathcal{B}(K)$ are normal operators and $X \in \mathcal{B}(K, H)$ then

$$
A X=X B \text { if and only if } A^{*} X=X B^{*}
$$

Let $\left\{A_{i}\right\} \in \mathcal{B}(H),\left\{B_{i}\right\} \in \mathcal{B}(K)$ be commuting families of normal operators. Is it true that

$$
\begin{equation*}
\sum_{i} A_{i} X B_{i}=0 \text { if and only if } \sum_{i} A_{i}^{*} X B_{i}^{*}=0 \tag{1}
\end{equation*}
$$

for all $X \in \mathcal{B}(K, H)$?
Answer: No. (V.Shulman, 1991)
Does (1) hold for compact operators X ? or $X \in \mathcal{S}_{p}$?

Generalized Fuglede-Putnam theorem

Fuglede-Putnam Theorem: If $A \in \mathcal{B}(H), B \in \mathcal{B}(K)$ are normal operators and $X \in \mathcal{B}(K, H)$ then

$$
A X=X B \text { if and only if } A^{*} X=X B^{*}
$$

Let $\left\{A_{i}\right\} \in \mathcal{B}(H),\left\{B_{i}\right\} \in \mathcal{B}(K)$ be commuting families of normal operators. Is it true that

$$
\begin{equation*}
\sum_{i} A_{i} X B_{i}=0 \text { if and only if } \sum_{i} A_{i}^{*} X B_{i}^{*}=0 \tag{1}
\end{equation*}
$$

for all $X \in \mathcal{B}(K, H)$?
Answer: No. (V.Shulman, 1991)
Does (1) hold for compact operators X ? or $X \in \mathcal{S}_{p}$?
Answer: No if $p>2$. If $p=2$ then $\Delta: X \in \mathcal{S}_{2} \mapsto \sum_{i} A_{i} X B_{i}$ is a bounded linear operator on the Hilbert space \mathcal{S}_{2} and
$\tilde{\Delta}: X \mapsto \sum A_{i}^{*} X B_{i}^{*}$ is its adjoint. Then $\operatorname{ker} \Delta=\operatorname{ker} \Delta^{*}$ giving that
(1) holds in \mathcal{S}_{2} and hence in $\mathcal{S}_{p}, p<2$.

Let $p\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{i=1}^{n} x_{i}^{2}-1+i\left(\sum_{i=n+1}^{2 n} x_{i}^{2}-1\right)$ and let s_{i}, $r_{i}=1, \ldots, m$ be polynomials such that

$$
p(x-y)=\sum_{i=1}^{m} s_{i}(x) r_{i}(y), \quad x, y \in \mathbb{R}^{2 n}
$$

Let $u, v \in C_{c}^{\infty}\left(\mathbb{R}^{2 n}\right)$, and $a_{i}=u s_{i}, b_{i}=v r_{i}$. Consider $A_{i}=M_{a_{i}}$, $B_{i}=M_{b_{i}}$ in $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$

Let $p\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{i=1}^{n} x_{i}^{2}-1+i\left(\sum_{i=n+1}^{2 n} x_{i}^{2}-1\right)$ and let s_{i}, $r_{i}=1, \ldots, m$ be polynomials such that

$$
p(x-y)=\sum_{i=1}^{m} s_{i}(x) r_{i}(y), \quad x, y \in \mathbb{R}^{2 n} .
$$

Let $u, v \in C_{c}^{\infty}\left(\mathbb{R}^{2 n}\right)$, and $a_{i}=u s_{i}, b_{i}=v r_{i}$. Consider $A_{i}=M_{a_{i}}$, $B_{i}=M_{b_{i}}$ in $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$
Let $m=\mu \times \mu, \mu$ is the normalized surface measure of S^{n-1}. As $\hat{m}(t)=O\left(\frac{1}{|t|^{(n-1) / 2}}\right), \frac{\partial m}{\partial x_{i}} \in P F\left(S^{n-1} \times S^{n-1}\right)$.

Let $p\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{i=1}^{n} x_{i}^{2}-1+i\left(\sum_{i=n+1}^{2 n} x_{i}^{2}-1\right)$ and let s_{i}, $r_{i}=1, \ldots, m$ be polynomials such that

$$
p(x-y)=\sum_{i=1}^{m} s_{i}(x) r_{i}(y), \quad x, y \in \mathbb{R}^{2 n}
$$

Let $u, v \in C_{c}^{\infty}\left(\mathbb{R}^{2 n}\right)$, and $a_{i}=u s_{i}, b_{i}=v r_{i}$. Consider $A_{i}=M_{a_{i}}$, $B_{i}=M_{b_{i}}$ in $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$
Let $m=\mu \times \mu, \mu$ is the normalized surface measure of S^{n-1}. As $\hat{m}(t)=O\left(\frac{1}{|t|^{(n-1) / 2}}\right), \frac{\partial m}{\partial x_{i}} \in P F\left(S^{n-1} \times S^{n-1}\right)$. If

$$
L=(1+i) x_{n+1} \frac{\partial}{\partial x_{1}}-(1-i) x_{1} \frac{\partial}{\partial x_{n+1}}
$$

$L m \in P F\left(S^{n-1} \times S^{n-1}\right)$ and $X=M_{a} \mathcal{F}^{-1} M_{\mathcal{F}(L m)} \mathcal{F} M_{b}$ is compact on $L^{2}\left(\mathbb{R}^{2 n}\right)$ for any $a, b \in C_{0}\left(\mathbb{R}^{2 n}\right)$.

Let $p\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{i=1}^{n} x_{i}^{2}-1+i\left(\sum_{i=n+1}^{2 n} x_{i}^{2}-1\right)$ and let s_{i}, $r_{i}=1, \ldots, m$ be polynomials such that

$$
p(x-y)=\sum_{i=1}^{m} s_{i}(x) r_{i}(y), \quad x, y \in \mathbb{R}^{2 n}
$$

Let $u, v \in C_{c}^{\infty}\left(\mathbb{R}^{2 n}\right)$, and $a_{i}=u s_{i}, b_{i}=v r_{i}$. Consider $A_{i}=M_{a_{i}}$, $B_{i}=M_{b_{i}}$ in $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$
Let $m=\mu \times \mu, \mu$ is the normalized surface measure of S^{n-1}. As $\hat{m}(t)=O\left(\frac{1}{|t|^{(n-1) / 2}}\right), \frac{\partial m}{\partial x_{i}} \in P F\left(S^{n-1} \times S^{n-1}\right)$. If

$$
L=(1+i) x_{n+1} \frac{\partial}{\partial x_{1}}-(1-i) x_{1} \frac{\partial}{\partial x_{n+1}}
$$

$L m \in P F\left(S^{n-1} \times S^{n-1}\right)$ and $X=M_{a} \mathcal{F}^{-1} M_{\mathcal{F}(L m)} \mathcal{F} M_{b}$ is compact on $L^{2}\left(\mathbb{R}^{2 n}\right)$ for any $a, b \in C_{0}\left(\mathbb{R}^{2 n}\right)$. It is left to see that

$$
\sum_{i} A_{i} X B_{i}=0 \text { and } \sum_{i} A_{i}^{*} X B_{i}^{*} \neq 0
$$

We have

$$
\begin{gathered}
\langle p L m, \varphi\rangle=\langle m, L(p \varphi)\rangle=\langle m, p L(\varphi)\rangle+\langle m, L(p) \varphi\rangle=0, \\
\langle\bar{p} L m, \varphi\rangle=\langle m, L(\bar{p}) \varphi\rangle+\langle m, \bar{p} L(\varphi)\rangle=4(1+i)\left\langle x_{1} x_{n+1} m, \varphi\right\rangle
\end{gathered}
$$

and hence $p L m=0$ and $\bar{p} L m \neq 0$.

We have

$$
\begin{gathered}
\langle p L m, \varphi\rangle=\langle m, L(p \varphi)\rangle=\langle m, p L(\varphi)\rangle+\langle m, L(p) \varphi\rangle=0 \\
\langle\bar{p} L m, \varphi\rangle=\langle m, L(\bar{p}) \varphi\rangle+\langle m, \bar{p} L(\varphi)\rangle=4(1+i)\left\langle x_{1} x_{n+1} m, \varphi\right\rangle
\end{gathered}
$$

and hence $p L m=0$ and $\bar{p} L m \neq 0$. A direct calculation shows that

$$
\left(\sum_{i=1}^{m} M_{b_{i}} X M_{a_{i}} \varphi, \psi\right)=\langle p L m, \text { uaч } * \overline{\widetilde{v b} \psi\rangle}=0
$$

and

$$
\left(\sum_{i=1}^{m} M_{b_{i}}^{*} X M_{a_{i}}^{*} \varphi, \psi\right)=\langle\bar{p} L m, \text { ua } \varphi * \widetilde{\overline{v b} \psi\rangle} \neq 0
$$

showing the statement.

Essential (compact) operator synthesis

 $H_{1}=L^{2}(X, \mu), H_{2}=L^{2}(Y, \nu)$ separable Hilbert spaces. $\mathcal{B}\left(H_{1}, H_{2}\right), \mathcal{K}\left(H_{1}, H_{2}\right)$ and $\mathcal{C}_{1}\left(H_{1}, H_{2}\right)$ are the spaces of all bounded resp. compact and nuclear linear operators from H_{1} into H_{2}.$$
\left(\mathcal{K}\left(H_{1}, H_{2}\right)\right)^{*}=\mathcal{C}_{1}\left(H_{2}, H_{1}\right),\left(\mathcal{C}_{1}\left(H_{2}, H_{1}\right)\right)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right),
$$

where the duality is given by the map $(T, S) \mapsto\langle T, S\rangle=\operatorname{tr}(T S)$.

Essential (compact) operator synthesis

$H_{1}=L^{2}(X, \mu), H_{2}=L^{2}(Y, \nu)$ separable Hilbert spaces.
$\mathcal{B}\left(H_{1}, H_{2}\right), \mathcal{K}\left(H_{1}, H_{2}\right)$ and $\mathcal{C}_{1}\left(H_{1}, H_{2}\right)$ are the spaces of all bounded resp. compact and nuclear linear operators from H_{1} into H_{2}.

$$
\left(\mathcal{K}\left(H_{1}, H_{2}\right)\right)^{*}=\mathcal{C}_{1}\left(H_{2}, H_{1}\right),\left(\mathcal{C}_{1}\left(H_{2}, H_{1}\right)\right)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right),
$$

where the duality is given by the map $(T, S) \mapsto\langle T, S\rangle=\operatorname{tr}(T S)$.
The space $\mathcal{C}_{1}\left(H_{2}, H_{1}\right)$ can be identified with the space $L_{2}(X) \hat{\otimes} L_{2}(Y)$ of all $F: X \times Y \rightarrow \mathbb{C}$ s.t.

$$
F(x, y)=\sum_{i=1}^{\infty} f_{i}(x) g_{i}(y)
$$

$f_{i} \in L^{2}(X), g_{i} \in L^{2}(Y), \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{2}^{2}<\infty, \sum_{i=1}^{\infty}\left\|g_{i}\right\|_{2}^{2}<\infty$,

Essential (compact) operator synthesis

$H_{1}=L^{2}(X, \mu), H_{2}=L^{2}(Y, \nu)$ separable Hilbert spaces.
$\mathcal{B}\left(H_{1}, H_{2}\right), \mathcal{K}\left(H_{1}, H_{2}\right)$ and $\mathcal{C}_{1}\left(H_{1}, H_{2}\right)$ are the spaces of all bounded resp. compact and nuclear linear operators from H_{1} into H_{2}.

$$
\left(\mathcal{K}\left(H_{1}, H_{2}\right)\right)^{*}=\mathcal{C}_{1}\left(H_{2}, H_{1}\right),\left(\mathcal{C}_{1}\left(H_{2}, H_{1}\right)\right)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right),
$$

where the duality is given by the map $(T, S) \mapsto\langle T, S\rangle=\operatorname{tr}(T S)$.
The space $\mathcal{C}_{1}\left(H_{2}, H_{1}\right)$ can be identified with the space $L_{2}(X) \hat{\otimes} L_{2}(Y)$ of all $F: X \times Y \rightarrow \mathbb{C}$ s.t.

$$
F(x, y)=\sum_{i=1}^{\infty} f_{i}(x) g_{i}(y)
$$

$f_{i} \in L^{2}(X), g_{i} \in L^{2}(Y), \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{2}^{2}<\infty, \sum_{i=1}^{\infty}\left\|g_{i}\right\|_{2}^{2}<\infty$, via
$F \in L^{2}(X) \hat{\otimes} L^{2}(Y) \mapsto I_{F} \in C_{1}\left(H_{1}, H_{2}\right),\left(I_{F} \xi\right)(y)=\int_{X} F(x, y) \xi(x) d \mu(x)$

Essential (compact) operator synthesis

$H_{1}=L^{2}(X, \mu), H_{2}=L^{2}(Y, \nu)$ separable Hilbert spaces.
$\mathcal{B}\left(H_{1}, H_{2}\right), \mathcal{K}\left(H_{1}, H_{2}\right)$ and $\mathcal{C}_{1}\left(H_{1}, H_{2}\right)$ are the spaces of all bounded resp. compact and nuclear linear operators from H_{1} into H_{2}.

$$
\left(\mathcal{K}\left(H_{1}, H_{2}\right)\right)^{*}=\mathcal{C}_{1}\left(H_{2}, H_{1}\right),\left(\mathcal{C}_{1}\left(H_{2}, H_{1}\right)\right)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right),
$$

where the duality is given by the map $(T, S) \mapsto\langle T, S\rangle=\operatorname{tr}(T S)$.
The space $\mathcal{C}_{1}\left(H_{2}, H_{1}\right)$ can be identified with the space $L_{2}(X) \hat{\otimes} L_{2}(Y)$ of all $F: X \times Y \rightarrow \mathbb{C}$ s.t.

$$
F(x, y)=\sum_{i=1}^{\infty} f_{i}(x) g_{i}(y)
$$

$f_{i} \in L^{2}(X), g_{i} \in L^{2}(Y), \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{2}^{2}<\infty, \sum_{i=1}^{\infty}\left\|g_{i}\right\|_{2}^{2}<\infty$, via
$F \in L^{2}(X) \hat{\otimes} L^{2}(Y) \mapsto I_{F} \in C_{1}\left(H_{1}, H_{2}\right),\left(I_{F} \xi\right)(y)=\int_{X} F(x, y) \xi(x) d \mu(x)$
The duality between $\mathcal{B}\left(H_{1}, H_{2}\right)$ and $L^{2}(X) \hat{\otimes} L^{2}(Y)$ is given by

$$
\langle T, f \otimes g\rangle=(T f, \bar{g}), \quad T \in \mathcal{B}\left(H_{1}, H_{2}\right), f \in L^{2}(X), g \in L^{2}(Y)
$$

- ω-topology: $E \subseteq X \times Y$ is marginally null if $E \subseteq\left(X_{0} \times Y\right) \cup\left(X \times Y_{0}\right), \mu\left(X_{0}\right)=\nu\left(Y_{0}\right)=0$.
E is ω-open if $E \simeq \cup_{n=1}^{\infty} \alpha_{n} \times \beta_{n},(\omega \text {-open })^{c}=\omega$-closed.
- ω-topology: $E \subseteq X \times Y$ is marginally null if $E \subseteq\left(X_{0} \times Y\right) \cup\left(X \times Y_{0}\right), \mu\left(X_{0}\right)=\nu\left(Y_{0}\right)=0$.
E is ω-open if $E \simeq \cup_{n=1}^{\infty} \alpha_{n} \times \beta_{n},(\omega \text {-open })^{c}=\omega$-closed.
- ω-closed $\kappa \subseteq X \times Y$ supports $T \in \mathcal{B}\left(H_{1}, H_{2}\right)$ if $M_{\chi_{\beta}} T M_{\chi_{\alpha}}=0$ whenever $\alpha \times \beta \cap \kappa \simeq \emptyset$.
For any $\mathcal{M} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right), \exists$ a smallest (up to marginal equivalence) ω-closed set $\operatorname{supp} \mathcal{M}$ which supports $\forall T \in \mathcal{M}$.
- ω-topology: $E \subseteq X \times Y$ is marginally null if
$E \subseteq\left(X_{0} \times Y\right) \cup\left(X \times Y_{0}\right), \mu\left(X_{0}\right)=\nu\left(Y_{0}\right)=0$.
E is ω-open if $E \simeq \cup_{n=1}^{\infty} \alpha_{n} \times \beta_{n},(\omega \text {-open })^{c}=\omega$-closed.
- ω-closed $\kappa \subseteq X \times Y$ supports $T \in \mathcal{B}\left(H_{1}, H_{2}\right)$ if $M_{\chi_{\beta}} T M_{\chi_{\alpha}}=0$ whenever $\alpha \times \beta \cap \kappa \simeq \emptyset$.
For any $\mathcal{M} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right), \exists$ a smallest (up to marginal equivalence) ω-closed $\operatorname{set} \operatorname{supp} \mathcal{M}$ which supports $\forall T \in \mathcal{M}$.
- For any ω-closed set $\kappa \exists$ a smallest (resp. largest) w^{*}-closed $L^{\infty}(X)-L^{\infty}(Y)$-bimodule $\mathfrak{M}_{\text {min }}(\kappa)$ (resp. $\left.\mathfrak{M}_{\max }(\kappa)\right)$ with support κ, i.e. if $\mathfrak{M} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ is a w^{*}-closed bimodule with supp $\mathfrak{M}=\kappa$ then

$$
\mathfrak{M}_{\min }(\kappa) \subseteq \mathfrak{M} \subseteq \mathfrak{M}_{\max }(\kappa)
$$

Definition

Let (X, μ) and (Y, ν) be standard measure spaces. An ω-closed set $\kappa \subseteq X \times Y$ is called a set of essential (compact) synthesis if

$$
\mathfrak{M}_{\min }(\kappa) \cap \mathcal{K}\left(H_{1}, H_{2}\right)=\mathfrak{M}_{\max }(\kappa) \cap \mathcal{K}\left(H_{1}, H_{2}\right)
$$

Sets of essential operator synthesis

Sets of essential operator synthesis

- Let $\Lambda=\{(x, x): x \in X\}$ and μ be a non-atomic measure. Then Λ is a set of essential operator synthesis:

Sets of essential operator synthesis

- Let $\Lambda=\{(x, x): x \in X\}$ and μ be a non-atomic measure. Then Λ is a set of essential operator synthesis: Λ only supports operators $M_{f}, f \in L^{\infty}(X)$, as $\operatorname{supp} T \subset \Lambda \Leftrightarrow M_{\chi_{\alpha^{c}}} T M_{\chi_{\alpha}}=0, \forall \alpha \subset X \Leftrightarrow\left[T, M_{\chi_{\alpha}}\right]=0, \forall \alpha$.

Sets of essential operator synthesis

- Let $\Lambda=\{(x, x): x \in X\}$ and μ be a non-atomic measure. Then Λ is a set of essential operator synthesis: Λ only supports operators $M_{f}, f \in L^{\infty}(X)$, as $\operatorname{supp} T \subset \Lambda \Leftrightarrow M_{\chi_{\alpha} c} T M_{\chi_{\alpha}}=0, \forall \alpha \subset X \Leftrightarrow\left[T, M_{\chi_{\alpha}}\right]=0, \forall \alpha$.
- For all $p \geq 1$ let $\mathfrak{M}_{p}(E)=\mathfrak{M}_{\max }(E) \cap \mathcal{S}_{p}$ and let $\mathfrak{M}_{f}(E)$ be the space of all finite rank operators supported in E.

Lemma

If any compact operator supported in E can be approximated in weak-*-topology by operators in $\mathfrak{M}_{f}(E)$ (or $\mathfrak{M}_{2}(E)$) then E is a set of essential synthesis.

Sets of essential operator synthesis

- Let $\Lambda=\{(x, x): x \in X\}$ and μ be a non-atomic measure. Then Λ is a set of essential operator synthesis: Λ only supports operators $M_{f}, f \in L^{\infty}(X)$, as $\operatorname{supp} T \subset \Lambda \Leftrightarrow M_{\chi_{\alpha} c} T M_{\chi_{\alpha}}=0, \forall \alpha \subset X \Leftrightarrow\left[T, M_{\chi_{\alpha}}\right]=0, \forall \alpha$.
- For all $p \geq 1$ let $\mathfrak{M}_{p}(E)=\mathfrak{M}_{\max }(E) \cap \mathcal{S}_{p}$ and let $\mathfrak{M}_{f}(E)$ be the space of all finite rank operators supported in E.

Lemma

If any compact operator supported in E can be approximated in weak-*-topology by operators in $\mathfrak{M}_{f}(E)$ (or $\mathfrak{M}_{2}(E)$) then E is a set of essential synthesis.

Proof.

It is enough to see that $\mathfrak{M}_{f}(E) \subset \mathfrak{M}_{\text {min }}(E) . T=I_{K} \in \mathcal{S}_{2}$ is supported in E iff K vanishes $\mu \times \nu$ a.e. outside E and therefore $\langle T, \Phi\rangle=\int K(x, y) \Phi(x, y) d \mu(x) d \nu(y)=0$ whenever $\Phi \in \Gamma(X, Y)$ vanishes m.a.e. on E. The statement follows from

$$
\mathfrak{M}_{\min }(E)=\left\{h \in L^{2}(X) \hat{\otimes} L^{2}(Y): h \chi_{E} \simeq 0\right\}^{\perp}
$$

Quasi-diagonal sets and sets of finite width

Quasi-diagonal sets and sets of finite width

A set $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j} \subset X \times Y: 1 \leq j \leq J\right\}$ is called a diagonal system if $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset, i \neq j$.
If $D=D_{1} \vee D_{2} \vee \ldots \vee D_{n}$ where all D_{j} are diagonal and disjoint then D is n-diagonal.

Quasi-diagonal sets and sets of finite width

A set $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j} \subset X \times Y: 1 \leq j \leq J\right\}$ is called a diagonal system if $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset, i \neq j$.
If $D=D_{1} \vee D_{2} \vee \ldots \vee D_{n}$ where all D_{j} are diagonal and disjoint then D is n-diagonal.
Let $r(D)=\max _{j} r\left(\Pi_{j}\right)$, where $r(\alpha \times \beta)=\min \{\mu(\alpha), \nu(\beta)\}$.

Quasi-diagonal sets and sets of finite width

A set $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j} \subset X \times Y: 1 \leq j \leq J\right\}$ is called a diagonal system if $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset, i \neq j$. If $D=D_{1} \vee D_{2} \vee \ldots \vee D_{n}$ where all D_{j} are diagonal and disjoint then D is n-diagonal.
Let $r(D)=\max _{j} r\left(\Pi_{j}\right)$, where $r(\alpha \times \beta)=\min \{\mu(\alpha), \nu(\beta)\}$. A subset $E \subset X \times Y$ is called n-quasi-diagonal if for each $\varepsilon>0$ there is an n-diagonal system $D=\left\{\Pi_{j}\right\}_{j=1}^{J}$ with $E \subset \cup_{j} \Pi_{j}$ and $r(D)<\varepsilon$.

Quasi-diagonal sets and sets of finite width

A set $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j} \subset X \times Y: 1 \leq j \leq J\right\}$ is called a diagonal system if $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset, i \neq j$.
If $D=D_{1} \vee D_{2} \vee \ldots \vee D_{n}$ where all D_{j} are diagonal and disjoint then D is n-diagonal.
Let $r(D)=\max _{j} r\left(\Pi_{j}\right)$, where $r(\alpha \times \beta)=\min \{\mu(\alpha), \nu(\beta)\}$.
A subset $E \subset X \times Y$ is called n-quasi-diagonal if for each $\varepsilon>0$ there is an n-diagonal system $D=\left\{\Pi_{j}\right\}_{j=1}^{J}$ with $E \subset \cup_{j} \Pi_{j}$ and $r(D)<\varepsilon$.

Theorem
Let $E \subset X \times Y$ be ω-closed.

1. If E is n-quasi-diagonal then $\mathfrak{M}_{f}(E)=\mathfrak{M}_{\max }(E) \cap \mathcal{K}=\{0\}$
2. If $E=E_{1} \cup E_{2}$, where E_{1} is n-quasi-diagonal and E_{2} is ω-open then

$$
\overline{\mathfrak{M}_{f}(E)}{ }^{\|\cdot\|}=\mathfrak{M}_{\max }(E) \cap \mathcal{K} .
$$

Idea of the proof.

1. For $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j}: 1 \leq j \leq J\right\}$ let

$$
\pi_{D}(T)=\sum_{j}^{J} M_{\chi_{\beta_{j}}} T M_{\chi_{\alpha_{j}}}, T \in \mathcal{B}\left(H_{1}, H_{2}\right)
$$

If $\operatorname{supp} T \subset E \subset \cup_{j} \Pi_{j}$ then $T=\pi_{D}(T)$.

Idea of the proof.

1. For $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j}: 1 \leq j \leq J\right\}$ let

$$
\pi_{D}(T)=\sum_{j}^{J} M_{\chi_{\beta_{j}}} T M_{\chi_{\alpha_{j}}}, T \in \mathcal{B}\left(H_{1}, H_{2}\right)
$$

If supp $T \subset E \subset \cup_{j} \Pi_{j}$ then $T=\pi_{D}(T)$.
If E is n-quasi-diagonal and $\left\{D^{(k)}\right\}_{k}$ is n-diagonal systems
such that $r\left(D^{(k)}\right) \rightarrow 0$ then for rank one operator $T=u \otimes v$

$$
\left\|\pi_{D^{(k)}}(T)\right\| \leq\left\|\pi_{D^{(k)}}(T)\right\|_{2} \leq C(T) r\left(D^{(k)}\right)^{1 / 2} \rightarrow 0
$$

Idea of the proof.

1. For $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j}: 1 \leq j \leq J\right\}$ let

$$
\pi_{D}(T)=\sum_{j}^{J} M_{\chi_{\beta_{j}}} T M_{\chi_{\alpha_{j}}}, T \in \mathcal{B}\left(H_{1}, H_{2}\right) .
$$

If supp $T \subset E \subset \cup_{j} \Pi_{j}$ then $T=\pi_{D}(T)$.
If E is n-quasi-diagonal and $\left\{D^{(k)}\right\}_{k}$ is n-diagonal systems
such that $r\left(D^{(k)}\right) \rightarrow 0$ then for rank one operator $T=u \otimes v$

$$
\left\|\pi_{D^{(k)}}(T)\right\| \leq\left\|\pi_{D^{(k)}}(T)\right\|_{2} \leq C(T) r\left(D^{(k)}\right)^{1 / 2} \rightarrow 0
$$

and hence

$$
\left\|\pi_{D^{(k)}}(T)\right\| \rightarrow 0 \text { for any } T \in \mathcal{K}\left(H_{1}, H_{2}\right)
$$

giving that for $T \in \mathfrak{M}_{\max }(E) \cap \mathcal{K}, T=\lim \pi_{D^{(k)}}(T)=0$.

Idea of the proof.

1. For $D=\left\{\Pi_{j}=\alpha_{j} \times \beta_{j}: 1 \leq j \leq J\right\}$ let

$$
\pi_{D}(T)=\sum_{j}^{J} M_{\chi_{\beta_{j}}} T M_{\chi_{\alpha_{j}}}, T \in \mathcal{B}\left(H_{1}, H_{2}\right) .
$$

If $\operatorname{supp} T \subset E \subset \cup_{j} \Pi_{j}$ then $T=\pi_{D}(T)$.
If E is n-quasi-diagonal and $\left\{D^{(k)}\right\}_{k}$ is n-diagonal systems such that $r\left(D^{(k)}\right) \rightarrow 0$ then for rank one operator $T=u \otimes v$

$$
\left\|\pi_{D^{(k)}}(T)\right\| \leq\left\|\pi_{D^{(k)}}(T)\right\|_{2} \leq C(T) r\left(D^{(k)}\right)^{1 / 2} \rightarrow 0
$$

and hence

$$
\left\|\pi_{D^{(k)}}(T)\right\| \rightarrow 0 \text { for any } T \in \mathcal{K}\left(H_{1}, H_{2}\right)
$$

giving that for $T \in \mathfrak{M}_{\max }(E) \cap \mathcal{K}, T=\lim \pi_{D^{(k)}}(T)=0$.
2. Let $D=\left\{\Pi_{j}\right\}_{j \in J}, E_{1} \subset \cup_{j} \Pi_{j}$, and let \tilde{D} be a complementing system. Then

$$
T=\pi_{D}(T)+\pi_{\tilde{D}}(T)
$$

For $T \in \mathcal{K}, \pi_{D}(T) \rightarrow 0$ when $r(D) \rightarrow 0$.
$\pi_{\tilde{D}}(T) \in \overline{\mathfrak{M}}_{f}(E) \quad\|\cdot\|$: We can think that rectangles in \tilde{D} are unions of rectangles that are either in E^{c} or in E_{2}.
If $\Pi \in E^{c}$ then $\pi_{\Pi}(T)=0$ by the definition of the support;
if $\Pi \in E_{2}$ then $\pi_{\Pi}(T) \in \mathfrak{M}_{\max }(\Pi) \cap \mathcal{K} \subset{\overline{\mathfrak{M}} \boldsymbol{M}_{f}(\Pi)}^{\|\cdot\|} \subset{\overline{\mathfrak{M}_{f}(E)}}^{\|\cdot\|}$ giving the statement.
$\pi_{\tilde{D}}(T) \in \overline{\mathfrak{M}}_{f}(E) \quad\|\cdot\|$: We can think that rectangles in \tilde{D} are unions of rectangles that are either in E^{c} or in E_{2}.
If $\Pi \in E^{c}$ then $\pi_{\Pi}(T)=0$ by the definition of the support;
if $\Pi \in E_{2}$ then $\pi_{\Pi}(T) \in \mathfrak{M}_{\max }(\Pi) \cap \mathcal{K} \subset \overline{\mathfrak{M}}_{f}(\Pi) \quad\|\cdot\| \subset \overline{\mathfrak{M}}_{f}(E){ }^{\|\cdot\|}$ giving the statement.

Corollary

Let $E=\left\{(x, y): f_{j}(x) \leq g_{j}(y), j=1, . ., n\right\}, f_{j}, g_{j}: X \rightarrow \mathbb{R}$. Then $\overline{\mathfrak{M}_{f}(E)}{ }^{\|\cdot\|}=\mathfrak{M}_{\text {max }}(E) \cap \mathcal{K}$ and hence E is a set of essential synthesis.
$\pi_{\tilde{D}}(T) \in \overline{\mathfrak{M}}_{f}(E) \quad\|\cdot\|$: We can think that rectangles in \tilde{D} are unions of rectangles that are either in E^{c} or in E_{2}.
If $\Pi \in E^{c}$ then $\pi_{\Pi}(T)=0$ by the definition of the support;
if $\Pi \in E_{2}$ then $\pi_{\Pi}(T) \in \mathfrak{M}_{\max }(\Pi) \cap \mathcal{K} \subset \overline{\mathfrak{M}}_{f}(\Pi) \quad\|\cdot\| \subset{\overline{\mathfrak{M}_{f}(E)}}^{\|\cdot\|}$ giving the statement.

Corollary

Let $E=\left\{(x, y): f_{j}(x) \leq g_{j}(y), j=1, . ., n\right\}, f_{j}, g_{j}: X \rightarrow \mathbb{R}$. Then $\overline{\mathfrak{M}_{f}(E)} \mid l \cdot\| \| \mathfrak{M}_{\text {max }}(E) \cap \mathcal{K}$ and hence E is a set of essential synthesis.

Proposition

If $E=E_{1} \cup E_{2}$, where E_{1} is n-quasi-diagonal and E_{2} is ω-open, and Λ is a set of essential synthesis then $E \cup \Lambda$ and $E \cap \Lambda$ are sets of essential synthesis.

Connection between essential operator synthesis and

 essential spectral synthesisLet G be a locally compact group, $A(G), \operatorname{VN}(G), C_{r}^{*}(G)$ be the Fourier algebra, the von Neumann algebra and the reduced
C^{*}-algebra of G.
For a closed $E \subseteq G$ let

$$
\begin{gathered}
P M(E)=\left\{T \in \mathrm{VN}(G): \operatorname{supp}_{\mathrm{VN}(G)} T \subset E\right\} \\
N(E)=\overline{\{\lambda(s): s \in E\}}{ }^{w^{*}}
\end{gathered}
$$

E is said to a set of essential spectral synthesis if

$$
P M(E) \cap C_{r}^{*}(G)=N(E) \cap C_{r}^{*}(G) .
$$

Theorem
Let G be a second countable locally compact group. Then a closed set $E \subset G$ is a set of essential spectral synthesis iff
$E^{*}=\left\{(s, t): t s^{-1} \in E\right\}$ is a set of essential operator synthesis.

Idea of the proof

- $T \in V N(G), \operatorname{supp}_{V N(G)} T \subset E \Rightarrow \operatorname{supp} T \subset E^{*}$
- $T \in V N(G), u \in A(G) \Rightarrow u T=\sum_{i} M_{b_{i}} T M_{a_{i}}$, where $\sum_{i} a_{i}(s) b_{i}(t)=u\left(t s^{-1}\right) \in L^{\infty}(G) \otimes_{e h} L^{\infty}(G)$
- $T \in C_{r}^{*}(G) \Rightarrow M_{b} T M_{a} \in \mathcal{K}\left(L^{2}(G)\right), a, b \in C_{0}(G)$

Idea of the proof

- $T \in V N(G), \operatorname{supp}_{V N(G)} T \subset E \Rightarrow \operatorname{supp} T \subset E^{*}$
- $T \in V N(G), u \in A(G) \Rightarrow u T=\sum_{i} M_{b_{i}} T M_{a_{i}}$, where $\sum_{i} a_{i}(s) b_{i}(t)=u\left(t s^{-1}\right) \in L^{\infty}(G) \otimes_{e h} L^{\infty}(G)$
- $T \in C_{r}^{*}(G) \Rightarrow M_{b} T M_{a} \in \mathcal{K}\left(L^{2}(G)\right), a, b \in C_{0}(G)$
- $T \in \mathcal{K}\left(L^{2}(G)\right)$, supp $T \subset E^{*} \Rightarrow E_{a \otimes b}(T) \in C_{r}^{*}(G)$, $a, b \in L^{2}(G)$, where

$$
\left\langle E_{a \otimes b}(T), \varphi\right\rangle=\langle T, N \varphi(a \otimes b)\rangle
$$

$$
N \varphi(s, t)=u\left(t s^{-1}\right)
$$

Example

- $\left(S^{n}\right)^{*}$ is not a set of essential operator synthesis for $n \geq 3$.
- $\left(S^{1}\right)^{*},\left(S^{2}\right)^{*}$ are sets of essential synthesis.
- E^{*} is a set of essential operator synthesis if E is a set of uniqueness.

Example

- $\left(S^{n}\right)^{*}$ is not a set of essential operator synthesis for $n \geq 3$.
- $\left(S^{1}\right)^{*},\left(S^{2}\right)^{*}$ are sets of essential synthesis.
- E^{*} is a set of essential operator synthesis if E is a set of uniqueness.

Proposition

For $F=\sum a_{i} \otimes b_{i} \in L^{\infty}(X) \otimes_{e h} L^{\infty}(Y)$ and $T \in \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)$ let $F \cdot T=\sum_{i} M_{b_{i}} T M_{a_{i}}$.
If $F_{1}, F_{2} \in L^{\infty}(X) \otimes_{e h} L^{\infty}(Y)$ and null $F_{1}=$ null F_{2} is a set of essential synthesis then for $T \in \mathcal{K}$

$$
F_{1} \cdot T=0 \text { iff } F_{2} \cdot T=0
$$

THANK YOU!

