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Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, Ĝ its dual.
Let A(G ) be the Fourier algebra of G , A(G ) = FL1(Ĝ ),
F(f )(g) =

∫
Ĝ

f (χ)χ(g)dχ.

The space of pseudomeasures PM(G ) = A(G )∗=̂L∞(Ĝ )

F ∈ PM(G ) is called a pseudofunction if F̂ ∈ C0(Ĝ ). The space

of all pseudofunctions will be denoted by PF (G ).
The support supp F of F ∈ PM(G ) is the set

{x ∈ G : fF 6= 0 whenever f (x) 6= 0, f ∈ A(G )}

For a closed subset E ⊂ G let

PM(E ) = {F ∈ PM(G ) : supp F ⊂ E},

N(E ) = {measures µ ∈ M(G ) : supp µ ⊂ E}w
∗

E is a set of spectral synthesis if N(E ) = PM(E ).



Essential spectral synthesis for compact abelian groups

Let G be a locally compact abelian group, Ĝ its dual.
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F ∈ PM(G ) is called a pseudofunction if F̂ ∈ C0(Ĝ ). The space
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Definition
We call a closed set E ⊆ G a set of essential spectral synthesis if

PM(E ) ∩ PF (G ) = N(E ) ∩ PF (G ),

equivalently, 〈F , ϕ〉 = 0 if F ∈ PF (E ) and ϕ ∈ A(G ), ϕ = 0 on E .

There exist sets of essential spectral synthesis that are not of
spectral synthesis:
1. There exist sets of uniqueness E ⊂ T, (i.e. PF (E ) = {0}) that
are not sets of spectral synthesis.
2. Let G = Rn, Sn−1 = {x ∈ Rn : |x | = 1}.

I Sn−1 is not a set of spectral synthesis iff n ≥ 3 (Herz,
Schwartz, Varopoulos).

I S2 is a set of essential spectral synthesis (Varopoulos).
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I Sn−1 is a not a set of essential spectral synthesis if n ≥ 4:

Let µ be the normalized surface area measure on Sn−1.
I µ̂(t) = O( 1

|t|(n−1)/2 ), as |t| → ∞ and hence t1µ̂(t) ∈ C0(Rn) if

n ≥ 4 and Q := ∂µ
∂x1

is a pseudofunction.
I Q is supported in Sn−1.
I Let f (x) = x1[exp(−|x |2 + 1)− exp(−2|x |2 + 2)]. Then

f ∈ A(Rn) and f vanishes on Sn−1. Moreover

〈Q, f 〉 = −〈µ, ∂f

∂x1
〉 = −

∫
2x2

1 dµ 6= 0.
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Generalized Fuglede-Putnam theorem

Fuglede-Putnam Theorem: If A ∈ B(H), B ∈ B(K ) are normal
operators and X ∈ B(K ,H) then

AX = XB if and only if A∗X = XB∗.

Let {Ai} ∈ B(H), {Bi} ∈ B(K ) be commuting families of normal
operators. Is it true that∑

i

AiXBi = 0 if and only if
∑
i

A∗i XB∗i = 0 (1)

for all X ∈ B(K ,H)?
Answer: No. (V.Shulman, 1991)
Does (1) hold for compact operators X ? or X ∈ Sp?
Answer: No if p > 2. If p = 2 then ∆ : X ∈ S2 7→

∑
i AiXBi is a

bounded linear operator on the Hilbert space S2 and
∆̃ : X 7→

∑
A∗i XB∗i is its adjoint. Then ker ∆ = ker ∆∗ giving that

(1) holds in S2 and hence in Sp, p < 2.
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Let p(x1, . . . , x2n) =
∑n

i=1 x2
i − 1 + i(

∑2n
i=n+1 x2

i − 1) and let si ,
ri = 1, . . . ,m be polynomials such that

p(x − y) =
m∑
i=1

si (x)ri (y), x , y ∈ R2n.

Let u, v ∈ C∞c (R2n), and ai = usi , bi = vri . Consider Ai = Mai ,
Bi = Mbi in B(L2(R2n))

Let m = µ× µ, µ is the normalized surface measure of Sn−1. As
m̂(t) = O( 1

|t|(n−1)/2 ), ∂m
∂xi
∈ PF (Sn−1 × Sn−1). If

L = (1 + i)xn+1
∂

∂x1
− (1− i)x1

∂

∂xn+1
,

Lm ∈ PF (Sn−1 × Sn−1) and X = MaF−1MF(Lm)FMb is compact
on L2(R2n) for any a, b ∈ C0(R2n).It is left to see that∑

i

AiXBi = 0 and
∑
i

A∗i XB∗i 6= 0.
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We have

〈pLm, ϕ〉 = 〈m, L(pϕ)〉 = 〈m, pL(ϕ)〉+ 〈m, L(p)ϕ〉 = 0,

〈p̄Lm, ϕ〉 = 〈m, L(p̄)ϕ〉+ 〈m, p̄L(ϕ)〉 = 4(1 + i)〈x1xn+1m, ϕ〉

and hence pLm = 0 and p̄Lm 6= 0.

A direct calculation shows that(
m∑
i=1

Mbi XMaiϕ,ψ

)
= 〈pLm, uaϕ ∗ ṽbψ〉 = 0

and (
m∑
i=1

M∗bi XM∗aiϕ,ψ

)
= 〈p̄Lm, uaϕ ∗ ṽbψ〉 6= 0

showing the statement.
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showing the statement.



Essential (compact) operator synthesis
H1 = L2(X , µ),H2 = L2(Y , ν) separable Hilbert spaces.
B(H1,H2), K(H1,H2) and C1(H1,H2) are the spaces of all bounded
resp. compact and nuclear linear operators from H1 into H2.

(K(H1,H2))∗ = C1(H2,H1), (C1(H2,H1))∗ = B(H1,H2),

where the duality is given by the map (T ,S) 7→ 〈T ,S〉 = tr(TS).

The space C1(H2,H1) can be identified with the space
L2(X )⊗̂L2(Y ) of all F : X × Y → C s.t.

F (x , y) =
∞∑
i=1

fi (x)gi (y),

fi ∈ L2(X ), gi ∈ L2(Y ),
∑∞

i=1 ‖fi‖2
2 <∞,

∑∞
i=1 ‖gi‖2

2 <∞, via

F ∈ L2(X )⊗̂L2(Y ) 7→ IF ∈ C1(H1,H2), (IF ξ)(y) =

∫
X

F (x , y)ξ(x)dµ(x)

The duality between B(H1,H2) and L2(X )⊗̂L2(Y ) is given by

〈T , f ⊗ g〉 = (Tf , ḡ), T ∈ B(H1,H2), f ∈ L2(X ), g ∈ L2(Y )
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I ω-topology: E ⊆ X × Y is marginally null if
E ⊆ (X0 × Y ) ∪ (X × Y0), µ(X0) = ν(Y0) = 0.
E is ω-open if E ' ∪∞n=1αn × βn, (ω-open)c = ω-closed.

I ω-closed κ ⊆ X × Y supports T ∈ B(H1,H2) if
MχβTMχα = 0 whenever α× β ∩ κ ' ∅.

For any M⊆ B(H1,H2), ∃ a smallest (up to marginal
equivalence) ω-closed set suppM which supports ∀T ∈M.
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Definition
Let (X , µ) and (Y , ν) be standard measure spaces. An ω-closed
set κ ⊆ X × Y is called a set of essential (compact) synthesis if

Mmin(κ) ∩ K(H1,H2) = Mmax(κ) ∩ K(H1,H2)



Sets of essential operator synthesis

I Let Λ = {(x , x) : x ∈ X} and µ be a non-atomic measure.
Then Λ is a set of essential operator synthesis:Λ only supports
operators Mf , f ∈ L∞(X ), as
suppT ⊂ Λ⇔ Mχαc TMχα = 0,∀α ⊂ X ⇔ [T ,Mχα ] = 0,∀α.

I For all p ≥ 1 let Mp(E ) = Mmax(E ) ∩ Sp and let Mf (E ) be
the space of all finite rank operators supported in E .

Lemma
If any compact operator supported in E can be approximated in
weak-∗-topology by operators in Mf (E ) (or M2(E )) then E is a
set of essential synthesis.

Proof.
It is enough to see that Mf (E ) ⊂Mmin(E ). T = IK ∈ S2 is
supported in E iff K vanishes µ× ν a.e. outside E and therefore
〈T ,Φ〉 =

∫
K (x , y)Φ(x , y)dµ(x)dν(y) = 0 whenever Φ ∈ Γ(X ,Y )

vanishes m.a.e. on E . The statement follows from

Mmin(E ) = {h ∈ L2(X )⊗̂L2(Y ) : hχE ' 0}⊥.
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Quasi-diagonal sets and sets of finite width

A set D = {Πj = αj × βj ⊂ X × Y : 1 ≤ j ≤ J} is called a
diagonal system if αi ∩ αj = βi ∩ βj = ∅, i 6= j .
If D = D1 ∨ D2 ∨ ... ∨ Dn where all Dj are diagonal and disjoint
then D is n-diagonal.
Let r(D) = maxj r(Πj), where r(α× β) = min{µ(α), ν(β)}.
A subset E ⊂ X × Y is called n-quasi-diagonal if for each ε > 0
there is an n-diagonal system D = {Πj}Jj=1 with E ⊂ ∪jΠj and
r(D) < ε.

Theorem
Let E ⊂ X × Y be ω-closed.

1. If E is n-quasi-diagonal then Mf (E ) = Mmax(E ) ∩ K = {0}
2. If E = E1 ∪ E2, where E1 is n-quasi-diagonal and E2 is ω-open

then
Mf (E )

||·||
= Mmax(E ) ∩ K.
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Idea of the proof.
1. For D = {Πj = αj × βj : 1 ≤ j ≤ J} let

πD(T ) =
J∑
j

Mχβj
TMχαj

,T ∈ B(H1,H2).

If suppT ⊂ E ⊂ ∪jΠj then T = πD(T ).

If E is n-quasi-diagonal and {D(k)}k is n-diagonal systems
such that r(D(k))→ 0 then for rank one operator T = u ⊗ v

||πD(k)(T )|| ≤ ||πD(k)(T )||2 ≤ C (T )r(D(k))1/2 → 0

and hence

||πD(k)(T )|| → 0 for any T ∈ K(H1,H2)

giving that for T ∈Mmax(E ) ∩ K, T = limπD(k)(T ) = 0.

2. Let D = {Πj}j∈J , E1 ⊂ ∪jΠj , and let D̃ be a complementing
system. Then

T = πD(T ) + πD̃(T ).

For T ∈ K, πD(T )→ 0 when r(D)→ 0.
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πD̃(T ) ∈Mf (E )
||·||

: We can think that rectangles in D̃ are unions
of rectangles that are either in E c or in E2.
If Π ∈ E c then πΠ(T ) = 0 by the definition of the support;

if Π ∈ E2 then πΠ(T ) ∈Mmax(Π) ∩ K ⊂Mf (Π)
||·|| ⊂Mf (E )

||·||

giving the statement.

Corollary

Let E = {(x , y) : fj(x) ≤ gj(y), j = 1, .., n}, fj , gj : X → R. Then

Mf (E )
||·||

= Mmax(E ) ∩ K and hence E is a set of essential
synthesis.

Proposition

If E = E1 ∪ E2, where E1 is n-quasi-diagonal and E2 is ω-open, and
Λ is a set of essential synthesis then E ∪ Λ and E ∩ Λ are sets of
essential synthesis.
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Connection between essential operator synthesis and
essential spectral synthesis

Let G be a locally compact group, A(G ), VN(G ), C ∗r (G ) be the
Fourier algebra, the von Neumann algebra and the reduced
C ∗-algebra of G .
For a closed E ⊆ G let

PM(E ) = {T ∈ VN(G ) : supp
VN(G)

T ⊂ E}

N(E ) = {λ(s) : s ∈ E}w
∗

E is said to a set of essential spectral synthesis if

PM(E ) ∩ C ∗r (G ) = N(E ) ∩ C ∗r (G ).

Theorem
Let G be a second countable locally compact group. Then a closed
set E ⊂ G is a set of essential spectral synthesis iff
E ∗ = {(s, t) : ts−1 ∈ E} is a set of essential operator synthesis.



Idea of the proof

I T ∈ VN(G ), suppVN(G) T ⊂ E ⇒ suppT ⊂ E ∗

I T ∈ VN(G ), u ∈ A(G )⇒ uT =
∑

i Mbi TMai , where∑
i ai (s)bi (t) = u(ts−1) ∈ L∞(G )⊗eh L∞(G )

I T ∈ C ∗r (G )⇒ MbTMa ∈ K(L2(G )), a, b ∈ C0(G )

I T ∈ K(L2(G )), suppT ⊂ E ∗ ⇒ Ea⊗b(T ) ∈ C ∗r (G ),
a, b ∈ L2(G ), where

〈Ea⊗b(T ), ϕ〉 = 〈T ,Nϕ(a⊗ b)〉

Nϕ(s, t) = u(ts−1)
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Example

I (Sn)∗ is not a set of essential operator synthesis for n ≥ 3.

I (S1)∗, (S2)∗ are sets of essential synthesis.

I E ∗ is a set of essential operator synthesis if E is a set of
uniqueness.

Proposition

For F =
∑

ai ⊗ bi ∈ L∞(X )⊗eh L∞(Y ) and T ∈ B(L2(X ), L2(Y ))
let F · T =

∑
i Mbi TMai .

If F1,F2 ∈ L∞(X )⊗eh L∞(Y ) and null F1 = null F2 is a set of
essential synthesis then for T ∈ K

F1 · T = 0 iff F2 · T = 0.



Example

I (Sn)∗ is not a set of essential operator synthesis for n ≥ 3.

I (S1)∗, (S2)∗ are sets of essential synthesis.

I E ∗ is a set of essential operator synthesis if E is a set of
uniqueness.

Proposition

For F =
∑

ai ⊗ bi ∈ L∞(X )⊗eh L∞(Y ) and T ∈ B(L2(X ), L2(Y ))
let F · T =

∑
i Mbi TMai .

If F1,F2 ∈ L∞(X )⊗eh L∞(Y ) and null F1 = null F2 is a set of
essential synthesis then for T ∈ K

F1 · T = 0 iff F2 · T = 0.



THANK YOU!


