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Spectral synthesis

Let G be a locally compact group.

B(G ) is the collection of all functions u : G → C of the form
u(t) = (π(t)ξ, η), where π is a continuous unitary representation
of G on H and ξ, η ∈ H.

A(G ) is the collection of functions of the form u(t) = (λtξ, η),
where λ : G → B(L2(G )) is the left regular representation of G :

λtξ(s) = ξ(t−1s), ξ ∈ L2(G ).

B(G ) is a Banach algebra under pointwise operations and A(G ) is
an ideal of B(G ).

‖u‖B(G) = inf{‖ξ‖‖η‖ : u(·) = (π(·)ξ, η)}.
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Spectral synthesis

A(G ) is a regular commutative semi-simple Banach algebra.

If J ⊆ A(G ) is an ideal, we let

null J = {t ∈ G : u(t) = 0, for all u ∈ I}.

Given E ⊆ G closed, let

I (E ) = {u ∈ A(G ) : u|E = 0},

J(E ) = {u ∈ A(G ) : u = 0 on a neighbhd of E}.

null I (E ) = null J(E ) = E

If J ⊆ A(G ) closed ideal with null J = E then

J(E ) ⊆ J ⊆ I (E ).

E satisfies spectral synthesis if J(E ) = I (E ).



Spectral synthesis

A(G ) is a regular commutative semi-simple Banach algebra.

If J ⊆ A(G ) is an ideal, we let

null J = {t ∈ G : u(t) = 0, for all u ∈ I}.

Given E ⊆ G closed, let

I (E ) = {u ∈ A(G ) : u|E = 0},

J(E ) = {u ∈ A(G ) : u = 0 on a neighbhd of E}.

null I (E ) = null J(E ) = E

If J ⊆ A(G ) closed ideal with null J = E then

J(E ) ⊆ J ⊆ I (E ).

E satisfies spectral synthesis if J(E ) = I (E ).



Spectral synthesis

A(G ) is a regular commutative semi-simple Banach algebra.

If J ⊆ A(G ) is an ideal, we let

null J = {t ∈ G : u(t) = 0, for all u ∈ I}.

Given E ⊆ G closed, let

I (E ) = {u ∈ A(G ) : u|E = 0},

J(E ) = {u ∈ A(G ) : u = 0 on a neighbhd of E}.

null I (E ) = null J(E ) = E

If J ⊆ A(G ) closed ideal with null J = E then

J(E ) ⊆ J ⊆ I (E ).

E satisfies spectral synthesis if J(E ) = I (E ).



Spectral synthesis

A(G ) is a regular commutative semi-simple Banach algebra.

If J ⊆ A(G ) is an ideal, we let

null J = {t ∈ G : u(t) = 0, for all u ∈ I}.

Given E ⊆ G closed, let

I (E ) = {u ∈ A(G ) : u|E = 0},

J(E ) = {u ∈ A(G ) : u = 0 on a neighbhd of E}.

null I (E ) = null J(E ) = E

If J ⊆ A(G ) closed ideal with null J = E then

J(E ) ⊆ J ⊆ I (E ).

E satisfies spectral synthesis if J(E ) = I (E ).



Spectral synthesis

A(G ) is a regular commutative semi-simple Banach algebra.

If J ⊆ A(G ) is an ideal, we let

null J = {t ∈ G : u(t) = 0, for all u ∈ I}.

Given E ⊆ G closed, let

I (E ) = {u ∈ A(G ) : u|E = 0},

J(E ) = {u ∈ A(G ) : u = 0 on a neighbhd of E}.

null I (E ) = null J(E ) = E

If J ⊆ A(G ) closed ideal with null J = E then

J(E ) ⊆ J ⊆ I (E ).

E satisfies spectral synthesis if J(E ) = I (E ).



Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X , µ) and (Y , ν) be standard measure spaces and κ ⊆ X ×Y .

(i) κ is called marginally null (denoted κ ' ∅) if
κ ⊆ (M × Y ) ∪ (X × N), where M and N are null.

(ii) κ is said to be marginally equivalent to another subset
κ′ ⊆ X × Y if κ∆κ′ is marginally null.

(iii) κ is called ω-open if κ is marginally equivalent to subset of the
form ∪∞i=1κi , where the sets κi are rectangles.

(iv) κ is called ω-closed if κc is ω-open.

(v) An operator T ∈ B(L2(X ), L2(Y )) is supported on κ if

(α× β) ∩ κ ' ∅ ⇒ P(β)TP(α) = 0,

where P(α) is the projection from L2(X ) onto L2(α).
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Operator synthesis

Let Γ(X ,Y ) = L2(X )⊗̂L2(Y ).

An element h ∈ Γ(X ,Y ) can be identified with a function, defined
up to a marginally null set,

h(x , y) =
∞∑
i=1

fi (x)gi (y), x ∈ X , y ∈ Y .

Call a subspace V ⊆ Γ(X ,Y ) invariant if ahb ∈ V for every h ∈ V ,
a ∈ L∞(X ), b ∈ L∞(Y ).

Define the null set of V as the biggest (with respect to marginal
inclusion) ω-closed set E ⊆ X × Y such that h|E = 0 for every
h ∈ V .
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Operator synthesis

Given an ω-closed set κ ⊆ X × Y , let

Φ(κ) = {h ∈ Γ(X ,Y ) : h|κ = 0},

Ψ(κ) = {h ∈ Γ(X ,Y ) : h = 0 on an ω-open neighbhd of κ}.

If V ⊆ Γ(X ,Y ) is a closed invariant subspace with nullV = κ then

Ψ(κ) ⊆ V ⊆ Φ(κ).

κ satisfies operator synthesis if Φ(κ) = Ψ(κ).



Operator synthesis

Given an ω-closed set κ ⊆ X × Y , let

Φ(κ) = {h ∈ Γ(X ,Y ) : h|κ = 0},

Ψ(κ) = {h ∈ Γ(X ,Y ) : h = 0 on an ω-open neighbhd of κ}.

If V ⊆ Γ(X ,Y ) is a closed invariant subspace with nullV = κ then

Ψ(κ) ⊆ V ⊆ Φ(κ).

κ satisfies operator synthesis if Φ(κ) = Ψ(κ).



Operator synthesis

Given an ω-closed set κ ⊆ X × Y , let

Φ(κ) = {h ∈ Γ(X ,Y ) : h|κ = 0},

Ψ(κ) = {h ∈ Γ(X ,Y ) : h = 0 on an ω-open neighbhd of κ}.

If V ⊆ Γ(X ,Y ) is a closed invariant subspace with nullV = κ then

Ψ(κ) ⊆ V ⊆ Φ(κ).

κ satisfies operator synthesis if Φ(κ) = Ψ(κ).



The dual perspective

Let H1 = L2(X ), H2 = L2(Y ).

Γ(X ,Y )∗ = B(H1,H2).

DX ≡ L∞(X ), DY ≡ L∞(Y ).

A masa-bimodule is a subspace U ⊆ B(H1,H2) such that
DYUDX ⊆ U .

Given masa-bimodule U , the support of U is the smallest ω-closed
set κ such that every operator in U is supported on κ.

Let Mmax(κ) = Ψ(κ)⊥ and Mmin(κ) = Φ(κ)⊥.

κ satisfies operator synthesis if and only if Mmax(κ) = Mmin(κ).
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Connections with reflexivity

The notion of reflexivity has origins in the study of invariant
subspaces.

Given U ⊆ B(H1,H2), let

Ref U = {T ∈ B(H1,H2) : T ξ ∈ Uξ, ∀ξ ∈ H1}.

The space U is called reflexive if U = Ref U .

It is called transitive if Ref U = B(H1,H2).

Arvseon’s Transitivity Theorem, 1974

If U is a transitive masa-bimodule then U is weak* dense in
B(H1,H2).

Erdos, Katavolos, Shulman, 1998: A weak* closed masa-bimodule
U ⊆ B(H1,H2) is reflexive if and only if U = Mmax(κ) for some
ω-closed set κ ⊆ X × Y .
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Connections between specral and operator synthesis

Let G be a second countable locally compact group equipped with
left Haar measure and E ⊆ G be a closed set.

Let E ∗ = {(s, t) : ts−1 ∈ E} ⊆ G × G .

Theorem (Ludwig-Turowska, 2006)

E satisfies local spectral synthesis if and only of E ∗ satisfies
operator synthesis.

Spronk-Turowska, 2002: the case G is compact.

Note that in this case local spectral synthesis is equivalent to
spectral synthesis.

Froelich, 1988: the case G is abelian
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Examples of (operator) synthetic sets

Ternary sets

f : X → R, g : Y → R
{(x , y) ∈ X × Y : f (x) = g(y)} satisfies operator synthesis
(Shulman, Katavolos-T)

In Harmonic Analysis, the analogous sets are translates of
closed subgroups.

Sets of finite width

fi : X → R, gi : Y → R
{(x , y) ∈ X × Y : fi (x) ≤ gi (y), i = 1, . . . , n} satisfies
operator synthesis (Turowska, T.)

In Harmonic Analysis, the analogous sets are
{t ∈ G : ωi (s) ≤ ri , i = 1, . . . , n}, where ωi : G → R+

continuous homomorphisms.
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Schur multipliers

Let (X , µ) and (Y , ν) be standard measure spaces.

For a function ϕ ∈ L∞(X × Y ), let Sϕ : L2(X × Y )→ L2(X × Y )
be the corresponding multiplication operator

Sϕξ = ϕξ.

The space L2(X × Y ) can be identified with the Hilbert-Schmidt
class in B(L2(X ), L2(Y )) by

ξ −→ Tξ, Tξf (y) =

∫
X
ξ(x , y)f (x)dµ(x).

Set ‖ξ‖op = ‖Tξ‖op
A function ϕ ∈ L∞(X × Y ) is called a Schur multiplier if there
exists C > 0 such that

‖Sϕξ‖op ≤ C‖ξ‖op, ξ ∈ L2(X × Y ).
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Schur multipliers as completely bounded modular maps

Let S(X ,Y ) be the class of all Schur multipliers and write DX

(resp. DY ) for the multiplication masa of L∞(X ) (resp. L∞(Y )).

If ϕ ∈ S then Sϕ extends by continuity to a bounded operator on
the space of compact operators:

Sϕ : K(L2(X ), L2(Y ))→ K(L2(X ), L2(Y )),

and after passing to the second dual, to a bounded operator

Sϕ : B(L2(X ), L2(Y ))→ B(L2(X ), L2(Y )).

Sϕ is moreover modular in the sense that

Sϕ(BTA) = BSϕ(T )A, A ∈ DX ,B ∈ DY ,T ∈ B(L2(X ), L2(Y )).

By a result of Smith, Sϕ is completely bounded.

Weak* closed masa-bimodules are precisely the weak* closed
invariant subspaces of Schur multipliers.
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A characterisation of Schur multipliers

Peller’s Theorem (1985)

The following are equivalent:

(i) ϕ is a Schur multiplier;

(ii) there exist families {ak}∞k=1 ⊆ L∞(X ) and {bk}∞k=1 ⊆ L∞(Y )
and a constant C > 0 such that esssupx∈X

∑∞
k=1 |ak(x)|2 ≤ C ,

esssupy∈Y
∑∞

k=1 |bk(y)|2 ≤ C and

ϕ(x , y) =
∞∑
k=1

ak(x)bk(y), a.e. on X × Y ;

(iii) ϕΓ(X ,Y ) ⊆ Γ(X ,Y ).

SϕSψ = Sϕψ.

Schur idempotents, I: idempotent Schur multipliers (φ2 = φ),
Katavolos-Pauslen (2006).
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Multipliers of Fourier algebras

G locally compact group.

MA(G ) = {g ∈ C (G ) : gf ∈ A(G ), for all f ∈ A(G )}.

Cowling-Haagerup:
McbA(G ) = {g ∈ MA(G ) : f → gf completely bounded}.

A(G )∗ = VN(G )
def
= [λs : s ∈ G ]

WOT
.

If f : G → C, let Nf : G × G → C, Nf (s, t) = f (ts−1).

Theorem (Gilbert, Bozejko-Fendler,. . . )

f ∈ McbA(G ) if and only if Nf is a Schur multiplier.

Proof also given by Jolissaint (1992), extended by Spronk (2004).
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The union problem

Problem - HA

Given two closed synthetic sets E ,F ⊆ G , is E ∪ F synthetic?

Problem - OA

Given two ω-closed operator synthetic sets κ, λ ⊆ X × Y , is κ ∪ λ
operator synthetic?

Ludwig-Turowska, Shulman-Turowska, T: The union of an
operator synthetic set and a ternary set is operator synthetic.

Ternary are the sets {(x , y) : f (x) = g(y)}. They are the supports
of “ternary” masa-bimodules, that is, masa-bimodules U such that
UU∗U ⊆ U .
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Extension of the union problem

Question

Suppose that U and V are reflexive masa-bimodules. Is U + Vw
∗

reflexive?

Suppose that U = Mmax(κ) and V = Mmax(λ) with κ and λ

operator synthetic. If U + Vw
∗

is reflexive then κ ∪ λ is operator
synthetic.
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Schur idempoents

If φ = Sχκ is a Schur idempotent then Sχκ has range Mmax(κ) and
κ is ω-clopen and hence operator synthetic.

A masa-bimodule U is called I-injective if U = Ranφ for a Schur
idempotent φ.

U is called approximately I-injective if U = ∩∞n=1Ranφn, where
(φn) is a uniformly bounded sequence of Schur idempotents.

We can call an ω-closed set κ approximately I-injective if κ
supports an approximately I-injective masa-bimodule.

An example: ternary sets {(x , y) : f (x) = g(y)}.

Theorem (Eleftherakis-T, 2011)

The weak* closed linear span of a reflexive masa-bimodule and an
approximately injective masa-bimodule is automatically reflexive.
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The simplest case

Let U be a reflexive masa-bimodule and V = Ranφ, where φ is a
Schur idempotent.

Then the algebraic sum U + V is automatically reflexive.

Let T ∈ Ref(U + V).

Then φ(T ) ∈ V and

φ⊥(T ) ∈ Ref(φ⊥(U + V)) ⊆ Ref U = U .

Thus, T = φ⊥(T ) + φ(T ) ∈ U + V.
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The approximately I-injective case

Let U be a reflexive masa-bimodule and V = ∩∞n=1Ranφn, where
(φn)n∈N is a uniformly bounded sequence of Schur idempotents.

Then U + Vw
∗

is automatically reflexive.

Let T ∈ Ref(U + V).

Then φn(T ) ∈ V and

φ⊥n (T ) ∈ Ref(φ⊥n (U + V)) ⊆ Ref U = U .

Take a weak* cluster point S of (φn(T ))n∈N.

Then T = (T − S) + S ∈ U + Vw
∗
.
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Approximately I-decomposable masa-bimodules

Approximately I-injective masa-bimodules are a subclass of the
approximately I-decomposable ones.

A masa-bimodule U is called approximately I-decomposable if
there exists a constant C > 0 and, for each n ∈ N, Schur
idempotents φn and ψn such that

U ⊆ Ranφn + Ranψn, for all n;

Ranφn ⊆ U , for all n;

‖φn‖ ≤ C , for all n;

lim supRanψn ⊆ U .

For example, “nest algebra bimodules” (whose supports are the
sets of the form {(x , y) : f (x) ≤ g(y)}) are approximately
decomposable.

Key technical tool: the intersection formula

∩ni=1U + Vi
w∗

= U + ∩ni=1Vi
w∗
.
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Preservation of reflexivity

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an
approximately I-decomposable masa-bimodule is automatically
reflexive.

Corollary

Let κ be the support of an operator synthetic approximately
I-decomposable masa-bimodule. If λ is an operator synthetic set
then κ ∪ λ is operator synthetic.

In particular, this conclusion holds if κ is a set of finite width:

κ = {(x , y) : fi (x) ≤ gi (y), i = 1, . . . , n}.
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A consequence for spectral synthesis

Let us call s set E ⊆ G a level set if

E = {t ∈ G : ω(t) ≤ ri},

where ω : G → R is a continuous homomorpshim.

Corollary

Suppose that F ⊆ G satisfies spectral synthesis, while Ei is a level
set, i = 1, . . . , n. Then F ∪ (∩ni=1Ei ) satisfies spectral synthesis.
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Products

Question

If κ1 and κ2 are (operator) synthetic sets, is κ1 × κ2 (operator)
synthetic?

A small rearrangement of variables is needed:

κ1 ⊆ X1 × Y1, κ2 ⊆ X2 × Y2.

Mmax(κ1)⊗̄Mmax(κ2) is an L∞(Y1 × Y2),L∞(X1 × X2)-module.

Thus, we should be looking at the set ρ(κ1 × κ2), where

ρ : (x1, y1, x2, y2) −→ (x1, y1, x2, y2).
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Kraus’ property Sσ

Let ω ∈ B(H1,H2)∗. The right Tomiyama’s slice map

Rω : B(H1 ⊗ K1,H2 ⊗ K2)→ B(K1,K2)

is given by

Rω(A⊗ B) = ω(A)B, A ∈ B(H1,H2),B ∈ B(K1,K2).

The Fubini product of V and U is

F(V,U) = {T ∈ V⊗̄B(K1 ⊗ K2) : Rω(T ) ∈ U , ∀ω ∈ B(K1,K2)∗}.

A weak* closed subspace V ⊆ B(H1,H2) possesses property Sσ if

V⊗̄U = F(V,U), ∀ U ⊆ B(K1,K2).
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Preservation of Sσ

Kraus, 1983: B(H1,H2) possess property Sσ. Thus

F(V,U) = (V⊗̄B(K1,K2)) ∩ (B(H1,H2)⊗̄U).

Hopenwasser-Kraus, 1983 (can be generalised to):

Theorem

Every masa-bimodule of finite width possesses Sσ.

V is of finite width if V = Mmax(κ), foe some subset κ of finite
width.

Theorem (Eleftherakis-T, 2013)

If B is a masa-bimodule of finite width then

F(V + Bw
∗
,U) = F(V,U) + B ⊗ Uw∗

.

In particular, if V has Sσ then so does V + Bw
∗
.
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Connections between synthesis and property Sσ

Proposition

Let κ and λ be operator synhetic sets. The following are
equivalent:
(i) ρ(κ× λ) is operator synthetic;
(ii) F(Mmax(κ),Mmax(λ)) = Mmax(κ)⊗̄Mmax(λ).

Corollary

Suppose that Mmax(κ) possesses property Sσ. Then ρ(κ× λ) is
operator synthetic for every operator synthetic set λ.
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More intersection formulas

Can we formulate sufficient conditions for the operator synthesis of
sets of the form

∪ni=1ρ(κi × λi ) ?

This question can be approached, once again, with the use of
Schur idempotents.

Theorem (Eleftherakis-T, 2013)

If {Bpjp}
mp

jp=1 are families of masa-bimodules of finite width and Up
are weak* closed spaces of operators, p = 1, . . . , r , then⋂
j1,...,jr

B1j1 ⊗ U1 + · · ·+ Brjr ⊗ Ur = (∩j1B1j1)⊗ U1 + · · ·+ (∩jrB1jr )⊗ Ur .
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Consequences for operator and spectral synthesis

Theorem (Eleftherakis-T, 2013)

Let κi ⊆ X1 × X2 be a set of finite width, and let λi ⊆ Y1 × Y2 be
an ω-closed set, i = 1, . . . , r . Suppose that ∪pk=1λmk

is operator
synthetic whenever 1 ≤ m1 < m2 < · · · < mp ≤ r . Then the set
ρ(∪ri=1κi × λi ) is operator synthetic.

Corollary

Let G and H be second countable locally compact groups.
Suppose that E1, . . . ,Er are finite intersections of level sets in G
and F1, . . . ,Fr are closed subsets of H such that ∪pk=1Fmk

is a set
of local spectral synthesis whenever 1 ≤ m1 < m2 < · · · < mp ≤ r .
Then the set ∪ri=1Ei × Fi is a set of local spectral synthesis of
G × H.
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