Operator synthesis: unions and products

Ivan Todorov
(joint work with G. K. Eleftherakis)

21 May 2013
Granada

Content

- Spectral synthesis

Content

- Spectral synthesis
- Operator synthesis

Content

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis

Content

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis
- The union problem and its operator versions

Content

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis
- The union problem and its operator versions
- The use of idempotents

Content

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis
- The union problem and its operator versions
- The use of idempotents
- Tensor products and property S_{σ}

Content

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis
- The union problem and its operator versions
- The use of idempotents
- Tensor products and property S_{σ}
- Preservation properties

Spectral synthesis

Let G be a locally compact group.
$B(G)$ is the collection of all functions $u: G \rightarrow \mathbb{C}$ of the form $u(t)=(\pi(t) \xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.

Spectral synthesis

Let G be a locally compact group.
$B(G)$ is the collection of all functions $u: G \rightarrow \mathbb{C}$ of the form $u(t)=(\pi(t) \xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.
$A(G)$ is the collection of functions of the form $u(t)=\left(\lambda_{t} \xi, \eta\right)$, where $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ is the left regular representation of G :

Spectral synthesis

Let G be a locally compact group.
$B(G)$ is the collection of all functions $u: G \rightarrow \mathbb{C}$ of the form $u(t)=(\pi(t) \xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.
$A(G)$ is the collection of functions of the form $u(t)=\left(\lambda_{t} \xi, \eta\right)$, where $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ is the left regular representation of G :

$$
\lambda_{t} \xi(s)=\xi\left(t^{-1} s\right), \quad \xi \in L^{2}(G)
$$

Spectral synthesis

Let G be a locally compact group.
$B(G)$ is the collection of all functions $u: G \rightarrow \mathbb{C}$ of the form $u(t)=(\pi(t) \xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.
$A(G)$ is the collection of functions of the form $u(t)=\left(\lambda_{t} \xi, \eta\right)$, where $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ is the left regular representation of G :

$$
\lambda_{t} \xi(s)=\xi\left(t^{-1} s\right), \quad \xi \in L^{2}(G)
$$

$B(G)$ is a Banach algebra under pointwise operations and $A(G)$ is an ideal of $B(G)$.

$$
\|u\|_{B(G)}=\inf \{\|\xi\|\|\eta\|: u(\cdot)=(\pi(\cdot) \xi, \eta)\}
$$

Spectral synthesis

$A(G)$ is a regular commutative semi-simple Banach algebra.
If $J \subseteq A(G)$ is an ideal, we let

$$
\text { null } J=\{t \in G: u(t)=0, \text { for all } u \in I\} .
$$

Spectral synthesis

$A(G)$ is a regular commutative semi-simple Banach algebra.
If $J \subseteq A(G)$ is an ideal, we let

$$
\text { null } J=\{t \in G: u(t)=0, \text { for all } u \in I\}
$$

Given $E \subseteq G$ closed, let

$$
\begin{gathered}
I(E)=\left\{u \in A(G):\left.u\right|_{E}=0\right\}, \\
J(E)=\frac{\{u \in A(G): u=0 \text { on a neighbhd of } E\}}{} .
\end{gathered}
$$

Spectral synthesis

$A(G)$ is a regular commutative semi-simple Banach algebra.
If $J \subseteq A(G)$ is an ideal, we let

$$
\text { null } J=\{t \in G: u(t)=0, \text { for all } u \in I\}
$$

Given $E \subseteq G$ closed, let

$$
\begin{gathered}
I(E)=\left\{u \in A(G):\left.u\right|_{E}=0\right\}, \\
J(E)=\frac{\{u \in A(G): u=0 \text { on a neighbhd of } E\}}{} .
\end{gathered}
$$

$\operatorname{null} I(E)=\operatorname{null} J(E)=E$

Spectral synthesis

$A(G)$ is a regular commutative semi-simple Banach algebra.
If $J \subseteq A(G)$ is an ideal, we let

$$
\text { null } J=\{t \in G: u(t)=0, \text { for all } u \in I\}
$$

Given $E \subseteq G$ closed, let

$$
\begin{gathered}
I(E)=\left\{u \in A(G):\left.u\right|_{E}=0\right\}, \\
J(E)=\frac{\{u \in A(G): u=0 \text { on a neighbhd of } E\}}{} .
\end{gathered}
$$

$\operatorname{null} I(E)=\operatorname{null} J(E)=E$
If $J \subseteq A(G)$ closed ideal with null $J=E$ then

$$
J(E) \subseteq J \subseteq I(E)
$$

Spectral synthesis

$A(G)$ is a regular commutative semi-simple Banach algebra.
If $J \subseteq A(G)$ is an ideal, we let

$$
\text { null } J=\{t \in G: u(t)=0, \text { for all } u \in I\}
$$

Given $E \subseteq G$ closed, let

$$
\begin{gathered}
I(E)=\left\{u \in A(G):\left.u\right|_{E}=0\right\}, \\
J(E)=\overline{\{u \in A(G): u=0 \text { on a neighbhd of } E\}} .
\end{gathered}
$$

null $I(E)=\operatorname{null} J(E)=E$
If $J \subseteq A(G)$ closed ideal with null $J=E$ then

$$
J(E) \subseteq J \subseteq I(E)
$$

E satisfies spectral synthesis if $J(E)=I(E)$.

Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$.

Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$.
(i) κ is called marginally null (denoted $\kappa \simeq \emptyset$) if
$\kappa \subseteq(M \times Y) \cup(X \times N)$, where M and N are null.

Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$.
(i) κ is called marginally null (denoted $\kappa \simeq \emptyset$) if $\kappa \subseteq(M \times Y) \cup(X \times N)$, where M and N are null.
(ii) κ is said to be marginally equivalent to another subset $\kappa^{\prime} \subseteq X \times Y$ if $\kappa \Delta \kappa^{\prime}$ is marginally null.

Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$.
(i) κ is called marginally null (denoted $\kappa \simeq \emptyset$) if
$\kappa \subseteq(M \times Y) \cup(X \times N)$, where M and N are null.
(ii) κ is said to be marginally equivalent to another subset
$\kappa^{\prime} \subseteq X \times Y$ if $\kappa \Delta \kappa^{\prime}$ is marginally null.
(iii) κ is called ω-open if κ is marginally equivalent to subset of the form $\cup_{i=1}^{\infty} \kappa_{i}$, where the sets κ_{i} are rectangles.

Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$.
(i) κ is called marginally null (denoted $\kappa \simeq \emptyset$) if
$\kappa \subseteq(M \times Y) \cup(X \times N)$, where M and N are null.
(ii) κ is said to be marginally equivalent to another subset
$\kappa^{\prime} \subseteq X \times Y$ if $\kappa \Delta \kappa^{\prime}$ is marginally null.
(iii) κ is called ω-open if κ is marginally equivalent to subset of the form $\cup_{i=1}^{\infty} \kappa_{i}$, where the sets κ_{i} are rectangles.
(iv) κ is called ω-closed if κ^{c} is ω-open.

Pseudo-closed sets

Arveson (1974), Erdos-Katavolos-Shulman (1998)
Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$.
(i) κ is called marginally null (denoted $\kappa \simeq \emptyset$) if
$\kappa \subseteq(M \times Y) \cup(X \times N)$, where M and N are null.
(ii) κ is said to be marginally equivalent to another subset $\kappa^{\prime} \subseteq X \times Y$ if $\kappa \Delta \kappa^{\prime}$ is marginally null.
(iii) κ is called ω-open if κ is marginally equivalent to subset of the form $\cup_{i=1}^{\infty} \kappa_{i}$, where the sets κ_{i} are rectangles.
(iv) κ is called ω-closed if κ^{c} is ω-open.
(v) An operator $T \in \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)$ is supported on κ if

$$
(\alpha \times \beta) \cap \kappa \simeq \emptyset \Rightarrow P(\beta) T P(\alpha)=0,
$$

where $P(\alpha)$ is the projection from $L^{2}(X)$ onto $L^{2}(\alpha)$.

Operator synthesis

$$
\text { Let } \Gamma(X, Y)=L^{2}(X) \hat{\otimes} L^{2}(Y)
$$

An element $h \in \Gamma(X, Y)$ can be identified with a function, defined up to a marginally null set,

$$
h(x, y)=\sum_{i=1}^{\infty} f_{i}(x) g_{i}(y), \quad x \in X, y \in Y
$$

Operator synthesis

$$
\text { Let } \Gamma(X, Y)=L^{2}(X) \hat{\otimes} L^{2}(Y)
$$

An element $h \in \Gamma(X, Y)$ can be identified with a function, defined up to a marginally null set,

$$
h(x, y)=\sum_{i=1}^{\infty} f_{i}(x) g_{i}(y), \quad x \in X, y \in Y
$$

Call a subspace $V \subseteq \Gamma(X, Y)$ invariant if $a h b \in V$ for every $h \in V$, $a \in L^{\infty}(X), b \in L^{\infty}(Y)$.

Operator synthesis

$$
\text { Let } \Gamma(X, Y)=L^{2}(X) \hat{\otimes} L^{2}(Y)
$$

An element $h \in \Gamma(X, Y)$ can be identified with a function, defined up to a marginally null set,

$$
h(x, y)=\sum_{i=1}^{\infty} f_{i}(x) g_{i}(y), \quad x \in X, y \in Y
$$

Call a subspace $V \subseteq \Gamma(X, Y)$ invariant if $a h b \in V$ for every $h \in V$, $a \in L^{\infty}(X), b \in L^{\infty}(Y)$.

Define the null set of V as the biggest (with respect to marginal inclusion) ω-closed set $E \subseteq X \times Y$ such that $\left.h\right|_{E}=0$ for every $h \in V$.

Operator synthesis

Given an ω-closed set $\kappa \subseteq X \times Y$, let

$$
\Phi(\kappa)=\left\{h \in \Gamma(X, Y):\left.h\right|_{\kappa}=0\right\}
$$

$$
\Psi(\kappa)=\overline{\{h \in \Gamma(X, Y): h=0 \text { on an } \omega \text {-open neighbhd of } \kappa\}}
$$

Operator synthesis

Given an ω-closed set $\kappa \subseteq X \times Y$, let

$$
\Phi(\kappa)=\left\{h \in \Gamma(X, Y):\left.h\right|_{\kappa}=0\right\}
$$

$$
\Psi(\kappa)=\overline{\{h \in \Gamma(X, Y): h=0 \text { on an } \omega \text {-open neighbhd of } \kappa\}}
$$

If $V \subseteq \Gamma(X, Y)$ is a closed invariant subspace with null $V=\kappa$ then

$$
\Psi(\kappa) \subseteq V \subseteq \Phi(\kappa)
$$

Operator synthesis

Given an ω-closed set $\kappa \subseteq X \times Y$, let

$$
\Phi(\kappa)=\left\{h \in \Gamma(X, Y):\left.h\right|_{\kappa}=0\right\}
$$

$$
\Psi(\kappa)=\overline{\{h \in \Gamma(X, Y): h=0 \text { on an } \omega \text {-open neighbhd of } \kappa\}}
$$

If $V \subseteq \Gamma(X, Y)$ is a closed invariant subspace with null $V=\kappa$ then

$$
\Psi(\kappa) \subseteq V \subseteq \Phi(\kappa)
$$

κ satisfies operator synthesis if $\Phi(\kappa)=\Psi(\kappa)$.

The dual perspective

Let $H_{1}=L^{2}(X), H_{2}=L^{2}(Y)$.

$$
\begin{aligned}
& \Gamma(X, Y)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right) \\
& \mathcal{D}_{X} \equiv L^{\infty}(X), \mathcal{D}_{Y} \equiv L^{\infty}(Y)
\end{aligned}
$$

The dual perspective

Let $H_{1}=L^{2}(X), H_{2}=L^{2}(Y)$.
$\Gamma(X, Y)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right)$.
$\mathcal{D}_{X} \equiv L^{\infty}(X), \mathcal{D}_{Y} \equiv L^{\infty}(Y)$.
A masa-bimodule is a subspace $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ such that $\mathcal{D}_{Y} \mathcal{U D}_{X} \subseteq \mathcal{U}$.

The dual perspective

Let $H_{1}=L^{2}(X), H_{2}=L^{2}(Y)$.
$\Gamma(X, Y)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right)$.
$\mathcal{D}_{X} \equiv L^{\infty}(X), \mathcal{D}_{Y} \equiv L^{\infty}(Y)$.
A masa-bimodule is a subspace $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ such that $\mathcal{D}_{Y} \mathcal{U} \mathcal{D}_{X} \subseteq \mathcal{U}$.

Given masa-bimodule \mathcal{U}, the support of \mathcal{U} is the smallest ω-closed set κ such that every operator in \mathcal{U} is supported on κ.

The dual perspective

Let $H_{1}=L^{2}(X), H_{2}=L^{2}(Y)$.
$\Gamma(X, Y)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right)$.
$\mathcal{D}_{X} \equiv L^{\infty}(X), \mathcal{D}_{Y} \equiv L^{\infty}(Y)$.
A masa-bimodule is a subspace $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ such that $\mathcal{D}_{Y} \mathcal{U} \mathcal{D}_{X} \subseteq \mathcal{U}$.

Given masa-bimodule \mathcal{U}, the support of \mathcal{U} is the smallest ω-closed set κ such that every operator in \mathcal{U} is supported on κ.

Let $\mathfrak{M}_{\text {max }}(\kappa)=\Psi(\kappa)^{\perp}$ and $\mathfrak{M}_{\text {min }}(\kappa)=\Phi(\kappa)^{\perp}$.

The dual perspective

Let $H_{1}=L^{2}(X), H_{2}=L^{2}(Y)$.
$\Gamma(X, Y)^{*}=\mathcal{B}\left(H_{1}, H_{2}\right)$.
$\mathcal{D}_{X} \equiv L^{\infty}(X), \mathcal{D}_{Y} \equiv L^{\infty}(Y)$.
A masa-bimodule is a subspace $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ such that $\mathcal{D}_{Y} \mathcal{U} \mathcal{D}_{X} \subseteq \mathcal{U}$.

Given masa-bimodule \mathcal{U}, the support of \mathcal{U} is the smallest ω-closed set κ such that every operator in \mathcal{U} is supported on κ.

Let $\mathfrak{M}_{\text {max }}(\kappa)=\Psi(\kappa)^{\perp}$ and $\mathfrak{M}_{\text {min }}(\kappa)=\Phi(\kappa)^{\perp}$.
κ satisfies operator synthesis if and only if $\mathfrak{M}_{\max }(\kappa)=\mathfrak{M}_{\min }(\kappa)$.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

Given $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$, let

$$
\operatorname{Ref} \mathcal{U}=\left\{T \in \mathcal{B}\left(H_{1}, H_{2}\right): T \xi \in \overline{\mathcal{U} \xi}, \forall \xi \in H_{1}\right\}
$$

The space \mathcal{U} is called reflexive if $\mathcal{U}=\operatorname{Ref} \mathcal{U}$.
It is called transitive if $\operatorname{Ref} \mathcal{U}=\mathcal{B}\left(H_{1}, H_{2}\right)$.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

Given $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$, let

$$
\operatorname{Ref} \mathcal{U}=\left\{T \in \mathcal{B}\left(H_{1}, H_{2}\right): T \xi \in \overline{\mathcal{U} \xi}, \forall \xi \in H_{1}\right\}
$$

The space \mathcal{U} is called reflexive if $\mathcal{U}=\operatorname{Ref} \mathcal{U}$.
It is called transitive if $\operatorname{Ref} \mathcal{U}=\mathcal{B}\left(H_{1}, H_{2}\right)$.

Arvseon's Transitivity Theorem, 1974

If \mathcal{U} is a transitive masa-bimodule then \mathcal{U} is weak* dense in $\mathcal{B}\left(H_{1}, H_{2}\right)$.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

Given $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$, let

$$
\operatorname{Ref} \mathcal{U}=\left\{T \in \mathcal{B}\left(H_{1}, H_{2}\right): T \xi \in \overline{\mathcal{U} \xi}, \forall \xi \in H_{1}\right\}
$$

The space \mathcal{U} is called reflexive if $\mathcal{U}=\operatorname{Ref} \mathcal{U}$.
It is called transitive if $\operatorname{Ref} \mathcal{U}=\mathcal{B}\left(H_{1}, H_{2}\right)$.

Arvseon's Transitivity Theorem, 1974

If \mathcal{U} is a transitive masa-bimodule then \mathcal{U} is weak* dense in $\mathcal{B}\left(H_{1}, H_{2}\right)$.

Erdos, Katavolos, Shulman, 1998: A weak* closed masa-bimodule $\mathcal{U} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ is reflexive if and only if $\mathcal{U}=\mathfrak{M}_{\max }(\kappa)$ for some ω-closed set $\kappa \subseteq X \times Y$.

Connections between specral and operator synthesis

Let G be a second countable locally compact group equipped with left Haar measure and $E \subseteq G$ be a closed set.

Connections between specral and operator synthesis

Let G be a second countable locally compact group equipped with left Haar measure and $E \subseteq G$ be a closed set.

Let $E^{*}=\left\{(s, t): t s^{-1} \in E\right\} \subseteq G \times G$.

Connections between specral and operator synthesis

Let G be a second countable locally compact group equipped with left Haar measure and $E \subseteq G$ be a closed set.

Let $E^{*}=\left\{(s, t): t s^{-1} \in E\right\} \subseteq G \times G$.

Theorem (Ludwig-Turowska, 2006)

E satisfies local spectral synthesis if and only of E^{*} satisfies operator synthesis.

Connections between specral and operator synthesis

Let G be a second countable locally compact group equipped with left Haar measure and $E \subseteq G$ be a closed set.

Let $E^{*}=\left\{(s, t): t s^{-1} \in E\right\} \subseteq G \times G$.

Theorem (Ludwig-Turowska, 2006)

E satisfies local spectral synthesis if and only of E^{*} satisfies operator synthesis.

Spronk-Turowska, 2002: the case G is compact.
Note that in this case local spectral synthesis is equivalent to spectral synthesis.

Froelich, 1988: the case G is abelian

Examples of (operator) synthetic sets

- Ternary sets
$f: X \rightarrow \mathbb{R}, g: Y \rightarrow \mathbb{R}$
$\{(x, y) \in X \times Y: f(x)=g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)

Examples of (operator) synthetic sets

- Ternary sets
$f: X \rightarrow \mathbb{R}, g: Y \rightarrow \mathbb{R}$
$\{(x, y) \in X \times Y: f(x)=g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)
In Harmonic Analysis, the analogous sets are translates of closed subgroups.

Examples of (operator) synthetic sets

- Ternary sets
$f: X \rightarrow \mathbb{R}, g: Y \rightarrow \mathbb{R}$
$\{(x, y) \in X \times Y: f(x)=g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)
In Harmonic Analysis, the analogous sets are translates of closed subgroups.
- Sets of finite width
$f_{i}: X \rightarrow \mathbb{R}, g_{i}: Y \rightarrow \mathbb{R}$
$\left\{(x, y) \in X \times Y: f_{i}(x) \leq g_{i}(y), i=1, \ldots, n\right\}$ satisfies operator synthesis (Turowska, T.)

Examples of (operator) synthetic sets

- Ternary sets
$f: X \rightarrow \mathbb{R}, g: Y \rightarrow \mathbb{R}$
$\{(x, y) \in X \times Y: f(x)=g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)
In Harmonic Analysis, the analogous sets are translates of closed subgroups.
- Sets of finite width
$f_{i}: X \rightarrow \mathbb{R}, g_{i}: Y \rightarrow \mathbb{R}$
$\left\{(x, y) \in X \times Y: f_{i}(x) \leq g_{i}(y), i=1, \ldots, n\right\}$ satisfies operator synthesis (Turowska, T.)
In Harmonic Analysis, the analogous sets are
$\left\{t \in G: \omega_{i}(s) \leq r_{i}, i=1, \ldots, n\right\}$, where $\omega_{i}: G \rightarrow \mathbb{R}^{+}$
continuous homomorphisms.

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces.
For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi}: L^{2}(X \times Y) \rightarrow L^{2}(X \times Y)$ be the corresponding multiplication operator

$$
S_{\varphi} \xi=\varphi \xi
$$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces.
For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi}: L^{2}(X \times Y) \rightarrow L^{2}(X \times Y)$ be the corresponding multiplication operator

$$
S_{\varphi} \xi=\varphi \xi
$$

The space $L^{2}(X \times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)$ by

$$
\xi \longrightarrow T_{\xi}, \quad T_{\xi} f(y)=\int_{X} \xi(x, y) f(x) d \mu(x)
$$

Set $\|\xi\|_{\text {op }}=\left\|T_{\xi}\right\|_{\text {op }}$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces.
For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi}: L^{2}(X \times Y) \rightarrow L^{2}(X \times Y)$ be the corresponding multiplication operator

$$
S_{\varphi} \xi=\varphi \xi
$$

The space $L^{2}(X \times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)$ by

$$
\xi \longrightarrow T_{\xi}, \quad T_{\xi} f(y)=\int_{X} \xi(x, y) f(x) d \mu(x)
$$

Set $\|\xi\|_{\text {op }}=\left\|T_{\xi}\right\|_{\text {op }}$
A function $\varphi \in L^{\infty}(X \times Y)$ is called a Schur multiplier if there exists $C>0$ such that

$$
\left\|S_{\varphi} \xi\right\|_{\mathrm{op}} \leq C\|\xi\|_{\mathrm{op}}, \quad \xi \in L^{2}(X \times Y)
$$

Schur multipliers as completely bounded modular maps

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_{X} (resp. \mathcal{D}_{Y}) for the multiplication masa of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$).

Schur multipliers as completely bounded modular maps

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_{X} (resp. \mathcal{D}_{Y}) for the multiplication masa of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$). If $\varphi \in \mathfrak{S}$ then S_{φ} extends by continuity to a bounded operator on the space of compact operators:

$$
S_{\varphi}: \mathcal{K}\left(L^{2}(X), L^{2}(Y)\right) \rightarrow \mathcal{K}\left(L^{2}(X), L^{2}(Y)\right)
$$

and after passing to the second dual, to a bounded operator

$$
S_{\varphi}: \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right) \rightarrow \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)
$$

Schur multipliers as completely bounded modular maps

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_{X} (resp. \mathcal{D}_{Y}) for the multiplication masa of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$). If $\varphi \in \mathfrak{S}$ then S_{φ} extends by continuity to a bounded operator on the space of compact operators:

$$
S_{\varphi}: \mathcal{K}\left(L^{2}(X), L^{2}(Y)\right) \rightarrow \mathcal{K}\left(L^{2}(X), L^{2}(Y)\right)
$$

and after passing to the second dual, to a bounded operator

$$
S_{\varphi}: \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right) \rightarrow \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)
$$

S_{φ} is moreover modular in the sense that

$$
S_{\varphi}(B T A)=B S_{\varphi}(T) A, \quad A \in \mathcal{D}_{X}, B \in \mathcal{D}_{Y}, T \in \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)
$$

By a result of S mith, S_{φ} is completely bounded.

Schur multipliers as completely bounded modular maps

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_{X} (resp. \mathcal{D}_{Y}) for the multiplication masa of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$). If $\varphi \in \mathfrak{S}$ then S_{φ} extends by continuity to a bounded operator on the space of compact operators:

$$
S_{\varphi}: \mathcal{K}\left(L^{2}(X), L^{2}(Y)\right) \rightarrow \mathcal{K}\left(L^{2}(X), L^{2}(Y)\right)
$$

and after passing to the second dual, to a bounded operator

$$
S_{\varphi}: \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right) \rightarrow \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)
$$

S_{φ} is moreover modular in the sense that

$$
S_{\varphi}(B T A)=B S_{\varphi}(T) A, \quad A \in \mathcal{D}_{X}, B \in \mathcal{D}_{Y}, T \in \mathcal{B}\left(L^{2}(X), L^{2}(Y)\right)
$$

By a result of Smith, S_{φ} is completely bounded.
Weak* closed masa-bimodules are precisely the weak* closed invariant subspaces of Schur multipliers.

A characterisation of Schur multipliers

Peller's Theorem (1985)

The following are equivalent:
(i) φ is a Schur multiplier;
(ii) there exist families $\left\{a_{k}\right\}_{k=1}^{\infty} \subseteq L^{\infty}(X)$ and $\left\{b_{k}\right\}_{k=1}^{\infty} \subseteq L^{\infty}(Y)$ and a constant $C>0$ such that $\operatorname{esssup}_{x \in X} \sum_{k=1}^{\infty}\left|a_{k}(x)\right|^{2} \leq C$, $\operatorname{esssup}_{y \in Y} \sum_{k=1}^{\infty}\left|b_{k}(y)\right|^{2} \leq C$ and

$$
\varphi(x, y)=\sum_{k=1}^{\infty} a_{k}(x) b_{k}(y), \quad \text { a.e. on } X \times Y
$$

(iii) $\varphi \Gamma(X, Y) \subseteq \Gamma(X, Y)$.

A characterisation of Schur multipliers

Peller's Theorem (1985)

The following are equivalent:
(i) φ is a Schur multiplier;
(ii) there exist families $\left\{a_{k}\right\}_{k=1}^{\infty} \subseteq L^{\infty}(X)$ and $\left\{b_{k}\right\}_{k=1}^{\infty} \subseteq L^{\infty}(Y)$ and a constant $C>0$ such that $\operatorname{esssup}_{x \in X} \sum_{k=1}^{\infty}\left|a_{k}(x)\right|^{2} \leq C$, $\operatorname{esssup}_{y \in Y} \sum_{k=1}^{\infty}\left|b_{k}(y)\right|^{2} \leq C$ and

$$
\varphi(x, y)=\sum_{k=1}^{\infty} a_{k}(x) b_{k}(y), \quad \text { a.e. on } X \times Y
$$

(iii) $\varphi \Gamma(X, Y) \subseteq \Gamma(X, Y)$.
$S_{\varphi} S_{\psi}=S_{\varphi \psi}$.
Schur idempotents, I: idempotent Schur multipliers ($\phi^{2}=\phi$), Katavolos-Pauslen (2006).

Multipliers of Fourier algebras

G locally compact group.
$M A(G)=\{g \in C(G): g f \in A(G)$, for all $f \in A(G)\}$.

Multipliers of Fourier algebras

G locally compact group.
$M A(G)=\{g \in C(G): g f \in A(G)$, for all $f \in A(G)\}$.
Cowling-Haagerup:
$M^{\mathrm{cb}} A(G)=\{g \in M A(G): f \rightarrow g f$ completely bounded $\}$.

Multipliers of Fourier algebras

G locally compact group.
$M A(G)=\{g \in C(G): g f \in A(G)$, for all $f \in A(G)\}$.
Cowling-Haagerup:
$M^{\mathrm{cb}} A(G)=\{g \in M A(G): f \rightarrow g f$ completely bounded $\}$.
$A(G)^{*}=\operatorname{VN}(G) \stackrel{\text { def }}{=}\left[\lambda_{s}: s \in G\right] \quad W O T$.

Multipliers of Fourier algebras

G locally compact group.
$M A(G)=\{g \in C(G): g f \in A(G)$, for all $f \in A(G)\}$.
Cowling-Haagerup:
$M^{\mathrm{cb}} A(G)=\{g \in M A(G): f \rightarrow g f$ completely bounded $\}$.
$A(G)^{*}=\operatorname{VN}(G) \stackrel{\text { def }}{=}\left[\lambda_{s}: s \in G\right] \quad W O T$.
If $f: G \rightarrow \mathbb{C}$, let $N f: G \times G \rightarrow \mathbb{C}, N f(s, t)=f\left(t s^{-1}\right)$.
Theorem (Gilbert, Bozejko-Fendler,...)
$f \in M^{\mathrm{cb}} A(G)$ if and only if $N f$ is a Schur multiplier.

Multipliers of Fourier algebras

G locally compact group.
$M A(G)=\{g \in C(G): g f \in A(G)$, for all $f \in A(G)\}$.
Cowling-Haagerup:
$M^{\mathrm{cb}} A(G)=\{g \in M A(G): f \rightarrow g f$ completely bounded $\}$.
$A(G)^{*}=\operatorname{VN}(G) \stackrel{\text { def }}{=} \overline{\left[\lambda_{s}: s \in G\right]}{ }^{W O T}$.
If $f: G \rightarrow \mathbb{C}$, let $N f: G \times G \rightarrow \mathbb{C}, N f(s, t)=f\left(t s^{-1}\right)$.

Theorem (Gilbert, Bozejko-Fendler,...)

$f \in M^{\mathrm{cb}} A(G)$ if and only if $N f$ is a Schur multiplier.

Proof also given by Jolissaint (1992), extended by Spronk (2004).

The union problem

Problem - HA

Given two closed synthetic sets $E, F \subseteq G$, is $E \cup F$ synthetic?

The union problem

Problem - HA

Given two closed synthetic sets $E, F \subseteq G$, is $E \cup F$ synthetic?

Problem - OA

Given two ω-closed operator synthetic sets $\kappa, \lambda \subseteq X \times Y$, is $\kappa \cup \lambda$ operator synthetic?

The union problem

Problem - HA

Given two closed synthetic sets $E, F \subseteq G$, is $E \cup F$ synthetic?

Problem - OA

Given two ω-closed operator synthetic sets $\kappa, \lambda \subseteq X \times Y$, is $\kappa \cup \lambda$ operator synthetic?

Ludwig-Turowska, Shulman-Turowska, T: The union of an operator synthetic set and a ternary set is operator synthetic.

Ternary are the sets $\{(x, y): f(x)=g(y)\}$. They are the supports of "ternary" masa-bimodules, that is, masa-bimodules \mathcal{U} such that $\mathcal{U} \mathcal{U}^{*} \mathcal{U} \subseteq \mathcal{U}$.

Extension of the union problem

Question

Suppose that \mathcal{U} and \mathcal{V} are reflexive masa-bimodules. Is $\overline{\mathcal{U}}+\mathcal{V}^{w^{*}}$ reflexive?

Extension of the union problem

Question

Suppose that \mathcal{U} and \mathcal{V} are reflexive masa-bimodules. Is $\overline{\mathcal{U}}+\mathcal{V}^{w^{*}}$ reflexive?

Suppose that $\mathcal{U}=\mathfrak{M}_{\max }(\kappa)$ and $\mathcal{V}=\mathfrak{M}_{\max }(\lambda)$ with κ and λ operator synthetic. If $\overline{\mathcal{U}+\mathcal{V}^{\omega^{*}}}$ is reflexive then $\kappa \cup \lambda$ is operator synthetic.

Schur idempoents

If $\phi=S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max }(\kappa)$ and κ is ω-clopen and hence operator synthetic.

Schur idempoents

If $\phi=S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max }(\kappa)$ and κ is ω-clopen and hence operator synthetic.

A masa-bimodule \mathcal{U} is called \mathfrak{I}-injective if $\mathcal{U}=\operatorname{Ran} \phi$ for a Schur idempotent ϕ.

Schur idempoents

If $\phi=S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max }(\kappa)$ and κ is ω-clopen and hence operator synthetic.

A masa-bimodule \mathcal{U} is called \mathfrak{I}-injective if $\mathcal{U}=\operatorname{Ran} \phi$ for a Schur idempotent ϕ.
\mathcal{U} is called approximately \mathfrak{I}-injective if $\mathcal{U}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)$ is a uniformly bounded sequence of Schur idempotents.

Schur idempoents

If $\phi=S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max }(\kappa)$ and κ is ω-clopen and hence operator synthetic.

A masa-bimodule \mathcal{U} is called \mathfrak{I}-injective if $\mathcal{U}=\operatorname{Ran} \phi$ for a Schur idempotent ϕ.
\mathcal{U} is called approximately \mathfrak{I}-injective if $\mathcal{U}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)$ is a uniformly bounded sequence of Schur idempotents.

We can call an ω-closed set κ approximately \mathfrak{I}-injective if κ supports an approximately \mathfrak{I}-injective masa-bimodule.

Schur idempoents

If $\phi=S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max }(\kappa)$ and κ is ω-clopen and hence operator synthetic.

A masa-bimodule \mathcal{U} is called \mathfrak{I}-injective if $\mathcal{U}=\operatorname{Ran} \phi$ for a Schur idempotent ϕ.
\mathcal{U} is called approximately \mathfrak{I}-injective if $\mathcal{U}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)$ is a uniformly bounded sequence of Schur idempotents.

We can call an ω-closed set κ approximately \mathfrak{I}-injective if κ supports an approximately \mathfrak{I}-injective masa-bimodule.

An example: ternary sets $\{(x, y): f(x)=g(y)\}$.

Schur idempoents

If $\phi=S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max }(\kappa)$ and κ is ω-clopen and hence operator synthetic.

A masa-bimodule \mathcal{U} is called \mathfrak{I}-injective if $\mathcal{U}=\operatorname{Ran} \phi$ for a Schur idempotent ϕ.
\mathcal{U} is called approximately \mathfrak{I}-injective if $\mathcal{U}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where (ϕ_{n}) is a uniformly bounded sequence of Schur idempotents.

We can call an ω-closed set κ approximately \mathfrak{I}-injective if κ supports an approximately \mathfrak{I}-injective masa-bimodule.

An example: ternary sets $\{(x, y): f(x)=g(y)\}$.

Theorem (Eleftherakis-T, 2011)

The weak* closed linear span of a reflexive masa-bimodule and an approximately injective masa-bimodule is automatically reflexive.

The simplest case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

The simplest case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

Then the algebraic sum $\mathcal{U}+\mathcal{V}$ is automatically reflexive.

The simplest case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

Then the algebraic sum $\mathcal{U}+\mathcal{V}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.

The simplest case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

Then the algebraic sum $\mathcal{U}+\mathcal{V}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.
Then $\phi(T) \in \mathcal{V}$ and

$$
\phi^{\perp}(T) \in \operatorname{Ref}\left(\phi^{\perp}(\mathcal{U}+\mathcal{V})\right) \subseteq \operatorname{Ref} \mathcal{U}=\mathcal{U}
$$

The simplest case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

Then the algebraic sum $\mathcal{U}+\mathcal{V}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.
Then $\phi(T) \in \mathcal{V}$ and

$$
\phi^{\perp}(T) \in \operatorname{Ref}\left(\phi^{\perp}(\mathcal{U}+\mathcal{V})\right) \subseteq \operatorname{Ref} \mathcal{U}=\mathcal{U}
$$

Thus, $T=\phi^{\perp}(T)+\phi(T) \in \mathcal{U}+\mathcal{V}$.

The approximately \mathfrak{I}-injective case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.

The approximately \mathfrak{I}-injective case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.
Then $\overline{\mathcal{U}+\mathcal{V}^{w}}{ }^{w^{*}}$ is automatically reflexive.

The approximately \mathfrak{I}-injective case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.
Then $\overline{\mathcal{U}+\mathcal{V}^{w}}{ }^{w^{*}}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.

The approximately \mathfrak{I}-injective case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.
Then ${\overline{\mathcal{U}}+\mathcal{V}^{w^{*}}}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.
Then $\phi_{n}(T) \in \mathcal{V}$ and

$$
\phi_{n}^{\perp}(T) \in \operatorname{Ref}\left(\phi_{n}^{\perp}(\mathcal{U}+\mathcal{V})\right) \subseteq \operatorname{Ref} \mathcal{U}=\mathcal{U}
$$

The approximately \mathfrak{I}-injective case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.
Then ${\overline{\mathcal{U}}+\mathcal{V}^{w^{*}}}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.
Then $\phi_{n}(T) \in \mathcal{V}$ and

$$
\phi_{n}^{\perp}(T) \in \operatorname{Ref}\left(\phi_{n}^{\perp}(\mathcal{U}+\mathcal{V})\right) \subseteq \operatorname{Ref} \mathcal{U}=\mathcal{U}
$$

Take a weak* cluster point S of $\left(\phi_{n}(T)\right)_{n \in \mathbb{N}}$.

The approximately \mathfrak{I}-injective case

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V}=\cap_{n=1}^{\infty} \operatorname{Ran} \phi_{n}$, where $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.
Then ${\overline{\mathcal{U}}+\mathcal{V}^{w^{*}}}$ is automatically reflexive.
Let $T \in \operatorname{Ref}(\mathcal{U}+\mathcal{V})$.
Then $\phi_{n}(T) \in \mathcal{V}$ and

$$
\phi_{n}^{\perp}(T) \in \operatorname{Ref}\left(\phi_{n}^{\perp}(\mathcal{U}+\mathcal{V})\right) \subseteq \operatorname{Ref} \mathcal{U}=\mathcal{U}
$$

Take a weak* cluster point S of $\left(\phi_{n}(T)\right)_{n \in \mathbb{N}}$.
Then $T=(T-S)+S \in \overline{\mathcal{U}+\mathcal{V}^{\omega^{*}}}$.

Approximately \mathfrak{I}-decomposable masa-bimodules

Approximately \mathfrak{I}-injective masa-bimodules are a subclass of the approximately \mathfrak{I}-decomposable ones.

Approximately \mathfrak{I}-decomposable masa-bimodules

Approximately \mathfrak{I}-injective masa-bimodules are a subclass of the approximately \mathfrak{I}-decomposable ones.

A masa-bimodule \mathcal{U} is called approximately \mathfrak{I}-decomposable if there exists a constant $C>0$ and, for each $n \in \mathbb{N}$, Schur idempotents ϕ_{n} and ψ_{n} such that

- $\mathcal{U} \subseteq \operatorname{Ran} \phi_{n}+\operatorname{Ran} \psi_{n}$, for all n;
- $\operatorname{Ran} \phi_{n} \subseteq \mathcal{U}$, for all n;
- $\left\|\phi_{n}\right\| \leq C$, for all n;
- limsup $\operatorname{Ran} \psi_{n} \subseteq \mathcal{U}$.

Approximately \mathfrak{I}-decomposable masa-bimodules

Approximately \mathfrak{I}-injective masa-bimodules are a subclass of the approximately \mathfrak{I}-decomposable ones.
A masa-bimodule \mathcal{U} is called approximately \mathfrak{I}-decomposable if there exists a constant $C>0$ and, for each $n \in \mathbb{N}$, Schur idempotents ϕ_{n} and ψ_{n} such that

- $\mathcal{U} \subseteq \operatorname{Ran} \phi_{n}+\operatorname{Ran} \psi_{n}$, for all n;
- $\operatorname{Ran} \phi_{n} \subseteq \mathcal{U}$, for all n;
- $\left\|\phi_{n}\right\| \leq C$, for all n;
- $\lim \sup \operatorname{Ran} \psi_{n} \subseteq \mathcal{U}$.

For example, "nest algebra bimodules" (whose supports are the sets of the form $\{(x, y): f(x) \leq g(y)\})$ are approximately decomposable.

Approximately \mathfrak{I}-decomposable masa-bimodules

Approximately \mathfrak{I}-injective masa-bimodules are a subclass of the approximately \mathfrak{I}-decomposable ones.
A masa-bimodule \mathcal{U} is called approximately \mathfrak{I}-decomposable if there exists a constant $C>0$ and, for each $n \in \mathbb{N}$, Schur idempotents ϕ_{n} and ψ_{n} such that

- $\mathcal{U} \subseteq \operatorname{Ran} \phi_{n}+\operatorname{Ran} \psi_{n}$, for all n;
- $\operatorname{Ran} \phi_{n} \subseteq \mathcal{U}$, for all n;
- $\left\|\phi_{n}\right\| \leq C$, for all n;
- $\lim \sup \operatorname{Ran} \psi_{n} \subseteq \mathcal{U}$.

For example, "nest algebra bimodules" (whose supports are the sets of the form $\{(x, y): f(x) \leq g(y)\})$ are approximately decomposable.

Key technical tool: the intersection formula

$$
\cap_{i=1}^{n} \overline{\mathcal{U}+\mathcal{V}_{i}}{ }^{w^{*}}=\overline{\mathcal{U}+\cap_{i=1}^{n} \mathcal{V}_{i}}{ }^{w^{*}}
$$

Preservation of reflexivity

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an approximately \mathfrak{I}-decomposable masa-bimodule is automatically reflexive.

Preservation of reflexivity

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an approximately \mathfrak{I}-decomposable masa-bimodule is automatically reflexive.

Corollary

Let κ be the support of an operator synthetic approximately I-decomposable masa-bimodule. If λ is an operator synthetic set then $\kappa \cup \lambda$ is operator synthetic.

Preservation of reflexivity

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an approximately \mathfrak{I}-decomposable masa-bimodule is automatically reflexive.

Corollary

Let κ be the support of an operator synthetic approximately I-decomposable masa-bimodule. If λ is an operator synthetic set then $\kappa \cup \lambda$ is operator synthetic.

In particular, this conclusion holds if κ is a set of finite width:

$$
\kappa=\left\{(x, y): f_{i}(x) \leq g_{i}(y), \quad i=1, \ldots, n\right\} .
$$

A consequence for spectral synthesis

Let us call s set $E \subseteq G$ a level set if

$$
E=\left\{t \in G: \omega(t) \leq r_{i}\right\}
$$

where $\omega: G \rightarrow \mathbb{R}$ is a continuous homomorpshim.

A consequence for spectral synthesis

Let us call s set $E \subseteq G$ a level set if

$$
E=\left\{t \in G: \omega(t) \leq r_{i}\right\}
$$

where $\omega: G \rightarrow \mathbb{R}$ is a continuous homomorpshim.

Corollary

Suppose that $F \subseteq G$ satisfies spectral synthesis, while E_{i} is a level set, $i=1, \ldots, n$. Then $F \cup\left(\cap_{i=1}^{n} E_{i}\right)$ satisfies spectral synthesis.

Products

Question

If κ_{1} and κ_{2} are (operator) synthetic sets, is $\kappa_{1} \times \kappa_{2}$ (operator) synthetic?

Products

Question

If κ_{1} and κ_{2} are (operator) synthetic sets, is $\kappa_{1} \times \kappa_{2}$ (operator) synthetic?

A small rearrangement of variables is needed:
$\kappa_{1} \subseteq X_{1} \times Y_{1}, \kappa_{2} \subseteq X_{2} \times Y_{2}$.
$\mathfrak{M}_{\text {max }}\left(\kappa_{1}\right) \bar{\otimes} \mathfrak{M}_{\text {max }}\left(\kappa_{2}\right)$ is an $L^{\infty}\left(Y_{1} \times Y_{2}\right), L^{\infty}\left(X_{1} \times X_{2}\right)$-module.

Products

Question

If κ_{1} and κ_{2} are (operator) synthetic sets, is $\kappa_{1} \times \kappa_{2}$ (operator) synthetic?

A small rearrangement of variables is needed:
$\kappa_{1} \subseteq X_{1} \times Y_{1}, \kappa_{2} \subseteq X_{2} \times Y_{2}$.
$\mathfrak{M}_{\text {max }}\left(\kappa_{1}\right) \bar{\otimes} \mathfrak{M}_{\text {max }}\left(\kappa_{2}\right)$ is an $L^{\infty}\left(Y_{1} \times Y_{2}\right), L^{\infty}\left(X_{1} \times X_{2}\right)$-module.
Thus, we should be looking at the set $\rho\left(\kappa_{1} \times \kappa_{2}\right)$, where

$$
\rho:\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \longrightarrow\left(x_{1}, y_{1}, x_{2}, y_{2}\right) .
$$

Kraus' property S_{σ}

Let $\omega \in \mathcal{B}\left(H_{1}, H_{2}\right)_{*}$. The right Tomiyama's slice map

$$
R_{\omega}: \mathcal{B}\left(H_{1} \otimes K_{1}, H_{2} \otimes K_{2}\right) \rightarrow \mathcal{B}\left(K_{1}, K_{2}\right)
$$

is given by

$$
R_{\omega}(A \otimes B)=\omega(A) B, \quad A \in \mathcal{B}\left(H_{1}, H_{2}\right), B \in \mathcal{B}\left(K_{1}, K_{2}\right)
$$

Kraus' property S_{σ}

Let $\omega \in \mathcal{B}\left(H_{1}, H_{2}\right)_{*}$. The right Tomiyama's slice map

$$
R_{\omega}: \mathcal{B}\left(H_{1} \otimes K_{1}, H_{2} \otimes K_{2}\right) \rightarrow \mathcal{B}\left(K_{1}, K_{2}\right)
$$

is given by

$$
R_{\omega}(A \otimes B)=\omega(A) B, \quad A \in \mathcal{B}\left(H_{1}, H_{2}\right), B \in \mathcal{B}\left(K_{1}, K_{2}\right)
$$

The Fubini product of \mathcal{V} and \mathcal{U} is
$\mathcal{F}(\mathcal{V}, \mathcal{U})=\left\{T \in \mathcal{V} \bar{\otimes} \mathcal{B}\left(K_{1} \otimes K_{2}\right): R_{\omega}(T) \in \mathcal{U}, \forall \omega \in \mathcal{B}\left(K_{1}, K_{2}\right)_{*}\right\}$.
A weak* closed subspace $\mathcal{V} \subseteq \mathcal{B}\left(H_{1}, H_{2}\right)$ possesses property S_{σ} if

$$
\mathcal{V} \bar{\otimes} \mathcal{U}=\mathcal{F}(\mathcal{V}, \mathcal{U}), \quad \forall \mathcal{U} \subseteq \mathcal{B}\left(K_{1}, K_{2}\right)
$$

Preservation of S_{σ}

Kraus, 1983: $\mathcal{B}\left(H_{1}, H_{2}\right)$ possess property S_{σ}. Thus

$$
\mathcal{F}(\mathcal{V}, \mathcal{U})=\left(\mathcal{V} \bar{\otimes} \mathcal{B}\left(K_{1}, K_{2}\right)\right) \cap\left(\mathcal{B}\left(H_{1}, H_{2}\right) \bar{\otimes} \mathcal{U}\right) .
$$

Preservation of S_{σ}

Kraus, 1983: $\mathcal{B}\left(H_{1}, H_{2}\right)$ possess property S_{σ}. Thus

$$
\mathcal{F}(\mathcal{V}, \mathcal{U})=\left(\mathcal{V} \bar{\otimes} \mathcal{B}\left(K_{1}, K_{2}\right)\right) \cap\left(\mathcal{B}\left(H_{1}, H_{2}\right) \bar{\otimes} \mathcal{U}\right) .
$$

Hopenwasser-Kraus, 1983 (can be generalised to):

Theorem

Every masa-bimodule of finite width possesses S_{σ}.
\mathcal{V} is of finite width if $\mathcal{V}=\mathfrak{M}_{\max }(\kappa)$, foe some subset κ of finite width.

Theorem (Eleftherakis-T, 2013)

If \mathcal{B} is a masa-bimodule of finite width then

$$
\mathcal{F}\left({\overline{\mathcal{V}}+\mathcal{B}^{w^{*}}}^{w^{*}} \mathfrak{U}\right)=\overline{\mathcal{F}(\mathcal{V}, \mathcal{U})+\mathcal{B} \otimes \mathcal{U}^{w^{*}}}
$$

In particular, if \mathcal{V} has S_{σ} then so does $\overline{\mathcal{V}+\mathcal{B}^{w^{*}}}$.

Connections between synthesis and property S_{σ}

Proposition

Let κ and λ be operator synhetic sets. The following are equivalent:
(i) $\rho(\kappa \times \lambda)$ is operator synthetic;
(ii) $\mathcal{F}\left(\mathfrak{M}_{\max }(\kappa), \mathfrak{M}_{\max }(\lambda)\right)=\mathfrak{M}_{\max }(\kappa) \bar{\otimes} \mathfrak{M}_{\max }(\lambda)$.

Connections between synthesis and property S_{σ}

Proposition

Let κ and λ be operator synhetic sets. The following are equivalent:
(i) $\rho(\kappa \times \lambda)$ is operator synthetic;
(ii) $\mathcal{F}\left(\mathfrak{M}_{\max }(\kappa), \mathfrak{M}_{\max }(\lambda)\right)=\mathfrak{M}_{\max }(\kappa) \bar{\otimes} \mathfrak{M}_{\max }(\lambda)$.

Corollary

Suppose that $\mathfrak{M}_{\text {max }}(\kappa)$ possesses property S_{σ}. Then $\rho(\kappa \times \lambda)$ is operator synthetic for every operator synthetic set λ.

More intersection formulas

Can we formulate sufficient conditions for the operator synthesis of sets of the form

$$
\cup_{i=1}^{n} \rho\left(\kappa_{i} \times \lambda_{i}\right) ?
$$

More intersection formulas

Can we formulate sufficient conditions for the operator synthesis of sets of the form

$$
\cup_{i=1}^{n} \rho\left(\kappa_{i} \times \lambda_{i}\right) ?
$$

This question can be approached, once again, with the use of Schur idempotents.

More intersection formulas

Can we formulate sufficient conditions for the operator synthesis of sets of the form

$$
\cup_{i=1}^{n} \rho\left(\kappa_{i} \times \lambda_{i}\right) ?
$$

This question can be approached, once again, with the use of Schur idempotents.

Theorem (Eleftherakis-T, 2013)

If $\left\{\mathcal{B}_{j_{p}}^{p}\right\}_{j_{p}=1}^{m_{p}}$ are families of masa-bimodules of finite width and \mathcal{U}_{p} are weak* closed spaces of operators, $p=1, \ldots, r$, then

$$
\bigcap_{j_{1}, \ldots, j_{r}} \overline{\mathcal{B}_{j_{1}}^{1} \otimes \mathcal{U}_{1}+\cdots+\mathcal{B}_{j_{r}}^{r} \otimes \mathcal{U}_{r}}=\overline{\left(\cap_{j_{1}} \mathcal{B}_{j_{1}}^{1}\right) \otimes \mathcal{U}_{1}+\cdots+\left(\cap_{j_{r}} \mathcal{B}_{j_{r}}^{1}\right) \otimes \mathcal{U}_{r}}
$$

Consequences for operator and spectral synthesis

Theorem (Eleftherakis-T, 2013)

Let $\kappa_{i} \subseteq X_{1} \times X_{2}$ be a set of finite width, and let $\lambda_{i} \subseteq Y_{1} \times Y_{2}$ be an ω-closed set, $i=1, \ldots, r$. Suppose that $\cup_{k=1}^{p} \lambda_{m_{k}}$ is operator synthetic whenever $1 \leq m_{1}<m_{2}<\cdots<m_{p} \leq r$. Then the set $\rho\left(\cup_{i=1}^{r} \kappa_{i} \times \lambda_{i}\right)$ is operator synthetic.

Consequences for operator and spectral synthesis

Theorem (Eleftherakis-T, 2013)

Let $\kappa_{i} \subseteq X_{1} \times X_{2}$ be a set of finite width, and let $\lambda_{i} \subseteq Y_{1} \times Y_{2}$ be an ω-closed set, $i=1, \ldots, r$. Suppose that $\cup_{k=1}^{p} \lambda_{m_{k}}$ is operator synthetic whenever $1 \leq m_{1}<m_{2}<\cdots<m_{p} \leq r$. Then the set $\rho\left(\cup_{i=1}^{r} \kappa_{i} \times \lambda_{i}\right)$ is operator synthetic.

Corollary

Let G and H be second countable locally compact groups.
Suppose that E_{1}, \ldots, E_{r} are finite intersections of level sets in G and F_{1}, \ldots, F_{r} are closed subsets of H such that $\cup_{k=1}^{p} F_{m_{k}}$ is a set of local spectral synthesis whenever $1 \leq m_{1}<m_{2}<\cdots<m_{p} \leq r$. Then the set $\cup_{i=1}^{r} E_{i} \times F_{i}$ is a set of local spectral synthesis of $G \times H$.

MUCHAS GRACIAS

