Operator synthesis: unions and products

Ivan Todorov (joint work with G. K. Eleftherakis)

21 May 2013 Granada

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Spectral synthesis
- Operator synthesis

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The union problem and its operator versions

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis

- The union problem and its operator versions
- The use of idempotents

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis

- The union problem and its operator versions
- The use of idempotents
- Tensor products and property S_σ

- Spectral synthesis
- Operator synthesis
- Interrelations between spectral and operator synthesis

- The union problem and its operator versions
- The use of idempotents
- Tensor products and property S_σ
- Preservation properties

B(G) is the collection of all functions $u : G \to \mathbb{C}$ of the form $u(t) = (\pi(t)\xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.

B(G) is the collection of all functions $u: G \to \mathbb{C}$ of the form $u(t) = (\pi(t)\xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.

A(G) is the collection of functions of the form $u(t) = (\lambda_t \xi, \eta)$, where $\lambda : G \to \mathcal{B}(L^2(G))$ is the left regular representation of G:

B(G) is the collection of all functions $u: G \to \mathbb{C}$ of the form $u(t) = (\pi(t)\xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.

A(G) is the collection of functions of the form $u(t) = (\lambda_t \xi, \eta)$, where $\lambda : G \to \mathcal{B}(L^2(G))$ is the left regular representation of G:

$$\lambda_t\xi(s) = \xi(t^{-1}s), \quad \xi \in L^2(G).$$

B(G) is the collection of all functions $u : G \to \mathbb{C}$ of the form $u(t) = (\pi(t)\xi, \eta)$, where π is a continuous unitary representation of G on H and $\xi, \eta \in H$.

A(G) is the collection of functions of the form $u(t) = (\lambda_t \xi, \eta)$, where $\lambda : G \to \mathcal{B}(L^2(G))$ is the left regular representation of G:

$$\lambda_t\xi(s) = \xi(t^{-1}s), \quad \xi \in L^2(G).$$

B(G) is a Banach algebra under pointwise operations and A(G) is an ideal of B(G).

$$||u||_{B(G)} = \inf\{||\xi|| ||\eta|| : u(\cdot) = (\pi(\cdot)\xi,\eta)\}$$

A(G) is a regular commutative semi-simple Banach algebra. If $J \subseteq A(G)$ is an ideal, we let

null $J = \{t \in G : u(t) = 0, \text{ for all } u \in I\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A(G) is a regular commutative semi-simple Banach algebra. If $J \subseteq A(G)$ is an ideal, we let

null
$$J = \{t \in G : u(t) = 0, \text{ for all } u \in I\}.$$

Given $E \subseteq G$ closed, let

$$I(E)=\{u\in A(G): u|_E=0\},\$$

 $J(E) = \overline{\{u \in A(G) : u = 0 \text{ on a neighbhd of } E\}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A(G) is a regular commutative semi-simple Banach algebra. If $J \subseteq A(G)$ is an ideal, we let

null
$$J = \{t \in G : u(t) = 0, \text{ for all } u \in I\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given $E \subseteq G$ closed, let

$$I(E) = \{ u \in A(G) : u|_E = 0 \},$$
$$J(E) = \overline{\{ u \in A(G) : u = 0 \text{ on a neighbhd of } E \}}.$$
null $I(E) = \text{null } J(E) = E$

A(G) is a regular commutative semi-simple Banach algebra. If $J \subseteq A(G)$ is an ideal, we let

null
$$J = \{t \in G : u(t) = 0, \text{ for all } u \in I\}.$$

Given $E \subseteq G$ closed, let

$$I(E) = \{ u \in A(G) : u|_E = 0 \},\$$

 $J(E) = \overline{\{u \in A(G) : u = 0 \text{ on a neighbhd of } E\}}.$

 $\operatorname{null} I(E) = \operatorname{null} J(E) = E$

If $J \subseteq A(G)$ closed ideal with null J = E then

$$J(E) \subseteq J \subseteq I(E).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A(G) is a regular commutative semi-simple Banach algebra. If $J \subseteq A(G)$ is an ideal, we let

null
$$J = \{t \in G : u(t) = 0, \text{ for all } u \in I\}.$$

Given $E \subseteq G$ closed, let

$$I(E) = \{ u \in A(G) : u|_E = 0 \},\$$

 $J(E) = \overline{\{u \in A(G) : u = 0 \text{ on a neighbhd of } E\}}.$

 $\operatorname{null} I(E) = \operatorname{null} J(E) = E$

If $J \subseteq A(G)$ closed ideal with null J = E then

$$J(E) \subseteq J \subseteq I(E).$$

E satisfies spectral synthesis if J(E) = I(E).

Arveson (1974), Erdos-Katavolos-Shulman (1998) Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$. (i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if $\kappa \subseteq (M \times Y) \cup (X \times N)$, where M and N are null.

Arveson (1974), Erdos-Katavolos-Shulman (1998) Let (X, μ) and (Y, ν) be standard measure spaces and $\kappa \subseteq X \times Y$. (i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if $\kappa \subseteq (M \times Y) \cup (X \times N)$, where M and N are null. (ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

- (i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if
- $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.
- (ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\bigcup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

- (i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if
- $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.
- (ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\bigcup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

(iv) κ is called ω -closed if κ^c is ω -open.

- (i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if
- $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.
- (ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\bigcup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

- (iv) κ is called ω -closed if κ^c is ω -open.
- (v) An operator $T \in \mathcal{B}(L^2(X), L^2(Y))$ is supported on κ if

$$(\alpha \times \beta) \cap \kappa \simeq \emptyset \Rightarrow P(\beta)TP(\alpha) = 0,$$

where $P(\alpha)$ is the projection from $L^2(X)$ onto $L^2(\alpha)$.

Let $\Gamma(X, Y) = L^2(X) \hat{\otimes} L^2(Y)$.

An element $h \in \Gamma(X, Y)$ can be identified with a function, defined up to a marginally null set,

$$h(x,y) = \sum_{i=1}^{\infty} f_i(x)g_i(y), \quad x \in X, y \in Y.$$

Let $\Gamma(X, Y) = L^2(X) \hat{\otimes} L^2(Y)$.

An element $h \in \Gamma(X, Y)$ can be identified with a function, defined up to a marginally null set,

$$h(x,y) = \sum_{i=1}^{\infty} f_i(x)g_i(y), \quad x \in X, y \in Y.$$

Call a subspace $V \subseteq \Gamma(X, Y)$ invariant if $ahb \in V$ for every $h \in V$, $a \in L^{\infty}(X)$, $b \in L^{\infty}(Y)$.

Let $\Gamma(X, Y) = L^2(X) \hat{\otimes} L^2(Y)$.

An element $h \in \Gamma(X, Y)$ can be identified with a function, defined up to a marginally null set,

$$h(x,y) = \sum_{i=1}^{\infty} f_i(x)g_i(y), \quad x \in X, y \in Y.$$

Call a subspace $V \subseteq \Gamma(X, Y)$ invariant if $ahb \in V$ for every $h \in V$, $a \in L^{\infty}(X)$, $b \in L^{\infty}(Y)$.

Define the null set of V as the biggest (with respect to marginal inclusion) ω -closed set $E \subseteq X \times Y$ such that $h|_E = 0$ for every $h \in V$.

Given an ω -closed set $\kappa \subseteq X \times Y$, let

$$\Phi(\kappa) = \{h \in \Gamma(X, Y) : h|_{\kappa} = 0\},\$$

 $\Psi(\kappa) = \overline{\{h \in \Gamma(X, Y) : h = 0 \text{ on an } \omega\text{-open neighbhd of } \kappa\}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given an ω -closed set $\kappa \subseteq X \times Y$, let

$$\Phi(\kappa) = \{h \in \Gamma(X, Y) : h|_{\kappa} = 0\},\$$

 $\Psi(\kappa) = \overline{\{h \in \Gamma(X, Y) : h = 0 \text{ on an } \omega \text{-open neighbhd of } \kappa\}}.$

If $V \subseteq \Gamma(X, Y)$ is a closed invariant subspace with null $V = \kappa$ then

$$\Psi(\kappa) \subseteq V \subseteq \Phi(\kappa).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given an ω -closed set $\kappa \subseteq X \times Y$, let

$$\Phi(\kappa) = \{h \in \Gamma(X, Y) : h|_{\kappa} = 0\},\$$

 $\Psi(\kappa) = \overline{\{h \in \Gamma(X, Y) : h = 0 \text{ on an } \omega \text{-open neighbhd of } \kappa\}}.$

If $V \subseteq \Gamma(X, Y)$ is a closed invariant subspace with null $V = \kappa$ then

$$\Psi(\kappa)\subseteq V\subseteq \Phi(\kappa).$$

 κ satisfies operator synthesis if $\Phi(\kappa) = \Psi(\kappa)$.

Let
$$H_1 = L^2(X)$$
, $H_2 = L^2(Y)$.
 $\Gamma(X, Y)^* = \mathcal{B}(H_1, H_2)$.
 $\mathcal{D}_X \equiv L^\infty(X)$, $\mathcal{D}_Y \equiv L^\infty(Y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let
$$H_1 = L^2(X)$$
, $H_2 = L^2(Y)$.
 $\Gamma(X, Y)^* = \mathcal{B}(H_1, H_2)$.
 $\mathcal{D}_X \equiv L^\infty(X)$, $\mathcal{D}_Y \equiv L^\infty(Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let
$$H_1 = L^2(X)$$
, $H_2 = L^2(Y)$.
 $\Gamma(X, Y)^* = \mathcal{B}(H_1, H_2)$.
 $\mathcal{D}_X \equiv L^\infty(X)$, $\mathcal{D}_Y \equiv L^\infty(Y)$.

Given masa-bimodule \mathcal{U} , the support of \mathcal{U} is the smallest ω -closed set κ such that every operator in \mathcal{U} is supported on κ .

Let
$$H_1 = L^2(X)$$
, $H_2 = L^2(Y)$.
 $\Gamma(X, Y)^* = \mathcal{B}(H_1, H_2)$.
 $\mathcal{D}_X \equiv L^\infty(X)$, $\mathcal{D}_Y \equiv L^\infty(Y)$.

Given masa-bimodule \mathcal{U} , the support of \mathcal{U} is the smallest ω -closed set κ such that every operator in \mathcal{U} is supported on κ .

Let
$$\mathfrak{M}_{\mathsf{max}}(\kappa) = \Psi(\kappa)^{\perp}$$
 and $\mathfrak{M}_{\mathsf{min}}(\kappa) = \Phi(\kappa)^{\perp}$.

Let
$$H_1 = L^2(X)$$
, $H_2 = L^2(Y)$.
 $\Gamma(X, Y)^* = \mathcal{B}(H_1, H_2)$.
 $\mathcal{D}_X \equiv L^\infty(X)$, $\mathcal{D}_Y \equiv L^\infty(Y)$.

Given masa-bimodule \mathcal{U} , the support of \mathcal{U} is the smallest ω -closed set κ such that every operator in \mathcal{U} is supported on κ .

Let
$$\mathfrak{M}_{\mathsf{max}}(\kappa) = \Psi(\kappa)^{\perp}$$
 and $\mathfrak{M}_{\mathsf{min}}(\kappa) = \Phi(\kappa)^{\perp}$.

 κ satisfies operator synthesis if and only if $\mathfrak{M}_{\max}(\kappa) = \mathfrak{M}_{\min}(\kappa)$.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

Given $\mathcal{U} \subseteq \mathcal{B}(H_1, H_2)$, let

Ref $\mathcal{U} = \{ T \in \mathcal{B}(H_1, H_2) : T\xi \in \overline{\mathcal{U}\xi}, \forall \xi \in H_1 \}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The space \mathcal{U} is called *reflexive* if $\mathcal{U} = \operatorname{Ref} \mathcal{U}$.

It is called *transitive* if $\operatorname{Ref} \mathcal{U} = \mathcal{B}(H_1, H_2)$.
Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

```
Given \mathcal{U} \subseteq \mathcal{B}(H_1, H_2), let
```

 $\operatorname{Ref} \mathcal{U} = \{ T \in \mathcal{B}(H_1, H_2) : T\xi \in \overline{\mathcal{U}\xi}, \ \forall \xi \in H_1 \}.$

The space \mathcal{U} is called *reflexive* if $\mathcal{U} = \operatorname{Ref} \mathcal{U}$.

It is called *transitive* if $\operatorname{Ref} \mathcal{U} = \mathcal{B}(H_1, H_2)$.

Arvseon's Transitivity Theorem, 1974

If \mathcal{U} is a transitive masa-bimodule then \mathcal{U} is weak* dense in $\mathcal{B}(H_1, H_2)$.

Connections with reflexivity

The notion of reflexivity has origins in the study of invariant subspaces.

```
Given \mathcal{U} \subseteq \mathcal{B}(H_1, H_2), let
```

$$\operatorname{Ref} \mathcal{U} = \{ T \in \mathcal{B}(H_1, H_2) : T\xi \in \overline{\mathcal{U}\xi}, \ \forall \xi \in H_1 \}.$$

The space \mathcal{U} is called *reflexive* if $\mathcal{U} = \operatorname{Ref} \mathcal{U}$.

It is called *transitive* if $\operatorname{Ref} \mathcal{U} = \mathcal{B}(H_1, H_2)$.

Arvseon's Transitivity Theorem, 1974

If \mathcal{U} is a transitive masa-bimodule then \mathcal{U} is weak* dense in $\mathcal{B}(H_1, H_2)$.

Erdos, Katavolos, Shulman, 1998: A weak* closed masa-bimodule $\mathcal{U} \subseteq \mathcal{B}(H_1, H_2)$ is reflexive if and only if $\mathcal{U} = \mathfrak{M}_{max}(\kappa)$ for some ω -closed set $\kappa \subseteq X \times Y$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $E^* = \{(s, t) : ts^{-1} \in E\} \subseteq G \times G$.

Let
$$E^* = \{(s, t) : ts^{-1} \in E\} \subseteq G \times G$$
.

Theorem (Ludwig-Turowska, 2006)

E satisfies local spectral synthesis if and only of E^* satisfies operator synthesis.

Let
$$E^* = \{(s, t) : ts^{-1} \in E\} \subseteq G \times G$$
.

Theorem (Ludwig-Turowska, 2006)

E satisfies local spectral synthesis if and only of E^* satisfies operator synthesis.

Spronk-Turowska, 2002: the case G is compact.

Note that in this case local spectral synthesis is equivalent to spectral synthesis.

Froelich, 1988: the case G is abelian

• Ternary sets

 $f: X \to \mathbb{R}, g: Y \to \mathbb{R}$ $\{(x, y) \in X \times Y : f(x) = g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Ternary sets

$$f:X
ightarrow\mathbb{R}$$
, $g:Y
ightarrow\mathbb{R}$

 $\{(x, y) \in X \times Y : f(x) = g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)

In Harmonic Analysis, the analogous sets are translates of closed subgroups.

• Ternary sets

 $f: X \to \mathbb{R}, g: Y \to \mathbb{R}$ $\{(x, y) \in X \times Y : f(x) = g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)

In Harmonic Analysis, the analogous sets are translates of closed subgroups.

• Sets of finite width

 $f_i : X \to \mathbb{R}, g_i : Y \to \mathbb{R}$ $\{(x, y) \in X \times Y : f_i(x) \le g_i(y), i = 1, ..., n\}$ satisfies operator synthesis (Turowska, T.)

• Ternary sets

 $f:X
ightarrow\mathbb{R},\ g:Y
ightarrow\mathbb{R}$

 $\{(x, y) \in X \times Y : f(x) = g(y)\}$ satisfies operator synthesis (Shulman, Katavolos-T)

In Harmonic Analysis, the analogous sets are translates of closed subgroups.

• Sets of finite width

 $f_i: X \to \mathbb{R}, g_i: Y \to \mathbb{R}$

 $\{(x, y) \in X \times Y : f_i(x) \le g_i(y), i = 1, ..., n\}$ satisfies operator synthesis (Turowska, T.)

In Harmonic Analysis, the analogous sets are $\{t \in G : \omega_i(s) \le r_i, i = 1, ..., n\}$, where $\omega_i : G \to \mathbb{R}^+$ continuous homomorphisms.

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi} : L^{2}(X \times Y) \rightarrow L^{2}(X \times Y)$ be the corresponding multiplication operator

$$S_{\varphi}\xi = \varphi\xi.$$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi} : L^{2}(X \times Y) \to L^{2}(X \times Y)$ be the corresponding multiplication operator

$$S_{\varphi}\xi = \varphi\xi.$$

The space $L^2(X \times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}(L^2(X), L^2(Y))$ by

$$\xi \longrightarrow T_{\xi}, \qquad T_{\xi}f(y) = \int_X \xi(x,y)f(x)d\mu(x).$$

Set $\|\xi\|_{\mathrm{op}} = \|T_{\xi}\|_{\mathrm{op}}$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi} : L^{2}(X \times Y) \to L^{2}(X \times Y)$ be the corresponding multiplication operator

$$S_{\varphi}\xi = \varphi\xi.$$

The space $L^2(X \times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}(L^2(X), L^2(Y))$ by

$$\xi \longrightarrow T_{\xi}, \qquad T_{\xi}f(y) = \int_X \xi(x,y)f(x)d\mu(x).$$

Set $\|\xi\|_{op} = \|T_{\xi}\|_{op}$ A function $\varphi \in L^{\infty}(X \times Y)$ is called a *Schur multiplier* if there exists C > 0 such that

$$\|S_{\varphi}\xi\|_{\mathrm{op}} \leq C \|\xi\|_{\mathrm{op}}, \quad \xi \in L^2(X \times Y).$$

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_X (resp. \mathcal{D}_Y) for the multiplication masa of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$).

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_X (resp. \mathcal{D}_Y) for the multiplication mass of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$). If $\varphi \in \mathfrak{S}$ then S_{φ} extends by continuity to a bounded operator on the space of compact operators:

$$S_{\varphi}: \mathcal{K}(L^2(X), L^2(Y)) \to \mathcal{K}(L^2(X), L^2(Y)),$$

and after passing to the second dual, to a bounded operator

$$S_{\varphi}: \mathcal{B}(L^2(X), L^2(Y)) \to \mathcal{B}(L^2(X), L^2(Y)).$$

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_X (resp. \mathcal{D}_Y) for the multiplication mass of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$). If $\varphi \in \mathfrak{S}$ then S_{φ} extends by continuity to a bounded operator on the space of compact operators:

$$S_{\varphi}: \mathcal{K}(L^2(X), L^2(Y)) \to \mathcal{K}(L^2(X), L^2(Y)),$$

and after passing to the second dual, to a bounded operator

$$S_{\varphi}: \mathcal{B}(L^2(X), L^2(Y)) \to \mathcal{B}(L^2(X), L^2(Y)).$$

 S_{arphi} is moreover modular in the sense that

 $S_{\varphi}(BTA) = BS_{\varphi}(T)A, \quad A \in \mathcal{D}_X, B \in \mathcal{D}_Y, T \in \mathcal{B}(L^2(X), L^2(Y)).$

By a result of Smith, S_{φ} is completely bounded.

Let $\mathfrak{S}(X, Y)$ be the class of all Schur multipliers and write \mathcal{D}_X (resp. \mathcal{D}_Y) for the multiplication mass of $L^{\infty}(X)$ (resp. $L^{\infty}(Y)$). If $\varphi \in \mathfrak{S}$ then S_{φ} extends by continuity to a bounded operator on the space of compact operators:

$$S_{\varphi}: \mathcal{K}(L^2(X), L^2(Y)) \to \mathcal{K}(L^2(X), L^2(Y)),$$

and after passing to the second dual, to a bounded operator

$$S_{\varphi}: \mathcal{B}(L^2(X), L^2(Y)) \to \mathcal{B}(L^2(X), L^2(Y)).$$

 S_{arphi} is moreover modular in the sense that

 $S_{\varphi}(BTA) = BS_{\varphi}(T)A, \quad A \in \mathcal{D}_X, B \in \mathcal{D}_Y, T \in \mathcal{B}(L^2(X), L^2(Y)).$

By a result of Smith, S_{φ} is completely bounded.

Weak* closed masa-bimodules are precisely the weak* closed invariant subspaces of Schur multipliers.

Peller's Theorem (1985)

The following are equivalent:

(i) φ is a Schur multiplier;

(ii) there exist families $\{a_k\}_{k=1}^{\infty} \subseteq L^{\infty}(X)$ and $\{b_k\}_{k=1}^{\infty} \subseteq L^{\infty}(Y)$ and a constant C > 0 such that $\operatorname{esssup}_{x \in X} \sum_{k=1}^{\infty} |a_k(x)|^2 \leq C$, $\operatorname{esssup}_{y \in Y} \sum_{k=1}^{\infty} |b_k(y)|^2 \leq C$ and

$$arphi(x,y) = \sum_{k=1}^\infty a_k(x) b_k(y), \quad ext{a.e. on } X imes Y;$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

(iii) $\varphi \Gamma(X, Y) \subseteq \Gamma(X, Y)$.

Peller's Theorem (1985)

The following are equivalent:

(i) φ is a Schur multiplier;

(ii) there exist families $\{a_k\}_{k=1}^{\infty} \subseteq L^{\infty}(X)$ and $\{b_k\}_{k=1}^{\infty} \subseteq L^{\infty}(Y)$ and a constant C > 0 such that $\operatorname{esssup}_{x \in X} \sum_{k=1}^{\infty} |a_k(x)|^2 \leq C$, $\operatorname{esssup}_{y \in Y} \sum_{k=1}^{\infty} |b_k(y)|^2 \leq C$ and

$$arphi(x,y) = \sum_{k=1}^{\infty} a_k(x) b_k(y), \quad ext{a.e. on } X imes Y;$$

(iii) $\varphi \Gamma(X, Y) \subseteq \Gamma(X, Y)$.

 $S_{\varphi}S_{\psi}=S_{\varphi\psi}.$

Schur idempotents, \mathfrak{I} : idempotent Schur multipliers ($\phi^2 = \phi$), Katavolos-Pauslen (2006).

G locally compact group.

$$MA(G) = \{g \in C(G) : gf \in A(G), \text{ for all } f \in A(G)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

G locally compact group.

$$MA(G) = \{g \in C(G) : gf \in A(G), \text{ for all } f \in A(G)\}.$$

Cowling-Haagerup: $M^{cb}A(G) = \{g \in MA(G) : f \to gf \text{ completely bounded}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

G locally compact group.

$$MA(G) = \{g \in C(G) : gf \in A(G), \text{ for all } f \in A(G)\}.$$

Cowling-Haagerup: $M^{cb}A(G) = \{g \in MA(G) : f \to gf \text{ completely bounded}\}.$

$$A(G)^* = \operatorname{VN}(G) \stackrel{def}{=} \overline{[\lambda_s : s \in G]}^{WOT}$$

G locally compact group.

$$MA(G) = \{g \in C(G) : gf \in A(G), \text{ for all } f \in A(G)\}.$$

Cowling-Haagerup: $M^{cb}A(G) = \{g \in MA(G) : f \to gf \text{ completely bounded}\}.$

$$A(G)^* = \operatorname{VN}(G) \stackrel{\text{def}}{=} \overline{[\lambda_s : s \in G]}^{WOT}.$$

If $f: G \to \mathbb{C}$, let $Nf: G \times G \to \mathbb{C}$, $Nf(s, t) = f(ts^{-1})$.

Theorem (Gilbert, Bozejko-Fendler,...)

 $f \in M^{cb}A(G)$ if and only if Nf is a Schur multiplier.

G locally compact group.

$$MA(G) = \{g \in C(G) : gf \in A(G), \text{ for all } f \in A(G)\}.$$

Cowling-Haagerup: $M^{cb}A(G) = \{g \in MA(G) : f \to gf \text{ completely bounded}\}.$

$$A(G)^* = \operatorname{VN}(G) \stackrel{def}{=} \overline{[\lambda_s : s \in G]}^{WOT}.$$

If $f: G \to \mathbb{C}$, let $Nf: G \times G \to \mathbb{C}$, $Nf(s, t) = f(ts^{-1})$.

Theorem (Gilbert, Bozejko-Fendler,...)

 $f \in M^{cb}A(G)$ if and only if Nf is a Schur multiplier.

Proof also given by Jolissaint (1992), extended by Spronk (2004).

Problem - HA

Given two closed synthetic sets $E, F \subseteq G$, is $E \cup F$ synthetic?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem - HA

Given two closed synthetic sets $E, F \subseteq G$, is $E \cup F$ synthetic?

Problem - OA

Given two ω -closed operator synthetic sets $\kappa, \lambda \subseteq X \times Y$, is $\kappa \cup \lambda$ operator synthetic?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem - HA

Given two closed synthetic sets $E, F \subseteq G$, is $E \cup F$ synthetic?

Problem - OA

Given two ω -closed operator synthetic sets $\kappa, \lambda \subseteq X \times Y$, is $\kappa \cup \lambda$ operator synthetic?

Ludwig-Turowska, Shulman-Turowska, T: The union of an operator synthetic set and a ternary set is operator synthetic.

Ternary are the sets $\{(x, y) : f(x) = g(y)\}$. They are the supports of "ternary" masa-bimodules, that is, masa-bimodules \mathcal{U} such that $\mathcal{UU}^*\mathcal{U} \subseteq \mathcal{U}$.

Question

Suppose that $\mathcal U$ and $\mathcal V$ are reflexive masa-bimodules. Is $\overline{\mathcal U+\mathcal V}^{w^*}$ reflexive?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Question

Suppose that $\mathcal U$ and $\mathcal V$ are reflexive masa-bimodules. Is $\overline{\mathcal U+\mathcal V}^{w^*}$ reflexive?

Suppose that $\mathcal{U} = \mathfrak{M}_{\max}(\kappa)$ and $\mathcal{V} = \mathfrak{M}_{\max}(\lambda)$ with κ and λ operator synthetic. If $\overline{\mathcal{U} + \mathcal{V}}^{w^*}$ is reflexive then $\kappa \cup \lambda$ is operator synthetic.

Schur idempoents

If $\phi = S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max}(\kappa)$ and κ is ω -clopen and hence operator synthetic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Schur idempoents

If $\phi = S_{\chi_{\kappa}}$ is a Schur idempotent then $S_{\chi_{\kappa}}$ has range $\mathfrak{M}_{\max}(\kappa)$ and κ is ω -clopen and hence operator synthetic.

A masa-bimodule \mathcal{U} is called \Im -injective if $\mathcal{U} = \operatorname{Ran} \phi$ for a Schur idempotent ϕ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A masa-bimodule \mathcal{U} is called \Im -injective if $\mathcal{U} = \operatorname{Ran} \phi$ for a Schur idempotent ϕ .

 \mathcal{U} is called *approximately* \mathfrak{I} -*injective* if $\mathcal{U} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where (ϕ_n) is a uniformly bounded sequence of Schur idempotents.

A masa-bimodule \mathcal{U} is called \Im -injective if $\mathcal{U} = \operatorname{Ran} \phi$ for a Schur idempotent ϕ .

 \mathcal{U} is called *approximately* \mathfrak{I} -*injective* if $\mathcal{U} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where (ϕ_n) is a uniformly bounded sequence of Schur idempotents.

We can call an ω -closed set κ approximately \Im -injective if κ supports an approximately \Im -injective masa-bimodule.

A masa-bimodule \mathcal{U} is called \Im -injective if $\mathcal{U} = \operatorname{Ran} \phi$ for a Schur idempotent ϕ .

 \mathcal{U} is called *approximately* \mathfrak{I} -*injective* if $\mathcal{U} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where (ϕ_n) is a uniformly bounded sequence of Schur idempotents.

We can call an ω -closed set κ approximately \Im -injective if κ supports an approximately \Im -injective masa-bimodule.

An example: ternary sets $\{(x, y) : f(x) = g(y)\}$.

A masa-bimodule \mathcal{U} is called \Im -injective if $\mathcal{U} = \operatorname{Ran} \phi$ for a Schur idempotent ϕ .

 \mathcal{U} is called *approximately* \mathfrak{I} -*injective* if $\mathcal{U} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where (ϕ_n) is a uniformly bounded sequence of Schur idempotents.

We can call an ω -closed set κ approximately \Im -injective if κ supports an approximately \Im -injective masa-bimodule.

An example: ternary sets $\{(x, y) : f(x) = g(y)\}$.

Theorem (Eleftherakis-T, 2011)

The weak* closed linear span of a reflexive masa-bimodule and an approximately injective masa-bimodule is automatically reflexive.

Let ${\mathcal U}$ be a reflexive masa-bimodule and ${\mathcal V}={\rm Ran}\,\phi,$ where ϕ is a Schur idempotent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then the *algebraic* sum $\mathcal{U} + \mathcal{V}$ is automatically reflexive.

Let ${\cal U}$ be a reflexive masa-bimodule and ${\cal V}={\rm Ran}\,\phi,$ where ϕ is a Schur idempotent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then the *algebraic* sum $\mathcal{U} + \mathcal{V}$ is automatically reflexive.

Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$.

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

Then the *algebraic* sum $\mathcal{U} + \mathcal{V}$ is automatically reflexive.

Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$.

Then $\phi(T) \in \mathcal{V}$ and

 $\phi^{\perp}(T) \in \operatorname{Ref}(\phi^{\perp}(\mathcal{U} + \mathcal{V})) \subseteq \operatorname{Ref}\mathcal{U} = \mathcal{U}.$

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \operatorname{Ran} \phi$, where ϕ is a Schur idempotent.

Then the *algebraic* sum $\mathcal{U} + \mathcal{V}$ is automatically reflexive.

Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$.

Then $\phi(T) \in \mathcal{V}$ and

 $\phi^{\perp}(\mathcal{T}) \in \operatorname{Ref}(\phi^{\perp}(\mathcal{U} + \mathcal{V})) \subseteq \operatorname{Ref}\mathcal{U} = \mathcal{U}.$ Thus, $\mathcal{T} = \phi^{\perp}(\mathcal{T}) + \phi(\mathcal{T}) \in \mathcal{U} + \mathcal{V}.$

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where $(\phi_n)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where $(\phi_n)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents. Then $\overline{\mathcal{U} + \mathcal{V}}^{w^*}$ is automatically reflexive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where $(\phi_n)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents. Then $\overline{\mathcal{U} + \mathcal{V}}^{w^*}$ is automatically reflexive. Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$.

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where $(\phi_n)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents. Then $\overline{\mathcal{U} + \mathcal{V}}^{w^*}$ is automatically reflexive. Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$. Then $\phi_n(T) \in \mathcal{V}$ and

$$\phi_n^{\perp}(\mathcal{T}) \in \operatorname{Ref}(\phi_n^{\perp}(\mathcal{U}+\mathcal{V})) \subseteq \operatorname{Ref}\mathcal{U} = \mathcal{U}.$$

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where $(\phi_n)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents. Then $\overline{\mathcal{U} + \mathcal{V}}^{w^*}$ is automatically reflexive. Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$. Then $\phi_n(T) \in \mathcal{V}$ and $\phi_n^{\perp}(T) \in \operatorname{Ref}(\phi_n^{\perp}(\mathcal{U} + \mathcal{V})) \subseteq \operatorname{Ref}\mathcal{U} = \mathcal{U}.$ Take a weak* cluster point S of $(\phi_n(T))_{n \in \mathbb{N}}$.

Let \mathcal{U} be a reflexive masa-bimodule and $\mathcal{V} = \bigcap_{n=1}^{\infty} \operatorname{Ran} \phi_n$, where $(\phi_n)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of Schur idempotents. Then $\overline{\mathcal{U} + \mathcal{V}}^{w^*}$ is automatically reflexive. Let $T \in \operatorname{Ref}(\mathcal{U} + \mathcal{V})$. Then $\phi_n(T) \in \mathcal{V}$ and $\phi_n^{\perp}(T) \in \operatorname{Ref}(\phi_n^{\perp}(\mathcal{U} + \mathcal{V})) \subseteq \operatorname{Ref}\mathcal{U} = \mathcal{U}.$ Take a weak* cluster point S of $(\phi_n(T))_{n \in \mathbb{N}}$. Then $T = (T - S) + S \in \overline{\mathcal{U} + \mathcal{V}}^{w^*}$.

Approximately \Im -injective masa-bimodules are a subclass of the *approximately* \Im -*decomposable* ones.

Approximately \Im -injective masa-bimodules are a subclass of the *approximately* \Im -*decomposable* ones.

A masa-bimodule \mathcal{U} is called approximately \mathfrak{I} -decomposable if there exists a constant C > 0 and, for each $n \in \mathbb{N}$, Schur idempotents ϕ_n and ψ_n such that

- $\mathcal{U} \subseteq \operatorname{Ran} \phi_n + \operatorname{Ran} \psi_n$, for all *n*;
- $\operatorname{Ran} \phi_n \subseteq \mathcal{U}$, for all *n*;
- $\|\phi_n\| \leq C$, for all n;
- $\limsup \operatorname{Ran} \psi_n \subseteq \mathcal{U}.$

Approximately \Im -injective masa-bimodules are a subclass of the *approximately* \Im -*decomposable* ones.

A masa-bimodule \mathcal{U} is called approximately \mathfrak{I} -decomposable if there exists a constant C > 0 and, for each $n \in \mathbb{N}$, Schur idempotents ϕ_n and ψ_n such that

- $\mathcal{U} \subseteq \operatorname{Ran} \phi_n + \operatorname{Ran} \psi_n$, for all *n*;
- $\operatorname{Ran} \phi_n \subseteq \mathcal{U}$, for all *n*;
- $\|\phi_n\| \leq C$, for all n;
- $\limsup \operatorname{Ran} \psi_n \subseteq \mathcal{U}$.

For example, "nest algebra bimodules" (whose supports are the sets of the form $\{(x, y) : f(x) \le g(y)\}$) are approximately decomposable.

Approximately \Im -injective masa-bimodules are a subclass of the *approximately* \Im -*decomposable* ones.

A masa-bimodule \mathcal{U} is called approximately \mathfrak{I} -decomposable if there exists a constant C > 0 and, for each $n \in \mathbb{N}$, Schur idempotents ϕ_n and ψ_n such that

- $\mathcal{U} \subseteq \operatorname{Ran} \phi_n + \operatorname{Ran} \psi_n$, for all *n*;
- $\operatorname{Ran} \phi_n \subseteq \mathcal{U}$, for all *n*;
- $\|\phi_n\| \leq C$, for all n;
- $\limsup \operatorname{Ran} \psi_n \subseteq \mathcal{U}$.

For example, "nest algebra bimodules" (whose supports are the sets of the form $\{(x, y) : f(x) \le g(y)\}$) are approximately decomposable.

Key technical tool: the intersection formula

$$\bigcap_{i=1}^{n} \overline{\mathcal{U} + \mathcal{V}_{i}}^{w^{*}} = \overline{\mathcal{U} + \bigcap_{i=1}^{n} \mathcal{V}_{i}}^{w^{*}}.$$

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an approximately \Im -decomposable masa-bimodule is automatically reflexive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an approximately \Im -decomposable masa-bimodule is automatically reflexive.

Corollary

Let κ be the support of an operator synthetic approximately \Im -decomposable masa-bimodule. If λ is an operator synthetic set then $\kappa \cup \lambda$ is operator synthetic.

Theorem, Eleftherakis-T, 2011

The weak* closed linear span of a reflexive masa-bimodule and an approximately \Im -decomposable masa-bimodule is automatically reflexive.

Corollary

Let κ be the support of an operator synthetic approximately \Im -decomposable masa-bimodule. If λ is an operator synthetic set then $\kappa \cup \lambda$ is operator synthetic.

In particular, this conclusion holds if κ is a set of finite width:

$$\kappa = \{(x, y) : f_i(x) \le g_i(y), i = 1, \dots, n\}.$$

Let us call s set $E \subseteq G$ a *level set* if

$$E = \{t \in G : \omega(t) \leq r_i\},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\omega : \mathbf{G} \to \mathbb{R}$ is a continuous homomorphiim.

Let us call s set $E \subseteq G$ a *level set* if

$$E = \{t \in G : \omega(t) \leq r_i\},\$$

where $\omega : \mathcal{G} \to \mathbb{R}$ is a continuous homomorphiim.

Corollary

Suppose that $F \subseteq G$ satisfies spectral synthesis, while E_i is a level set, i = 1, ..., n. Then $F \cup (\bigcap_{i=1}^{n} E_i)$ satisfies spectral synthesis.

Products

Question

If κ_1 and κ_2 are (operator) synthetic sets, is $\kappa_1 \times \kappa_2$ (operator) synthetic?

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Question

If κ_1 and κ_2 are (operator) synthetic sets, is $\kappa_1 \times \kappa_2$ (operator) synthetic?

A small rearrangement of variables is needed:

 $\kappa_1 \subseteq X_1 \times Y_1$, $\kappa_2 \subseteq X_2 \times Y_2$.

 $\mathfrak{M}_{\mathsf{max}}(\kappa_1)\bar{\otimes}\mathfrak{M}_{\mathsf{max}}(\kappa_2)$ is an $L^{\infty}(Y_1 \times Y_2), L^{\infty}(X_1 \times X_2)$ -module.

Question

If κ_1 and κ_2 are (operator) synthetic sets, is $\kappa_1 \times \kappa_2$ (operator) synthetic?

A small rearrangement of variables is needed:

 $\kappa_1 \subseteq X_1 \times Y_1$, $\kappa_2 \subseteq X_2 \times Y_2$.

 $\mathfrak{M}_{\mathsf{max}}(\kappa_1)\bar{\otimes}\mathfrak{M}_{\mathsf{max}}(\kappa_2)$ is an $L^{\infty}(Y_1 \times Y_2), L^{\infty}(X_1 \times X_2)$ -module.

Thus, we should be looking at the set $\rho(\kappa_1 \times \kappa_2)$, where

$$\rho: (x_1, y_1, x_2, y_2) \longrightarrow (x_1, y_1, x_2, y_2).$$

Kraus' property S_{σ}

Let $\omega \in \mathcal{B}(H_1, H_2)_*$. The right Tomiyama's slice map $R_\omega : \mathcal{B}(H_1 \otimes K_1, H_2 \otimes K_2) \to \mathcal{B}(K_1, K_2)$

is given by

 $R_{\omega}(A \otimes B) = \omega(A)B, \quad A \in \mathcal{B}(H_1, H_2), B \in \mathcal{B}(K_1, K_2).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\omega \in \mathcal{B}(H_1, H_2)_*$. The right Tomiyama's slice map $R_\omega : \mathcal{B}(H_1 \otimes K_1, H_2 \otimes K_2) \rightarrow \mathcal{B}(K_1, K_2)$

is given by

 $R_{\omega}(A \otimes B) = \omega(A)B, \quad A \in \mathcal{B}(H_1, H_2), B \in \mathcal{B}(K_1, K_2).$

The Fubini product of ${\mathcal V}$ and ${\mathcal U}$ is

 $\mathcal{F}(\mathcal{V},\mathcal{U}) = \{T \in \mathcal{V} \bar{\otimes} \mathcal{B}(\mathcal{K}_1 \otimes \mathcal{K}_2) : \mathcal{R}_{\omega}(T) \in \mathcal{U}, \ \forall \omega \in \mathcal{B}(\mathcal{K}_1,\mathcal{K}_2)_*\}.$

A weak* closed subspace $\mathcal{V} \subseteq \mathcal{B}(H_1, H_2)$ possesses property S_{σ} if

$$\mathcal{V} \bar{\otimes} \mathcal{U} = \mathcal{F}(\mathcal{V}, \mathcal{U}), \quad \forall \ \mathcal{U} \subseteq \mathcal{B}(K_1, K_2).$$

Preservation of S_{σ}

Kraus, 1983: $\mathcal{B}(H_1, H_2)$ possess property S_{σ} . Thus $\mathcal{F}(\mathcal{V}, \mathcal{U}) = (\mathcal{V} \bar{\otimes} \mathcal{B}(K_1, K_2)) \cap (\mathcal{B}(H_1, H_2) \bar{\otimes} \mathcal{U}).$

Preservation of S_{σ}

Kraus, 1983: $\mathcal{B}(H_1, H_2)$ possess property S_{σ} . Thus

 $\mathcal{F}(\mathcal{V},\mathcal{U}) = (\mathcal{V} \bar{\otimes} \mathcal{B}(\mathcal{K}_1,\mathcal{K}_2)) \cap (\mathcal{B}(\mathcal{H}_1,\mathcal{H}_2) \bar{\otimes} \mathcal{U}).$

Hopenwasser-Kraus, 1983 (can be generalised to):

Theorem

Every masa-bimodule of finite width possesses S_{σ} .

 \mathcal{V} is of finite width if $\mathcal{V} = \mathfrak{M}_{\max}(\kappa)$, foe some subset κ of finite width.

Theorem (Eleftherakis-T, 2013)

If $\mathcal B$ is a masa-bimodule of finite width then

$$\mathcal{F}(\overline{\mathcal{V}+\mathcal{B}}^{w^*},\mathcal{U})=\overline{\mathcal{F}(\mathcal{V},\mathcal{U})+\mathcal{B}\otimes\mathcal{U}}^{w^*},$$

In particular, if \mathcal{V} has S_{σ} then so does $\overline{\mathcal{V} + \mathcal{B}}^{w^*}$.

Proposition

Let κ and λ be operator synhetic sets. The following are equivalent:

(i) $\rho(\kappa \times \lambda)$ is operator synthetic; (ii) $\mathcal{F}(\mathfrak{M}_{\max}(\kappa), \mathfrak{M}_{\max}(\lambda)) = \mathfrak{M}_{\max}(\kappa) \bar{\otimes} \mathfrak{M}_{\max}(\lambda)$.

Proposition

Let κ and λ be operator synhetic sets. The following are equivalent:

(i)
$$\rho(\kappa \times \lambda)$$
 is operator synthetic;
(ii) $\mathcal{F}(\mathfrak{M}_{\max}(\kappa), \mathfrak{M}_{\max}(\lambda)) = \mathfrak{M}_{\max}(\kappa) \overline{\otimes} \mathfrak{M}_{\max}(\lambda)$

Corollary

Suppose that $\mathfrak{M}_{\max}(\kappa)$ possesses property S_{σ} . Then $\rho(\kappa \times \lambda)$ is operator synthetic for every operator synthetic set λ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can we formulate sufficient conditions for the operator synthesis of sets of the form

$$\cup_{i=1}^{n} \rho(\kappa_i \times \lambda_i)$$
 ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Can we formulate sufficient conditions for the operator synthesis of sets of the form

$$\cup_{i=1}^{n} \rho(\kappa_i \times \lambda_i)$$
?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

This question can be approached, once again, with the use of Schur idempotents.

Can we formulate sufficient conditions for the operator synthesis of sets of the form

$$\cup_{i=1}^{n} \rho(\kappa_i \times \lambda_i)$$
?

This question can be approached, once again, with the use of Schur idempotents.

Theorem (Eleftherakis-T, 2013)

If $\{\mathcal{B}_{j_p}^p\}_{j_p=1}^{m_p}$ are families of masa-bimodules of finite width and \mathcal{U}_p are weak* closed spaces of operators, $p = 1, \ldots, r$, then

$$\bigcap_{j_1,\dots,j_r}\overline{\mathcal{B}^1_{j_1}\otimes\mathcal{U}_1+\dots+\mathcal{B}^r_{j_r}\otimes\mathcal{U}_r}=\overline{(\cap_{j_1}\mathcal{B}^1_{j_1})\otimes\mathcal{U}_1+\dots+(\cap_{j_r}\mathcal{B}^1_{j_r})\otimes\mathcal{U}_r}.$$

Theorem (Eleftherakis-T, 2013)

Let $\kappa_i \subseteq X_1 \times X_2$ be a set of finite width, and let $\lambda_i \subseteq Y_1 \times Y_2$ be an ω -closed set, $i = 1, \ldots, r$. Suppose that $\bigcup_{k=1}^{p} \lambda_{m_k}$ is operator synthetic whenever $1 \leq m_1 < m_2 < \cdots < m_p \leq r$. Then the set $\rho(\bigcup_{i=1}^{r} \kappa_i \times \lambda_i)$ is operator synthetic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Eleftherakis-T, 2013)

Let $\kappa_i \subseteq X_1 \times X_2$ be a set of finite width, and let $\lambda_i \subseteq Y_1 \times Y_2$ be an ω -closed set, $i = 1, \ldots, r$. Suppose that $\bigcup_{k=1}^p \lambda_{m_k}$ is operator synthetic whenever $1 \leq m_1 < m_2 < \cdots < m_p \leq r$. Then the set $\rho(\bigcup_{i=1}^r \kappa_i \times \lambda_i)$ is operator synthetic.

Corollary

Let G and H be second countable locally compact groups. Suppose that E_1, \ldots, E_r are finite intersections of level sets in G and F_1, \ldots, F_r are closed subsets of H such that $\bigcup_{k=1}^p F_{m_k}$ is a set of local spectral synthesis whenever $1 \le m_1 < m_2 < \cdots < m_p \le r$. Then the set $\bigcup_{i=1}^r E_i \times F_i$ is a set of local spectral synthesis of $G \times H$.

MUCHAS GRACIAS