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Notation

G: A second countable locally compact group∫
G f (x) dx : Left Haar integration∫

G
f (yx) dx =

∫
G

f (x) dx = ∆(y)

∫
G

f (xy) dx

Usual spaces: L1(G), L2(G), Cb(G), A(G), B(G) and Ĝ

If π is a (unitary) representation of G on Hπ and ξ, η ∈ Hπ let, for
x ∈ G,

ϕπξ,η(x) = 〈π(x)ξ, η〉.

Then ϕπξ,η ∈ B(G) ⊆ Cb(G).

Aπ(G) = 〈{ϕπξ,η : ξ, η ∈ Hπ}〉
‖·‖B(G)

If λ is left regular representation, then Aλ(G) = A(G).
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Wavelets

Let π be a representation of G and η ∈ Hπ. Define the transform
Vη : Hπ → B(G) by

Vηξ(x) = 〈ξ, π(x)η〉, x ∈ G.

Let Aη = Vη(Hπ). Note that Aη ⊆ Aπ(G) and Aaη = Aη, for any
a 6= 0.

Definition: η is wavelet for π if Aη ⊆ L2(G) and ‖Vηξ‖2 = ‖ξ‖ for
all ξ ∈ Hπ.

Easy facts: Let η be a wavelet for π. Then
(a)Aη is a closed subspace of L2(G) invariant under λ
(b)Vη is a unitary transformation intertwining π and λAη
(c) For all ξ ∈ Hπ, we have, weakly in Hπ,

ξ =

∫
G

Vηξ(x)π(x)η dx .
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A first example

Let A ∈ GLk (R) have δ = | det(A)| 6= 1 and form the group

G = Rk oA Z = {[x , n] : x ∈ Rk , n ∈ Z}

with product given by [x , n][y ,m] = [x + Any , n + m].

Consider R̂k as consisting of row vectors. So, for f ∈ L1(Rk ),
f̂ (γ) =

∫
Rk f (x)e2πiγxdx .

Then n ∈ Z acts on the right on R̂k by γ · n = γAn.

There exists a measurable Ω ⊆ R̂k such that
(a) 0 < |Ω| <∞
(b) ΩAn ∩ ΩAm = ∅ if n 6= m
(c) There is a null set N ⊆ R̂k with R̂k = N

⋃
(∪n∈ZΩAn).
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First example continued

Let π be the natural translation and dilation representation of G on
Rk . That is, Hπ = L2(Rk ) and for [x , n] ∈ G and f ∈ L2(Rk ),

π[x , n]f (y) = δ−n/2f
(
A−n(y − x)

)
,

for y ∈ Rk .

Recall that Ω is a cross-section of almost all of the Z-orbits in R̂k

and |Ω| <∞.

Let w ∈ L2(Rk ) satisfy ŵ = 1Ω. Then w is a wavelet for π.

If A is an expansive matrix, then Ω can be selected as a bounded
set and the construction can be modified to produce wavelets that
are Schwartz functions.

Note that π has no irreducible subrepresentations if k > 1.
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Let w ∈ L2(Rk ) satisfy ŵ = 1Ω. Then w is a wavelet for π.

If A is an expansive matrix, then Ω can be selected as a bounded
set and the construction can be modified to produce wavelets that
are Schwartz functions.

Note that π has no irreducible subrepresentations if k > 1.



First example continued

Let π be the natural translation and dilation representation of G on
Rk . That is, Hπ = L2(Rk ) and for [x , n] ∈ G and f ∈ L2(Rk ),

π[x , n]f (y) = δ−n/2f
(
A−n(y − x)

)
,

for y ∈ Rk .

Recall that Ω is a cross-section of almost all of the Z-orbits in R̂k

and |Ω| <∞.
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Irreducible π

Suppose π ∈ Ĝ and η ∈ Hπ.

If Aη ∩ L2(G) 6= {0}, then Aη ⊆ L2(G) and η is a multiple of a
wavelet.

Definition: An irreducible π is called a square-integrable
representation of G if there exists η ∈ Hπ such that
Aη ∩ L2(G) 6= {0}.

How does Aη move in Aπ(G) or L2(G) as the wavelet η varies?

First look at L2(G). Let Kπ = 〈∪{Aη : η wavelet for π}〉L
2(G)

Fix any wavelet η. Then Kπ = 〈∪{Aπ(x)η : x ∈ G}〉L
2(G)

, since π
is irreducible.

Note that λKπ is quasi-equivalent to π and λK⊥π is disjoint from π
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Irreducible π: 2

Now look at Aπ(G).

Theorem

Let π be square integrable and let η and η′ be wavelets for π.

(a) Aη is a ‖ · ‖B(G)-closed subspace of Aπ(G).

(b) Aη is left translation invariant, but the right translation of
Aη by x is Aπ(x)η.

(c) Aπ(G) = 〈∪{Aπ(x)η : x ∈ G}〉B(G)

(d) Either Aη ∩ Aη′ = {0} or Aη = Aη′ and the latter happens
only if η′ = cη for some c ∈ T.

(e) If x , y ∈ G satisfy Aπ(x)η = Aπ(y)η, then ∆(y−1x) = 1 and
π(y−1x)η = cη, for some c ∈ T.

(f) If G has no nontrivial compact subgroup, then
Aπ(x)η ∩ Aπ(y)η = {0} for any x 6= y in G.
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Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined
positive operator K on Hπ such that

(a) π(x)Kπ(x)−1 = ∆(x)−1K , x ∈ G
(b) Aη ⊆ L2(G) iff η ∈ domK−1/2

(c) For ξ, ξ′ ∈ Hπ, η, η′ ∈ domK−1/2,

〈Vηξ,Vη′ξ′〉L2(G) = 〈ξ, ξ′〉〈K−1/2η′,K−1/2η〉.

Corollary

Let π be square-integrable and η ∈ Hπ.
(a) η is a wavelet iff ‖K−1/2η‖ = 1.
(b) If η is a wavelet, then so is ∆(x)1/2π(x)η, ∀x ∈ G.

Note: In the important examples, K can be concretely identified.
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Compact groups

Suppose G is a compact group. Then B(G) ⊆ L2(G) and so every
irreducible representation π is square-integrable and every
nonzero η ∈ Hπ is a multiple of a wavelet.

Each irreducible π is finite dimensional. Let dπ = dim(Hπ).

Classic orthogonality relations

Let π and σ be irreducible representations of G. Let
η, ξ ∈ Hπ, η′, ξ′ ∈ Hσ. Then

(a) If π and σ are not equivalent then 〈Vηξ,Vη′ξ′〉L2(G) = 0.
(b) If π = σ then

〈Vηξ,Vη′ξ′〉L2(G) = d−1
π 〈ξ, ξ′〉〈η′, η〉.

That is, K = dπIHπ when G is compact.
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Compact groups 2

Let G be compact and π ∈ Ĝ. Let {ν1, · · · , νdπ} be an
orthonormal basis of Hπ.

For 1 ≤ j ≤ dπ, let ηj = d1/2
π νj . So ηj is a wavelet for π.

Then Kπ = ⊕dπ
j=1Aηj .

The rest of Peter-Weyl says L2(G) = ⊕
π∈ĜKπ.

How much of this holds when G is no longer compact?
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Square-integrable π

Let π be a square integrable representation of a second countable
locally compact G.

Theorem

There exists a countable set {ηj : j ∈ J} of wavelets for π such that

Kπ = ⊕j∈JAηj .

Moreover, if η is a fixed wavelet, each ηj can be constructed as a
finite linear combination of {π(x)η : x ∈ G}.

Proof sketch:
Fix a wavelet η for π. Then {π(x)η : x ∈ G} is total in Hπ.

Let Dπ = domK−1/2. Then K−1/2(Dπ) is a subspace of Hπ and
K−1/2 is a bijection. By separability of G, we can select a
countable and linearly independent subset J of {π(x)η : x ∈ G}
that is still total in Hπ. Then perform Gram-Schmidt on K−1/2(J ).
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[AR]-groups

Let G be an [AR]-group. That is, λ is a direct sum of irreducible
representations.

Each irreducible subrepresentation π of λ is square-integrable. Let
Ĝr = {π ∈ Ĝ : π is a subrepresentation of λ}.

Then L2(G) = ⊕
π∈ĜrKπ

For each π ∈ Ĝr identify π with a concrete realization. Let
{ηπj : j ∈ J} be a countable set of wavelets in Hπ such that

Kπ = ⊕j∈JAηπj .

λAηπj
is equivalent to π for each j ∈ J.
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Example: The Shearlet group

Fix c ∈ R, c 6= 0. Let

Hc =

{(
a 0
b ac

)
: a, b ∈ R, a > 0

}
act on R2 with the natural matrix action.

Let Gc = R2 o Hc = {[x , h] : x ∈ R2, h ∈ Hc}. Group product
[x , h][y , k ] = [x + hy , hk ]. When c = 1/2, this is the shearlet
group.

Gc is an [AR]-group and Ĝc
r

= {π+, π−}. We look at π+.

Hπ+ = {f ∈ L2(R2) : suppf̂ ⊆ U+}, where U+ is the upper half
plane and

π+

[(
x1

x2

)
,

(
a 0
b ac

)]
f
(

y1

y2

)
= 1√

ac+1 f

(
a−1(y1 − x1)

y2−x2−a−1b(y1−x1)
ac

)
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Example: The Shearlet group continued

Construct {ηj : j ∈ J} as a total set in L2(U+, da db) such that
{ηj : j ∈ J} is orthonormal in L2

(
U+, da db

ac

)
.

For each j ∈ J, let wj ∈ L2(R2) satisfy ŵj = ηj .

Then Vwj f [x , h] =
∫
R2 f (y)π+[x , h]wj(y) dy , for f ∈ Hπ+ .

Awj = VwjHπ+ and λAwj
∼ π+

Kπ+ = ⊕j∈JAwj

L2(Gc) = Kπ+ ⊕Kπ−
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THANK YOU!


