Images of Wavelet Transforms

Keith F. Taylor
Dalhousie University
Halifax, Canada

May, 2013
AHA 2013, Granada
Joint work with Mahya Ghandehari

Notation

G: A second countable locally compact group
$\int_{G} f(x) d x$: Left Haar integration

$$
\int_{G} f(y x) d x=\int_{G} f(x) d x=\Delta(y) \int_{G} f(x y) d x
$$

G: A second countable locally compact group
$\int_{G} f(x) d x$: Left Haar integration

$$
\int_{G} f(y x) d x=\int_{G} f(x) d x=\Delta(y) \int_{G} f(x y) d x
$$

Usual spaces: $L^{1}(G), L^{2}(G), C_{b}(G), A(G), B(G)$ and \widehat{G}

G: A second countable locally compact group
$\int_{G} f(x) d x$: Left Haar integration

$$
\int_{G} f(y x) d x=\int_{G} f(x) d x=\Delta(y) \int_{G} f(x y) d x
$$

Usual spaces: $L^{1}(G), L^{2}(G), C_{b}(G), A(G), B(G)$ and \widehat{G}
If π is a (unitary) representation of G on \mathcal{H}_{π} and $\xi, \eta \in \mathcal{H}_{\pi}$ let, for $x \in G$,

$$
\varphi_{\xi, \eta}^{\pi}(x)=\langle\pi(x) \xi, \eta\rangle
$$

Then $\varphi_{\xi, \eta}^{\pi} \in B(G) \subseteq C_{b}(G)$.

G: A second countable locally compact group
$\int_{G} f(x) d x$: Left Haar integration

$$
\int_{G} f(y x) d x=\int_{G} f(x) d x=\Delta(y) \int_{G} f(x y) d x
$$

Usual spaces: $L^{1}(G), L^{2}(G), C_{b}(G), A(G), B(G)$ and \widehat{G}
If π is a (unitary) representation of G on \mathcal{H}_{π} and $\xi, \eta \in \mathcal{H}_{\pi}$ let, for $x \in G$,

$$
\varphi_{\xi, \eta}^{\pi}(x)=\langle\pi(x) \xi, \eta\rangle
$$

Then $\varphi_{\xi, \eta}^{\pi} \in B(G) \subseteq C_{b}(G)$.

$$
A_{\pi}(G)={\overline{\left\langle\left\{\varphi_{\xi, \eta}^{\pi}: \xi, \eta \in \mathcal{H}_{\pi}\right\}\right\rangle}}^{\|\cdot\|_{B(G)}}
$$

G: A second countable locally compact group
$\int_{G} f(x) d x$: Left Haar integration

$$
\int_{G} f(y x) d x=\int_{G} f(x) d x=\Delta(y) \int_{G} f(x y) d x
$$

Usual spaces: $L^{1}(G), L^{2}(G), C_{b}(G), A(G), B(G)$ and \widehat{G}
If π is a (unitary) representation of G on \mathcal{H}_{π} and $\xi, \eta \in \mathcal{H}_{\pi}$ let, for $x \in G$,

$$
\varphi_{\xi, \eta}^{\pi}(x)=\langle\pi(x) \xi, \eta\rangle
$$

Then $\varphi_{\xi, \eta}^{\pi} \in B(G) \subseteq C_{b}(G)$.

$$
A_{\pi}(G)=\overline{\left\langle\left\{\varphi_{\xi, \eta}^{\pi}: \xi, \eta \in \mathcal{H}_{\pi}\right\}\right\rangle}{ }^{\|\cdot\|_{B(G)}}
$$

If λ is left regular representation, then $A_{\lambda}(G)=A(G)$.

Wavelets

Let π be a representation of G and $\eta \in \mathcal{H}_{\pi}$. Define the transform $V_{\eta}: \mathcal{H}_{\pi} \rightarrow B(G)$ by

$$
V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle, \quad x \in G .
$$

Wavelets

Let π be a representation of G and $\eta \in \mathcal{H}_{\pi}$. Define the transform $V_{\eta}: \mathcal{H}_{\pi} \rightarrow B(G)$ by

$$
V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle, \quad x \in G .
$$

Let $\mathcal{A}_{\eta}=V_{\eta}\left(\mathcal{H}_{\pi}\right)$. Note that $\mathcal{A}_{\eta} \subseteq A_{\pi}(G)$ and $\mathcal{A}_{a \eta}=\mathcal{A}_{\eta}$, for any $a \neq 0$.

Let π be a representation of G and $\eta \in \mathcal{H}_{\pi}$. Define the transform $V_{\eta}: \mathcal{H}_{\pi} \rightarrow B(G)$ by

$$
V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle, \quad x \in G
$$

Let $\mathcal{A}_{\eta}=V_{\eta}\left(\mathcal{H}_{\pi}\right)$. Note that $\mathcal{A}_{\eta} \subseteq A_{\bar{\pi}}(G)$ and $\mathcal{A}_{\text {a }}=\mathcal{A}_{\eta}$, for any $a \neq 0$.
Definition: η is wavelet for π if $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and $\left\|V_{\eta} \xi\right\|_{2}=\|\xi\|$ for all $\xi \in \mathcal{H}_{\pi}$.

Let π be a representation of G and $\eta \in \mathcal{H}_{\pi}$. Define the transform $V_{\eta}: \mathcal{H}_{\pi} \rightarrow B(G)$ by

$$
V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle, \quad x \in G
$$

Let $\mathcal{A}_{\eta}=V_{\eta}\left(\mathcal{H}_{\pi}\right)$. Note that $\mathcal{A}_{\eta} \subseteq A_{\pi}(G)$ and $\mathcal{A}_{a \eta}=\mathcal{A}_{\eta}$, for any $a \neq 0$.
Definition: η is wavelet for π if $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and $\left\|V_{\eta} \xi\right\|_{2}=\|\xi\|$ for all $\xi \in \mathcal{H}_{\pi}$.
Easy facts: Let η be a wavelet for π. Then
(a) \mathcal{A}_{η} is a closed subspace of $L^{2}(G)$ invariant under λ

Let π be a representation of G and $\eta \in \mathcal{H}_{\pi}$. Define the transform $V_{\eta}: \mathcal{H}_{\pi} \rightarrow B(G)$ by

$$
V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle, \quad x \in G
$$

Let $\mathcal{A}_{\eta}=V_{\eta}\left(\mathcal{H}_{\pi}\right)$. Note that $\mathcal{A}_{\eta} \subseteq A_{\bar{\pi}}(G)$ and $\mathcal{A}_{\text {a }}=\mathcal{A}_{\eta}$, for any $a \neq 0$.
Definition: η is wavelet for π if $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and $\left\|V_{\eta} \xi\right\|_{2}=\|\xi\|$ for all $\xi \in \mathcal{H}_{\pi}$.
Easy facts: Let η be a wavelet for π. Then
(a) \mathcal{A}_{η} is a closed subspace of $L^{2}(G)$ invariant under λ
(b) V_{η} is a unitary transformation intertwining π and $\lambda_{\mathcal{A}_{\eta}}$

Let π be a representation of G and $\eta \in \mathcal{H}_{\pi}$. Define the transform $V_{\eta}: \mathcal{H}_{\pi} \rightarrow B(G)$ by

$$
V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle, \quad x \in G
$$

Let $\mathcal{A}_{\eta}=V_{\eta}\left(\mathcal{H}_{\pi}\right)$. Note that $\mathcal{A}_{\eta} \subseteq A_{\bar{\pi}}(G)$ and $\mathcal{A}_{\text {a }}=\mathcal{A}_{\eta}$, for any $a \neq 0$.
Definition: η is wavelet for π if $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and $\left\|V_{\eta} \xi\right\|_{2}=\|\xi\|$ for all $\xi \in \mathcal{H}_{\pi}$.
Easy facts: Let η be a wavelet for π. Then
(a) \mathcal{A}_{η} is a closed subspace of $L^{2}(G)$ invariant under λ
(b) V_{η} is a unitary transformation intertwining π and $\lambda_{\mathcal{A}_{\eta}}$
(c) For all $\xi \in \mathcal{H}_{\pi}$, we have, weakly in \mathcal{H}_{π},

$$
\xi=\int_{G} V_{\eta} \xi(x) \pi(x) \eta d x
$$

A first example

Let $A \in \mathrm{GL}_{k}(\mathbb{R})$ have $\delta=|\operatorname{det}(A)| \neq 1$ and form the group

$$
G=\mathbb{R}^{k} \rtimes_{A} \mathbb{Z}=\left\{[x, n]: x \in \mathbb{R}^{k}, n \in \mathbb{Z}\right\}
$$

with product given by $[x, n][y, m]=\left[x+A^{n} y, n+m\right]$.

A first example

Let $A \in \mathrm{GL}_{k}(\mathbb{R})$ have $\delta=|\operatorname{det}(A)| \neq 1$ and form the group

$$
G=\mathbb{R}^{k} \rtimes_{A} \mathbb{Z}=\left\{[x, n]: x \in \mathbb{R}^{k}, n \in \mathbb{Z}\right\}
$$

with product given by $[x, n][y, m]=\left[x+A^{n} y, n+m\right]$.
Consider $\widehat{\mathbb{R}^{k}}$ as consisting of row vectors. So, for $f \in L^{1}\left(\mathbb{R}^{k}\right)$, $\widehat{f}(\gamma)=\int_{\mathbb{R}^{k}} f(x) e^{2 \pi i \gamma x} d x$.

A first example

Let $A \in \mathrm{GL}_{k}(\mathbb{R})$ have $\delta=|\operatorname{det}(A)| \neq 1$ and form the group

$$
G=\mathbb{R}^{k} \rtimes_{A} \mathbb{Z}=\left\{[x, n]: x \in \mathbb{R}^{k}, n \in \mathbb{Z}\right\}
$$

with product given by $[x, n][y, m]=\left[x+A^{n} y, n+m\right]$.
Consider $\widehat{\mathbb{R}^{k}}$ as consisting of row vectors. So, for $f \in L^{1}\left(\mathbb{R}^{k}\right)$, $\widehat{f}(\gamma)=\int_{\mathbb{R}^{k}} f(x) e^{2 \pi i \gamma x} d x$.

Then $n \in \mathbb{Z}$ acts on the right on $\widehat{\mathbb{R}^{k}}$ by $\gamma \cdot n=\gamma A^{n}$.

A first example

Let $A \in \mathrm{GL}_{k}(\mathbb{R})$ have $\delta=|\operatorname{det}(A)| \neq 1$ and form the group

$$
G=\mathbb{R}^{k} \rtimes_{A} \mathbb{Z}=\left\{[x, n]: x \in \mathbb{R}^{k}, n \in \mathbb{Z}\right\}
$$

with product given by $[x, n][y, m]=\left[x+A^{n} y, n+m\right]$.
Consider $\widehat{\mathbb{R}^{k}}$ as consisting of row vectors. So, for $f \in L^{1}\left(\mathbb{R}^{k}\right)$, $\widehat{f}(\gamma)=\int_{\mathbb{R}^{k}} f(x) e^{2 \pi i \gamma x} d x$.

Then $n \in \mathbb{Z}$ acts on the right on $\widehat{\mathbb{R}^{k}}$ by $\gamma \cdot n=\gamma A^{n}$.
There exists a measurable $\Omega \subseteq \widehat{\mathbb{R}^{k}}$ such that
(a) $0<|\Omega|<\infty$
(b) $\Omega A^{n} \cap \Omega A^{m}=\emptyset$ if $n \neq m$
(c) There is a null set $N \subseteq \widehat{\mathbb{R}^{k}}$ with $\widehat{\mathbb{R}^{k}}=N \bigcup\left(\cup_{n \in \mathbb{Z}} \Omega A^{n}\right)$.

Let π be the natural translation and dilation representation of G on \mathbb{R}^{k}. That is, $\mathcal{H}_{\pi}=L^{2}\left(\mathbb{R}^{k}\right)$ and for $[x, n] \in G$ and $f \in L^{2}\left(\mathbb{R}^{k}\right)$,

$$
\pi[x, n] f(y)=\delta^{-n / 2} f\left(A^{-n}(y-x)\right)
$$

for $y \in \mathbb{R}^{k}$.

Let π be the natural translation and dilation representation of G on \mathbb{R}^{k}. That is, $\mathcal{H}_{\pi}=L^{2}\left(\mathbb{R}^{k}\right)$ and for $[x, n] \in G$ and $f \in L^{2}\left(\mathbb{R}^{k}\right)$,

$$
\pi[x, n] f(y)=\delta^{-n / 2} f\left(A^{-n}(y-x)\right)
$$

for $y \in \mathbb{R}^{k}$.
Recall that Ω is a cross-section of almost all of the \mathbb{Z}-orbits in $\widehat{\mathbb{R}^{k}}$ and $|\Omega|<\infty$.

Let π be the natural translation and dilation representation of G on \mathbb{R}^{k}. That is, $\mathcal{H}_{\pi}=L^{2}\left(\mathbb{R}^{k}\right)$ and for $[x, n] \in G$ and $f \in L^{2}\left(\mathbb{R}^{k}\right)$,

$$
\pi[x, n] f(y)=\delta^{-n / 2} f\left(A^{-n}(y-x)\right)
$$

for $y \in \mathbb{R}^{k}$.
Recall that Ω is a cross-section of almost all of the \mathbb{Z}-orbits in $\widehat{\mathbb{R}^{k}}$ and $|\Omega|<\infty$.
Let $w \in L^{2}\left(\mathbb{R}^{k}\right)$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$. Then w is a wavelet for π.

Let π be the natural translation and dilation representation of G on \mathbb{R}^{k}. That is, $\mathcal{H}_{\pi}=L^{2}\left(\mathbb{R}^{k}\right)$ and for $[x, n] \in G$ and $f \in L^{2}\left(\mathbb{R}^{k}\right)$,

$$
\pi[x, n] f(y)=\delta^{-n / 2} f\left(A^{-n}(y-x)\right)
$$

for $y \in \mathbb{R}^{k}$.
Recall that Ω is a cross-section of almost all of the \mathbb{Z}-orbits in $\widehat{\mathbb{R}^{k}}$ and $|\Omega|<\infty$.
Let $w \in L^{2}\left(\mathbb{R}^{k}\right)$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$. Then w is a wavelet for π.
If A is an expansive matrix, then Ω can be selected as a bounded set and the construction can be modified to produce wavelets that are Schwartz functions.

Let π be the natural translation and dilation representation of G on \mathbb{R}^{k}. That is, $\mathcal{H}_{\pi}=L^{2}\left(\mathbb{R}^{k}\right)$ and for $[x, n] \in G$ and $f \in L^{2}\left(\mathbb{R}^{k}\right)$,

$$
\pi[x, n] f(y)=\delta^{-n / 2} f\left(A^{-n}(y-x)\right)
$$

for $y \in \mathbb{R}^{k}$.
Recall that Ω is a cross-section of almost all of the \mathbb{Z}-orbits in $\widehat{\mathbb{R}^{k}}$ and $|\Omega|<\infty$.
Let $w \in L^{2}\left(\mathbb{R}^{k}\right)$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$. Then w is a wavelet for π.
If A is an expansive matrix, then Ω can be selected as a bounded set and the construction can be modified to produce wavelets that are Schwartz functions.

Note that π has no irreducible subrepresentations if $k>1$.

Irreducible π

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.
If $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$, then $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and η is a multiple of a wavelet.

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.
If $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$, then $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and η is a multiple of a wavelet.

Definition: An irreducible π is called a square-integrable representation of G if there exists $\eta \in \mathcal{H}_{\pi}$ such that $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$.

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.
If $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$, then $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and η is a multiple of a wavelet.

Definition: An irreducible π is called a square-integrable representation of G if there exists $\eta \in \mathcal{H}_{\pi}$ such that $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$.
How does \mathcal{A}_{η} move in $A_{\pi}(G)$ or $L^{2}(G)$ as the wavelet η varies?

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.
If $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$, then $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and η is a multiple of a wavelet.

Definition: An irreducible π is called a square-integrable representation of G if there exists $\eta \in \mathcal{H}_{\pi}$ such that $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$.
How does \mathcal{A}_{η} move in $A_{\pi}(G)$ or $L^{2}(G)$ as the wavelet η varies?
First look at $L^{2}(G)$. Let $\mathcal{K}_{\pi}=\overline{\left\langle U\left\{\mathcal{A}_{\eta}: \eta \text { wavelet for } \pi\right\}\right\rangle^{2}(G)}$

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.
If $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$, then $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and η is a multiple of a wavelet.

Definition: An irreducible π is called a square-integrable representation of G if there exists $\eta \in \mathcal{H}_{\pi}$ such that $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$.
How does \mathcal{A}_{η} move in $A_{\pi}(G)$ or $L^{2}(G)$ as the wavelet η varies?
First look at $L^{2}(G)$. Let $\mathcal{K}_{\pi}=\overline{\left\langle U\left\{\mathcal{A}_{\eta}: \eta \text { wavelet for } \pi\right\}\right\rangle^{2}(G)}$
Fix any wavelet η. Then $\mathcal{K}_{\pi}=\overline{\left\langle\cup\left\{\mathcal{A}_{\pi(x) \eta}: x \in G\right\}\right\rangle^{L^{2}(G)}}$, since π is irreducible.

Suppose $\pi \in \widehat{G}$ and $\eta \in \mathcal{H}_{\pi}$.
If $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$, then $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ and η is a multiple of a wavelet.

Definition: An irreducible π is called a square-integrable representation of G if there exists $\eta \in \mathcal{H}_{\pi}$ such that $\mathcal{A}_{\eta} \cap L^{2}(G) \neq\{0\}$.
How does \mathcal{A}_{η} move in $A_{\pi}(G)$ or $L^{2}(G)$ as the wavelet η varies?
First look at $L^{2}(G)$. Let $\mathcal{K}_{\pi}=\overline{\left\langle U\left\{\mathcal{A}_{\eta}: \eta \text { wavelet for } \pi\right\}\right\rangle^{2}(G)}$
Fix any wavelet η. Then $\mathcal{K}_{\pi}=\overline{\left\langle\cup\left\{\mathcal{A}_{\pi(x) \eta}: x \in G\right\}\right\rangle^{L^{2}(G)}}$, since π is irreducible.

Note that $\lambda_{\mathcal{K}_{\pi}}$ is quasi-equivalent to π and $\lambda_{\mathcal{K}_{\pi}^{\frac{1}{\pi}}}$ is disjoint from π

Irreducible π : 2

Now look at $A_{\bar{\pi}}(G)$.

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.
(a) \mathcal{A}_{η} is a $\|\cdot\|_{B(G)}$-closed subspace of $A_{\pi}(G)$.

Now look at $A_{\bar{\pi}}(G)$ ．

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π ．
（a） \mathcal{A}_{η} is a $\|\cdot\|_{B(G)}$－closed subspace of $A_{\pi}(G)$ ．
（b） \mathcal{A}_{η} is left translation invariant，but the right translation of \mathcal{A}_{η} by x is $\mathcal{A}_{\pi(x) \eta}$ ．

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.
(a) \mathcal{A}_{η} is a $\|\cdot\|_{B(G)}$-closed subspace of $A_{\pi}(G)$.
(b) \mathcal{A}_{η} is left translation invariant, but the right translation of \mathcal{A}_{η} by x is $\mathcal{A}_{\pi(x) \eta}$.
(c) $A_{\pi}(G)={\overline{\left\langle\cup\left\{\mathcal{A}_{\pi(x) \eta}: x \in G\right\}\right\rangle}}^{B(G)}$

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.
(a) \mathcal{A}_{η} is a $\|\cdot\|_{B(G)}$-closed subspace of $A_{\pi}(G)$.
(b) \mathcal{A}_{η} is left translation invariant, but the right translation of \mathcal{A}_{η} by x is $\mathcal{A}_{\pi(x) \eta}$.
(c) $A_{\pi}(G)={\left.\overline{\left\langle\cup\left\{\mathcal{A}_{\pi(x) \eta}: x \in G\right\}\right.}\right\rangle^{B(G)}}^{B}$
(d) Either $\mathcal{A}_{\eta} \cap \mathcal{A}_{\eta^{\prime}}=\{0\}$ or $\mathcal{A}_{\eta}=\mathcal{A}_{\eta^{\prime}}$ and the latter happens only if $\eta^{\prime}=c \eta$ for some $c \in \mathbb{T}$.

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.
(a) \mathcal{A}_{η} is a $\|\cdot\|_{B(G)}$-closed subspace of $A_{\pi}(G)$.
(b) \mathcal{A}_{η} is left translation invariant, but the right translation of \mathcal{A}_{η} by x is $\mathcal{A}_{\pi(x) \eta}$.
(c) $A_{\pi}(G)={\overline{\left\langle\cup\left\{\mathcal{A}_{\pi(x) \eta}: x \in G\right\}\right\rangle}}^{B(G)}$
(d) Either $\mathcal{A}_{\eta} \cap \mathcal{A}_{\eta^{\prime}}=\{0\}$ or $\mathcal{A}_{\eta}=\mathcal{A}_{\eta^{\prime}}$ and the latter happens only if $\eta^{\prime}=c \eta$ for some $c \in \mathbb{T}$.
(e) If $x, y \in G$ satisfy $\mathcal{A}_{\pi(x) \eta}=\mathcal{A}_{\pi(y) \eta}$, then $\Delta\left(y^{-1} x\right)=1$ and $\pi\left(y^{-1} x\right) \eta=c \eta$, for some $c \in \mathbb{T}$.

Now look at $A_{\bar{\pi}}(G)$.

Theorem

Let π be square integrable and let η and η^{\prime} be wavelets for π.
(a) \mathcal{A}_{η} is a $\|\cdot\|_{B(G)}$-closed subspace of $A_{\pi}(G)$.
(b) \mathcal{A}_{η} is left translation invariant, but the right translation of \mathcal{A}_{η} by x is $\mathcal{A}_{\pi(x) \eta}$.
(c) $A_{\pi}(G)={\overline{\left\langle\cup\left\{\mathcal{A}_{\pi(x) \eta}: x \in G\right\}\right.}}^{B(G)}$
(d) Either $\mathcal{A}_{\eta} \cap \mathcal{A}_{\eta^{\prime}}=\{0\}$ or $\mathcal{A}_{\eta}=\mathcal{A}_{\eta^{\prime}}$ and the latter happens only if $\eta^{\prime}=c \eta$ for some $c \in \mathbb{T}$.
(e) If $x, y \in G$ satisfy $\mathcal{A}_{\pi(x) \eta}=\mathcal{A}_{\pi(y) \eta}$, then $\Delta\left(y^{-1} x\right)=1$ and $\pi\left(y^{-1} x\right) \eta=c \eta$, for some $c \in \mathbb{T}$.
(f) If G has no nontrivial compact subgroup, then $\mathcal{A}_{\pi(x) \eta} \cap \mathcal{A}_{\pi(y) \eta}=\{0\}$ for any $x \neq y$ in G.

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$
(b) $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ iff $\eta \in \operatorname{dom} K^{-1 / 2}$

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$
(b) $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ iff $\eta \in \operatorname{dom} K^{-1 / 2}$
(c) For $\xi, \xi^{\prime} \in \mathcal{H}_{\pi}, \eta, \eta^{\prime} \in \operatorname{dom} K^{-1 / 2}$,

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=\left\langle\xi, \xi^{\prime}\right\rangle\left\langle K^{-1 / 2} \eta^{\prime}, K^{-1 / 2} \eta\right\rangle
$$

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$
(b) $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ iff $\eta \in \operatorname{dom} K^{-1 / 2}$
(c) For $\xi, \xi^{\prime} \in \mathcal{H}_{\pi}, \eta, \eta^{\prime} \in \operatorname{dom} K^{-1 / 2}$,

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=\left\langle\xi, \xi^{\prime}\right\rangle\left\langle K^{-1 / 2} \eta^{\prime}, K^{-1 / 2} \eta\right\rangle
$$

Corollary

Let π be square-integrable and $\eta \in \mathcal{H}_{\pi}$.
(a) η is a wavelet iff $\left\|K^{-1 / 2} \eta\right\|=1$.

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$
(b) $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ iff $\eta \in \operatorname{dom} K^{-1 / 2}$
(c) For $\xi, \xi^{\prime} \in \mathcal{H}_{\pi}, \eta, \eta^{\prime} \in \operatorname{dom} K^{-1 / 2}$,

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=\left\langle\xi, \xi^{\prime}\right\rangle\left\langle K^{-1 / 2} \eta^{\prime}, K^{-1 / 2} \eta\right\rangle
$$

Corollary

Let π be square-integrable and $\eta \in \mathcal{H}_{\pi}$.
(a) η is a wavelet iff $\left\|K^{-1 / 2} \eta\right\|=1$.

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$
(b) $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ iff $\eta \in \operatorname{dom} K^{-1 / 2}$
(c) For $\xi, \xi^{\prime} \in \mathcal{H}_{\pi}, \eta, \eta^{\prime} \in \operatorname{dom} K^{-1 / 2}$,

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=\left\langle\xi, \xi^{\prime}\right\rangle\left\langle K^{-1 / 2} \eta^{\prime}, K^{-1 / 2} \eta\right\rangle
$$

Corollary

Let π be square-integrable and $\eta \in \mathcal{H}_{\pi}$.
(a) η is a wavelet iff $\left\|K^{-1 / 2} \eta\right\|=1$.
(b) If η is a wavelet, then so is $\Delta(x)^{1 / 2} \pi(x) \eta, \forall x \in G$.

Duflo-Moore Theorem (1976)

Let π be square-integrable. There exists a unique densely defined positive operator K on \mathcal{H}_{π} such that
(a) $\pi(x) K \pi(x)^{-1}=\Delta(x)^{-1} K, \quad x \in G$
(b) $\mathcal{A}_{\eta} \subseteq L^{2}(G)$ iff $\eta \in \operatorname{dom} K^{-1 / 2}$
(c) For $\xi, \xi^{\prime} \in \mathcal{H}_{\pi}, \eta, \eta^{\prime} \in \operatorname{dom} K^{-1 / 2}$,

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=\left\langle\xi, \xi^{\prime}\right\rangle\left\langle K^{-1 / 2} \eta^{\prime}, K^{-1 / 2} \eta\right\rangle
$$

Corollary

Let π be square-integrable and $\eta \in \mathcal{H}_{\pi}$.
(a) η is a wavelet iff $\left\|K^{-1 / 2} \eta\right\|=1$.
(b) If η is a wavelet, then so is $\Delta(x)^{1 / 2} \pi(x) \eta, \forall x \in G$.

Note: In the important examples, K can be concretely identified.

Suppose G is a compact group. Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square-integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet.

Suppose G is a compact group. Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square-integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet.

Each irreducible π is finite dimensional. Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$.

Compact groups

Suppose G is a compact group. Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square-integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet.

Each irreducible π is finite dimensional. Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$.

Classic orthogonality relations

Let π and σ be irreducible representations of G. Let
$\eta, \xi \in \mathcal{H}_{\pi}, \eta^{\prime}, \xi^{\prime} \in \mathcal{H}_{\sigma}$. Then

Compact groups

Suppose G is a compact group. Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square-integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet.

Each irreducible π is finite dimensional. Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$.

Classic orthogonality relations

Let π and σ be irreducible representations of G. Let
$\eta, \xi \in \mathcal{H}_{\pi}, \eta^{\prime}, \xi^{\prime} \in \mathcal{H}_{\sigma}$. Then

Compact groups

Suppose G is a compact group．Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square－integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet．

Each irreducible π is finite dimensional．Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$ ．

Classic orthogonality relations

Let π and σ be irreducible representations of G ．Let
$\eta, \xi \in \mathcal{H}_{\pi}, \eta^{\prime}, \xi^{\prime} \in \mathcal{H}_{\sigma}$ ．Then
（a）If π and σ are not equivalent then $\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=0$ ．

Compact groups

Suppose G is a compact group. Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square-integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet.

Each irreducible π is finite dimensional. Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$.

Classic orthogonality relations

Let π and σ be irreducible representations of G. Let
$\eta, \xi \in \mathcal{H}_{\pi}, \eta^{\prime}, \xi^{\prime} \in \mathcal{H}_{\sigma}$. Then
(a) If π and σ are not equivalent then $\left\langle V_{\eta} \xi, V_{\eta^{\prime}, \xi^{\prime}}\right\rangle_{L^{2}(G)}=0$.
(b) If $\pi=\sigma$ then

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=d_{\pi}^{-1}\left\langle\xi, \xi^{\prime}\right\rangle\left\langle\eta^{\prime}, \eta\right\rangle .
$$

Compact groups

Suppose G is a compact group. Then $B(G) \subseteq L^{2}(G)$ and so every irreducible representation π is square-integrable and every nonzero $\eta \in \mathcal{H}_{\pi}$ is a multiple of a wavelet.

Each irreducible π is finite dimensional. Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$.

Classic orthogonality relations

Let π and σ be irreducible representations of G. Let
$\eta, \xi \in \mathcal{H}_{\pi}, \eta^{\prime}, \xi^{\prime} \in \mathcal{H}_{\sigma}$. Then
(a) If π and σ are not equivalent then $\left\langle V_{\eta} \xi, V_{\eta^{\prime}, \xi^{\prime}}\right\rangle_{L^{2}(G)}=0$.
(b) If $\pi=\sigma$ then

$$
\left\langle V_{\eta} \xi, V_{\eta^{\prime}} \xi^{\prime}\right\rangle_{L^{2}(G)}=d_{\pi}^{-1}\left\langle\xi, \xi^{\prime}\right\rangle\left\langle\eta^{\prime}, \eta\right\rangle .
$$

That is, $K=d_{\pi} /_{\mathcal{H}_{\pi}}$ when G is compact.

Compact groups 2

Let G be compact and $\pi \in \widehat{G}$. Let $\left\{\nu_{1}, \cdots, \nu_{d_{\pi}}\right\}$ be an orthonormal basis of \mathcal{H}_{π}.

Compact groups 2

Let G be compact and $\pi \in \widehat{G}$. Let $\left\{\nu_{1}, \cdots, \nu_{d_{\pi}}\right\}$ be an orthonormal basis of \mathcal{H}_{π}.
For $1 \leq j \leq d_{\pi}$, let $\eta_{j}=d_{\pi}^{1 / 2} \nu_{j}$. So η_{j} is a wavelet for π.

Compact groups 2

Let G be compact and $\pi \in \widehat{G}$. Let $\left\{\nu_{1}, \cdots, \nu_{d_{\pi}}\right\}$ be an orthonormal basis of \mathcal{H}_{π}.
For $1 \leq j \leq d_{\pi}$, let $\eta_{j}=d_{\pi}^{1 / 2} \nu_{j}$. So η_{j} is a wavelet for π.
Then

$$
\mathcal{K}_{\pi}=\oplus_{j=1}^{d_{\pi}} \mathcal{A}_{n_{j}} .
$$

Compact groups 2

Let G be compact and $\pi \in \widehat{G}$. Let $\left\{\nu_{1}, \cdots, \nu_{d_{\pi}}\right\}$ be an orthonormal basis of \mathcal{H}_{π}.
For $1 \leq j \leq d_{\pi}$, let $\eta_{j}=d_{\pi}^{1 / 2} \nu_{j}$. So η_{j} is a wavelet for π.
Then

$$
\mathcal{K}_{\pi}=\oplus_{j=1}^{d_{\pi}} \mathcal{A}_{n_{j}} .
$$

The rest of Peter-Weyl says

$$
L^{2}(G)=\oplus_{\pi \in \widehat{G}} \mathcal{K}_{\pi} .
$$

Compact groups 2

Let G be compact and $\pi \in \widehat{G}$. Let $\left\{\nu_{1}, \cdots, \nu_{d_{\pi}}\right\}$ be an orthonormal basis of \mathcal{H}_{π}.
For $1 \leq j \leq d_{\pi}$, let $\eta_{j}=d_{\pi}^{1 / 2} \nu_{j}$. So η_{j} is a wavelet for π.
Then

$$
\mathcal{K}_{\pi}=\oplus_{j=1}^{d_{\pi}} \mathcal{A}_{\eta_{j}}
$$

The rest of Peter-Weyl says

$$
L^{2}(G)=\oplus_{\pi \in \widehat{G}} \mathcal{K}_{\pi} .
$$

How much of this holds when G is no longer compact?

Let π be a square integrable representation of a second countable locally compact G.

Square－integrable π

Let π be a square integrable representation of a second countable locally compact G ．

Theorem

There exists a countable set $\left\{\eta_{j}: j \in J\right\}$ of wavelets for π such that

$$
\mathcal{K}_{\pi}=\oplus_{j \in J} \mathcal{A}_{\eta_{j}}
$$

Moreover，if η is a fixed wavelet，each η_{j} can be constructed as a finite linear combination of $\{\pi(x) \eta: x \in G\}$ ．

Square－integrable π

Let π be a square integrable representation of a second countable locally compact G ．

Theorem

There exists a countable set $\left\{\eta_{j}: j \in J\right\}$ of wavelets for π such that

$$
\mathcal{K}_{\pi}=\oplus_{j \in J} \mathcal{A}_{\eta_{j}}
$$

Moreover，if η is a fixed wavelet，each η_{j} can be constructed as a finite linear combination of $\{\pi(x) \eta: x \in G\}$ ．

Square-integrable π

Let π be a square integrable representation of a second countable locally compact G.

Theorem

There exists a countable set $\left\{\eta_{j}: j \in J\right\}$ of wavelets for π such that

$$
\mathcal{K}_{\pi}=\oplus_{j \in J} \mathcal{A}_{\eta_{j}}
$$

Moreover, if η is a fixed wavelet, each η_{j} can be constructed as a finite linear combination of $\{\pi(x) \eta: x \in G\}$.

Proof sketch:
Fix a wavelet η for π. Then $\{\pi(x) \eta: x \in G\}$ is total in \mathcal{H}_{π}.

Square-integrable π

Let π be a square integrable representation of a second countable locally compact G.

Theorem

There exists a countable set $\left\{\eta_{j}: j \in J\right\}$ of wavelets for π such that

$$
\mathcal{K}_{\pi}=\oplus_{j \in J} \mathcal{A}_{\eta_{j}}
$$

Moreover, if η is a fixed wavelet, each η_{j} can be constructed as a finite linear combination of $\{\pi(x) \eta: x \in G\}$.

Proof sketch:
Fix a wavelet η for π. Then $\{\pi(x) \eta: x \in G\}$ is total in \mathcal{H}_{π}.
Let $\mathcal{D}_{\pi}=\operatorname{dom} K^{-1 / 2}$. Then $K^{-1 / 2}\left(\mathcal{D}_{\pi}\right)$ is a subspace of \mathcal{H}_{π} and $K^{-1 / 2}$ is a bijection. By separability of G, we can select a countable and linearly independent subset \mathcal{J} of $\{\pi(x) \eta: x \in G\}$ that is still total in \mathcal{H}_{π}. Then perform Gram-Schmidt on $K^{-1 / 2}(\mathcal{J})$.

[AR]-groups

Let G be an [AR]-group. That is, λ is a direct sum of irreducible representations.

[AR]-groups

Let G be an [AR]-group. That is, λ is a direct sum of irreducible representations.

Each irreducible subrepresentation π of λ is square-integrable. Let $\widehat{G}^{r}=\{\pi \in \widehat{G}: \pi$ is a subrepresentation of $\lambda\}$.

[AR]-groups

Let G be an [AR]-group. That is, λ is a direct sum of irreducible representations.

Each irreducible subrepresentation π of λ is square-integrable. Let

$$
\widehat{G}^{r}=\{\pi \in \widehat{G}: \pi \text { is a subrepresentation of } \lambda\} .
$$

Then

$$
L^{2}(G)=\oplus_{\pi \in \widehat{G}^{r}} \mathcal{K}_{\pi}
$$

[AR]-groups

Let G be an [AR]-group. That is, λ is a direct sum of irreducible representations.

Each irreducible subrepresentation π of λ is square-integrable. Let

$$
\widehat{G}^{r}=\{\pi \in \widehat{G}: \pi \text { is a subrepresentation of } \lambda\} .
$$

Then

$$
L^{2}(G)=\oplus_{\pi \in \widehat{G}^{r}} \mathcal{K}_{\pi}
$$

For each $\pi \in \widehat{G}^{r}$ identify π with a concrete realization. Let $\left\{\eta_{j}^{\pi}: j \in J\right\}$ be a countable set of wavelets in \mathcal{H}_{π} such that

$$
\mathcal{K}_{\pi}=\oplus_{j \in J} \mathcal{A}_{\eta_{j}^{\pi}} .
$$

[AR]-groups

Let G be an [AR]-group. That is, λ is a direct sum of irreducible representations.

Each irreducible subrepresentation π of λ is square-integrable. Let

$$
\widehat{G}^{r}=\{\pi \in \widehat{G}: \pi \text { is a subrepresentation of } \lambda\} .
$$

Then

$$
L^{2}(G)=\oplus_{\pi \in \widehat{G}^{r}} \mathcal{K}_{\pi}
$$

For each $\pi \in \widehat{G}^{r}$ identify π with a concrete realization. Let $\left\{\eta_{j}^{\pi}: j \in J\right\}$ be a countable set of wavelets in \mathcal{H}_{π} such that

$$
\mathcal{K}_{\pi}=\oplus_{j \in J} \mathcal{A}_{\eta_{j}^{\pi}} .
$$

$\lambda_{\mathcal{A}_{n_{j}^{\pi}}}$ is equivalent to π for each $j \in J$.

Example: The Shearlet group

Fix $c \in \mathbb{R}, c \neq 0$. Let

$$
H_{c}=\left\{\left(\begin{array}{cc}
a & 0 \\
b & a^{c}
\end{array}\right): a, b \in \mathbb{R}, a>0\right\}
$$

act on \mathbb{R}^{2} with the natural matrix action.

Example: The Shearlet group

Fix $c \in \mathbb{R}, c \neq 0$. Let

$$
H_{c}=\left\{\left(\begin{array}{cc}
a & 0 \\
b & a^{c}
\end{array}\right): a, b \in \mathbb{R}, a>0\right\}
$$

act on \mathbb{R}^{2} with the natural matrix action.
Let $G_{c}=\mathbb{R}^{2} \rtimes H_{c}=\left\{[x, h]: x \in \mathbb{R}^{2}, h \in H_{c}\right\}$. Group product $[x, h][y, k]=[x+h y, h k]$. When $c=1 / 2$, this is the shearlet group.

Example: The Shearlet group

Fix $c \in \mathbb{R}, c \neq 0$. Let

$$
H_{c}=\left\{\left(\begin{array}{cc}
a & 0 \\
b & a^{c}
\end{array}\right): a, b \in \mathbb{R}, a>0\right\}
$$

act on \mathbb{R}^{2} with the natural matrix action.
Let $G_{c}=\mathbb{R}^{2} \rtimes H_{c}=\left\{[x, h]: x \in \mathbb{R}^{2}, h \in H_{c}\right\}$. Group product $[x, h][y, k]=[x+h y, h k]$. When $c=1 / 2$, this is the shearlet group.
G_{c} is an [AR]-group and ${\widehat{G_{c}}}^{r}=\left\{\pi_{+}, \pi_{-}\right\}$. We look at π_{+}.

Example: The Shearlet group

Fix $c \in \mathbb{R}, c \neq 0$. Let

$$
H_{c}=\left\{\left(\begin{array}{cc}
a & 0 \\
b & a^{c}
\end{array}\right): a, b \in \mathbb{R}, a>0\right\}
$$

act on \mathbb{R}^{2} with the natural matrix action.
Let $G_{c}=\mathbb{R}^{2} \rtimes H_{c}=\left\{[x, h]: x \in \mathbb{R}^{2}, h \in H_{c}\right\}$. Group product $[x, h][y, k]=[x+h y, h k]$. When $c=1 / 2$, this is the shearlet group.
G_{c} is an [AR]-group and ${\widehat{G_{c}}}^{r}=\left\{\pi_{+}, \pi_{-}\right\}$. We look at π_{+}.
$\mathcal{H}_{\pi_{+}}=\left\{f \in L^{2}\left(\mathbb{R}^{2}\right): \operatorname{supp} \widehat{f} \subseteq U^{+}\right\}$, where U^{+}is the upper half plane and

$$
\pi_{+}\left[\binom{x_{1}}{x_{2}},\left(\begin{array}{cc}
a & 0 \\
b & a^{c}
\end{array}\right)\right] f\binom{y_{1}}{y_{2}}=\frac{1}{\sqrt{a^{c+1}}} f\binom{a^{-1}\left(y_{1}-x_{1}\right)}{\frac{y_{2}-x_{2}-a^{-1} b\left(y_{1}-x_{1}\right)}{a^{c}}}
$$

Example: The Shearlet group continued

Construct $\left\{\eta_{j}: j \in J\right\}$ as a total set in $L^{2}\left(U^{+}, d a d b\right)$ such that $\left\{\eta_{j}: j \in J\right\}$ is orthonormal in $L^{2}\left(U^{+}, \frac{\text { dadb }}{a^{c}}\right)$.

Example: The Shearlet group continued

Construct $\left\{\eta_{j}: j \in J\right\}$ as a total set in $L^{2}\left(U^{+}, d a d b\right)$ such that $\left\{\eta_{j}: j \in J\right\}$ is orthonormal in $L^{2}\left(U^{+}, \frac{d a d b}{a^{c}}\right)$.

For each $j \in J$, let $w_{j} \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfy $\widehat{w}_{j}=\eta_{j}$.

Example: The Shearlet group continued

Construct $\left\{\eta_{j}: j \in J\right\}$ as a total set in $L^{2}\left(U^{+}, d a d b\right)$ such that $\left\{\eta_{j}: j \in J\right\}$ is orthonormal in $L^{2}\left(U^{+}, \frac{d a d b}{a^{c}}\right)$.

For each $j \in J$, let $w_{j} \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfy $\widehat{w}_{j}=\eta_{j}$.
Then $V_{w_{j}} f[x, h]=\int_{\mathbb{R}^{2}} f(y) \overline{\pi_{+}[x, h] w_{j}(y)} d y$, for $f \in \mathcal{H}_{\pi_{+}}$.

Example: The Shearlet group continued

Construct $\left\{\eta_{j}: j \in J\right\}$ as a total set in $L^{2}\left(U^{+}, d a d b\right)$ such that $\left\{\eta_{j}: j \in J\right\}$ is orthonormal in $L^{2}\left(U^{+}, \frac{d a d b}{a^{c}}\right)$.

For each $j \in J$, let $w_{j} \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfy $\widehat{w}_{j}=\eta_{j}$.
Then $V_{w_{j}} f[x, h]=\int_{\mathbb{R}^{2}} f(y) \overline{\pi_{+}[x, h] w_{j}(y)} d y$, for $f \in \mathcal{H}_{\pi_{+}}$.

$$
\mathcal{A}_{w_{j}}=V_{w_{j}} \mathcal{H}_{\pi_{+}} \quad \text { and } \quad \lambda_{\mathcal{A}_{w_{j}}} \sim \pi_{+}
$$

Example: The Shearlet group continued

Construct $\left\{\eta_{j}: j \in J\right\}$ as a total set in $L^{2}\left(U^{+}, d a d b\right)$ such that $\left\{\eta_{j}: j \in J\right\}$ is orthonormal in $L^{2}\left(U^{+}, \frac{d a d b}{a^{c}}\right)$.

For each $j \in J$, let $w_{j} \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfy $\widehat{w}_{j}=\eta_{j}$.
Then $V_{w_{j}} f[x, h]=\int_{\mathbb{R}^{2}} f(y) \overline{\pi_{+}[x, h] w_{j}(y)} d y$, for $f \in \mathcal{H}_{\pi_{+}}$.

$$
\begin{gathered}
\mathcal{A}_{w_{j}}=V_{w_{j}} \mathcal{H}_{\pi_{+}} \quad \text { and } \quad \lambda_{\mathcal{A}_{w_{j}}} \sim \pi_{+} \\
\mathcal{K}_{\pi_{+}}=\oplus_{j \in J} \mathcal{A}_{w_{j}}
\end{gathered}
$$

Example: The Shearlet group continued

Construct $\left\{\eta_{j}: j \in J\right\}$ as a total set in $L^{2}\left(U^{+}, d a d b\right)$ such that $\left\{\eta_{j}: j \in J\right\}$ is orthonormal in $L^{2}\left(U^{+}, \frac{d a d b}{a^{c}}\right)$.

For each $j \in J$, let $w_{j} \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfy $\widehat{w}_{j}=\eta_{j}$.
Then $V_{w_{j}} f[x, h]=\int_{\mathbb{R}^{2}} f(y) \overline{\pi_{+}[x, h] w_{j}(y)} d y$, for $f \in \mathcal{H}_{\pi_{+}}$.

$$
\begin{gathered}
\mathcal{A}_{w_{j}}=V_{w_{j}} \mathcal{H}_{\pi_{+}} \quad \text { and } \quad \lambda_{\mathcal{A}_{w_{j}}} \sim \pi_{+} \\
\mathcal{K}_{\pi_{+}}=\oplus_{j \in J} \mathcal{A}_{w_{j}} \\
L^{2}\left(G_{c}\right)=\mathcal{K}_{\pi_{+}} \oplus \mathcal{K}_{\pi_{-}}
\end{gathered}
$$

THANK YOU!

