## Images of Wavelet Transforms

#### Keith F. Taylor

Dalhousie University Halifax, Canada

#### May, 2013 AHA 2013, Granada Joint work with Mahya Ghandehari

◆□▶ ◆舂▶ ◆理▶ ◆理▶ 三語……

*G*: A second countable locally compact group  $\int_G f(x) dx$ : Left Haar integration

$$\int_G f(yx) \, dx = \int_G f(x) \, dx = \Delta(y) \int_G f(xy) \, dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

*G*: A second countable locally compact group  $\int_G f(x) dx$ : Left Haar integration

$$\int_G f(yx) \, dx = \int_G f(x) \, dx = \Delta(y) \int_G f(xy) \, dx$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Usual spaces:  $L^1(G)$ ,  $L^2(G)$ ,  $C_b(G)$ , A(G), B(G) and  $\widehat{G}$ 

G: A second countable locally compact group

 $\int_G f(x) dx$ : Left Haar integration

$$\int_G f(yx) \, dx = \int_G f(x) \, dx = \Delta(y) \int_G f(xy) \, dx$$

Usual spaces:  $L^1(G)$ ,  $L^2(G)$ ,  $C_b(G)$ , A(G), B(G) and  $\widehat{G}$ 

If  $\pi$  is a (unitary) representation of G on  $\mathcal{H}_{\pi}$  and  $\xi$ ,  $\eta \in \mathcal{H}_{\pi}$  let, for  $x \in G$ ,

$$arphi^{\pi}_{\xi,\eta}(x) = \langle \pi(x)\xi,\eta 
angle.$$

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Then  $\varphi^\pi_{\xi,\eta}\in B(G)\subseteq \mathcal{C}_{b}(G).$ 

G: A second countable locally compact group

 $\int_G f(x) dx$ : Left Haar integration

$$\int_G f(yx) \, dx = \int_G f(x) \, dx = \Delta(y) \int_G f(xy) \, dx$$

Usual spaces:  $L^1(G)$ ,  $L^2(G)$ ,  $C_b(G)$ , A(G), B(G) and  $\widehat{G}$ 

If  $\pi$  is a (unitary) representation of G on  $\mathcal{H}_{\pi}$  and  $\xi$ ,  $\eta \in \mathcal{H}_{\pi}$  let, for  $x \in G$ ,

$$arphi^\pi_{\xi,\eta}(x) = \langle \pi(x) \xi, \eta 
angle.$$

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Then  $arphi^{\pi}_{\xi,\eta} \in B(G) \subseteq C_b(G).$  $A_{\pi}(G) = \overline{\langle \{ arphi^{\pi}_{\xi,\eta} : \xi, \eta \in \mathcal{H}_{\pi} \} 
angle}^{\|\cdot\|_{B(G)}}$ 

G: A second countable locally compact group

 $\int_G f(x) dx$ : Left Haar integration

$$\int_G f(yx) \, dx = \int_G f(x) \, dx = \Delta(y) \int_G f(xy) \, dx$$

Usual spaces:  $L^1(G)$ ,  $L^2(G)$ ,  $C_b(G)$ , A(G), B(G) and  $\widehat{G}$ 

If  $\pi$  is a (unitary) representation of G on  $\mathcal{H}_{\pi}$  and  $\xi$ ,  $\eta \in \mathcal{H}_{\pi}$  let, for  $x \in G$ ,

$$\varphi^{\pi}_{\xi,\eta}(x) = \langle \pi(x)\xi,\eta 
angle.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Then  $arphi^\pi_{\xi,\eta}\in B(G)\subseteq \mathcal{C}_{b}(G).$ 

$${\sf A}_{\pi}({\it G})=\overline{\langle\{arphi_{\xi,\eta}^{\pi}:\xi,\eta\in {\cal H}_{\pi}\}
angle}^{\|\cdot\|_{{\cal B}({\it G})}}$$

If  $\lambda$  is left regular representation, then  $A_{\lambda}(G) = A(G)$ .

Let  $\pi$  be a representation of G and  $\eta \in \mathcal{H}_{\pi}$ . Define the transform  $V_{\eta}: \mathcal{H}_{\pi} \to B(G)$  by

$$V_\eta \xi(x) = \langle \xi, \pi(x) \eta 
angle, \qquad x \in G.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let  $\pi$  be a representation of G and  $\eta \in \mathcal{H}_{\pi}$ . Define the transform  $V_{\eta} : \mathcal{H}_{\pi} \to B(G)$  by

$$V_\eta \xi(x) = \langle \xi, \, \pi(x) \eta 
angle, \qquad x \in G.$$

Let  $\mathcal{A}_{\eta} = V_{\eta}(\mathcal{H}_{\pi})$ . Note that  $\mathcal{A}_{\eta} \subseteq A_{\overline{\pi}}(G)$  and  $\mathcal{A}_{a\eta} = \mathcal{A}_{\eta}$ , for any  $a \neq 0$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let  $\pi$  be a representation of G and  $\eta \in \mathcal{H}_{\pi}$ . Define the transform  $V_{\eta} : \mathcal{H}_{\pi} \to B(G)$  by

$$V_\eta \xi(x) = \langle \xi, \, \pi(x) \eta 
angle, \qquad x \in G.$$

Let  $\mathcal{A}_{\eta} = V_{\eta}(\mathcal{H}_{\pi})$ . Note that  $\mathcal{A}_{\eta} \subseteq A_{\overline{\pi}}(G)$  and  $\mathcal{A}_{a\eta} = \mathcal{A}_{\eta}$ , for any  $a \neq 0$ .

Definition:  $\eta$  is *wavelet* for  $\pi$  if  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $||V_{\eta}\xi||_{2} = ||\xi||$  for all  $\xi \in \mathcal{H}_{\pi}$ .

Let  $\pi$  be a representation of G and  $\eta \in \mathcal{H}_{\pi}$ . Define the transform  $V_{\eta} : \mathcal{H}_{\pi} \to B(G)$  by

$$V_\eta \xi(x) = \langle \xi, \, \pi(x) \eta 
angle, \qquad x \in G.$$

Let  $\mathcal{A}_{\eta} = V_{\eta}(\mathcal{H}_{\pi})$ . Note that  $\mathcal{A}_{\eta} \subseteq A_{\overline{\pi}}(G)$  and  $\mathcal{A}_{a\eta} = \mathcal{A}_{\eta}$ , for any  $a \neq 0$ .

Definition:  $\eta$  is *wavelet* for  $\pi$  if  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $||V_{\eta}\xi||_{2} = ||\xi||$  for all  $\xi \in \mathcal{H}_{\pi}$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Easy facts: Let  $\eta$  be a wavelet for  $\pi$ . Then (a) $A_{\eta}$  is a closed subspace of  $L^{2}(G)$  invariant under  $\lambda$ 

Let  $\pi$  be a representation of G and  $\eta \in \mathcal{H}_{\pi}$ . Define the transform  $V_{\eta} : \mathcal{H}_{\pi} \to B(G)$  by

$$V_\eta \xi(x) = \langle \xi, \, \pi(x) \eta 
angle, \qquad x \in G.$$

Let  $\mathcal{A}_{\eta} = V_{\eta}(\mathcal{H}_{\pi})$ . Note that  $\mathcal{A}_{\eta} \subseteq A_{\overline{\pi}}(G)$  and  $\mathcal{A}_{a\eta} = \mathcal{A}_{\eta}$ , for any  $a \neq 0$ .

Definition:  $\eta$  is *wavelet* for  $\pi$  if  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $||V_{\eta}\xi||_{2} = ||\xi||$  for all  $\xi \in \mathcal{H}_{\pi}$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Easy facts: Let  $\eta$  be a wavelet for  $\pi$ . Then (a) $\mathcal{A}_{\eta}$  is a closed subspace of  $L^{2}(G)$  invariant under  $\lambda$ (b)  $V_{\eta}$  is a unitary transformation intertwining  $\pi$  and  $\lambda_{\mathcal{A}_{\eta}}$ 

Let  $\pi$  be a representation of G and  $\eta \in \mathcal{H}_{\pi}$ . Define the transform  $V_{\eta} : \mathcal{H}_{\pi} \to B(G)$  by

$$V_\eta \xi(x) = \langle \xi, \, \pi(x) \eta 
angle, \qquad x \in G.$$

Let  $\mathcal{A}_{\eta} = V_{\eta}(\mathcal{H}_{\pi})$ . Note that  $\mathcal{A}_{\eta} \subseteq A_{\overline{\pi}}(G)$  and  $\mathcal{A}_{a\eta} = \mathcal{A}_{\eta}$ , for any  $a \neq 0$ .

Definition:  $\eta$  is *wavelet* for  $\pi$  if  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $||V_{\eta}\xi||_{2} = ||\xi||$  for all  $\xi \in \mathcal{H}_{\pi}$ .

Easy facts: Let  $\eta$  be a wavelet for  $\pi$ . Then (a) $\mathcal{A}_{\eta}$  is a closed subspace of  $L^{2}(G)$  invariant under  $\lambda$ (b)  $V_{\eta}$  is a unitary transformation intertwining  $\pi$  and  $\lambda_{\mathcal{A}_{\eta}}$ (c) For all  $\xi \in \mathcal{H}_{\pi}$ , we have, weakly in  $\mathcal{H}_{\pi}$ ,

$$\xi = \int_G V_\eta \xi(x) \pi(x) \eta \, dx.$$

## A first example

Let  $A \in \operatorname{GL}_k(\mathbb{R})$  have  $\delta = |\det(A)| \neq 1$  and form the group

$$G = \mathbb{R}^k \rtimes_A \mathbb{Z} = \{ [x, n] : x \in \mathbb{R}^k, n \in \mathbb{Z} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with product given by  $[x, n][y, m] = [x + A^n y, n + m]$ .

Let  $A \in \operatorname{GL}_k(\mathbb{R})$  have  $\delta = |\det(A)| \neq 1$  and form the group

$$G = \mathbb{R}^k \rtimes_A \mathbb{Z} = \{ [x, n] : x \in \mathbb{R}^k, n \in \mathbb{Z} \}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

with product given by  $[x, n][y, m] = [x + A^n y, n + m]$ .

Consider  $\widehat{\mathbb{R}^k}$  as consisting of row vectors. So, for  $f \in L^1(\mathbb{R}^k)$ ,  $\widehat{f}(\gamma) = \int_{\mathbb{R}^k} f(x) e^{2\pi i \gamma x} dx$ .

Let  $A \in \operatorname{GL}_k(\mathbb{R})$  have  $\delta = |\det(A)| \neq 1$  and form the group

$$G = \mathbb{R}^k \rtimes_A \mathbb{Z} = \{ [x, n] : x \in \mathbb{R}^k, n \in \mathbb{Z} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with product given by  $[x, n][y, m] = [x + A^n y, n + m]$ .

Consider  $\widehat{\mathbb{R}^k}$  as consisting of row vectors. So, for  $f \in L^1(\mathbb{R}^k)$ ,  $\widehat{f}(\gamma) = \int_{\mathbb{R}^k} f(x) e^{2\pi i \gamma x} dx$ .

Then  $n \in \mathbb{Z}$  acts on the right on  $\widehat{\mathbb{R}^k}$  by  $\gamma \cdot n = \gamma A^n$ .

Let  $A \in \operatorname{GL}_k(\mathbb{R})$  have  $\delta = |\det(A)| \neq 1$  and form the group

$$G = \mathbb{R}^k \rtimes_A \mathbb{Z} = \{ [x, n] : x \in \mathbb{R}^k, n \in \mathbb{Z} \}$$

with product given by  $[x, n][y, m] = [x + A^n y, n + m]$ .

Consider  $\widehat{\mathbb{R}^k}$  as consisting of row vectors. So, for  $f \in L^1(\mathbb{R}^k)$ ,  $\widehat{f}(\gamma) = \int_{\mathbb{R}^k} f(x) e^{2\pi i \gamma x} dx$ .

Then  $n \in \mathbb{Z}$  acts on the right on  $\widehat{\mathbb{R}^k}$  by  $\gamma \cdot n = \gamma A^n$ .

There exists a measurable  $\Omega \subseteq \widehat{\mathbb{R}^k}$  such that

(a) 
$$0 < |\Omega| < \infty$$
  
(b)  $\Omega A^n \cap \Omega A^m = \emptyset$  if  $n \neq m$   
(c) There is a null set  $N \subseteq \widehat{\mathbb{R}^k}$  with  $\widehat{\mathbb{R}^k} = N \bigcup (\bigcup_{n \in \mathbb{Z}} \Omega A^n)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let  $\pi$  be the natural translation and dilation representation of G on  $\mathbb{R}^k$ . That is,  $\mathcal{H}_{\pi} = L^2(\mathbb{R}^k)$  and for  $[x, n] \in G$  and  $f \in L^2(\mathbb{R}^k)$ ,

$$\pi[x,n]f(y) = \delta^{-n/2}f\left(\mathsf{A}^{-n}(y-x)
ight)$$
 ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for  $y \in \mathbb{R}^k$ .

Let  $\pi$  be the natural translation and dilation representation of G on  $\mathbb{R}^k$ . That is,  $\mathcal{H}_{\pi} = L^2(\mathbb{R}^k)$  and for  $[x, n] \in G$  and  $f \in L^2(\mathbb{R}^k)$ ,

$$\pi[x, n]f(y) = \delta^{-n/2}f\left(A^{-n}(y-x)\right)$$
 ,

for  $y \in \mathbb{R}^k$ .

Recall that  $\Omega$  is a cross-section of almost all of the  $\mathbb{Z}$ -orbits in  $\widehat{\mathbb{R}^k}$  and  $|\Omega| < \infty$ .

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let  $\pi$  be the natural translation and dilation representation of G on  $\mathbb{R}^k$ . That is,  $\mathcal{H}_{\pi} = L^2(\mathbb{R}^k)$  and for  $[x, n] \in G$  and  $f \in L^2(\mathbb{R}^k)$ ,

$$\pi[x, n]f(y) = \delta^{-n/2}f\left(A^{-n}(y-x)\right),$$

for  $y \in \mathbb{R}^k$ .

Recall that  $\Omega$  is a cross-section of almost all of the  $\mathbb{Z}$ -orbits in  $\mathbb{R}^{k}$  and  $|\Omega| < \infty$ .

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let  $w \in L^2(\mathbb{R}^k)$  satisfy  $\widehat{w} = \mathbf{1}_{\Omega}$ . Then w is a wavelet for  $\pi$ .

Let  $\pi$  be the natural translation and dilation representation of G on  $\mathbb{R}^k$ . That is,  $\mathcal{H}_{\pi} = L^2(\mathbb{R}^k)$  and for  $[x, n] \in G$  and  $f \in L^2(\mathbb{R}^k)$ ,

$$\pi[x, n]f(y) = \delta^{-n/2}f\left(A^{-n}(y-x)
ight)$$
 ,

for  $y \in \mathbb{R}^k$ .

Recall that  $\Omega$  is a cross-section of almost all of the  $\mathbb{Z}$ -orbits in  $\mathbb{R}^{k}$  and  $|\Omega| < \infty$ .

Let  $w \in L^2(\mathbb{R}^k)$  satisfy  $\widehat{w} = \mathbf{1}_{\Omega}$ . Then w is a wavelet for  $\pi$ .

If *A* is an expansive matrix, then  $\Omega$  can be selected as a bounded set and the construction can be modified to produce wavelets that are Schwartz functions.

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let  $\pi$  be the natural translation and dilation representation of G on  $\mathbb{R}^k$ . That is,  $\mathcal{H}_{\pi} = L^2(\mathbb{R}^k)$  and for  $[x, n] \in G$  and  $f \in L^2(\mathbb{R}^k)$ ,

$$\pi[x, n]f(y) = \delta^{-n/2}f\left(A^{-n}(y-x)
ight)$$
 ,

for  $y \in \mathbb{R}^k$ .

Recall that  $\Omega$  is a cross-section of almost all of the  $\mathbb{Z}$ -orbits in  $\widehat{\mathbb{R}^k}$  and  $|\Omega| < \infty$ .

Let  $w \in L^2(\mathbb{R}^k)$  satisfy  $\widehat{w} = \mathbf{1}_{\Omega}$ . Then w is a wavelet for  $\pi$ .

If *A* is an expansive matrix, then  $\Omega$  can be selected as a bounded set and the construction can be modified to produce wavelets that are Schwartz functions.

Note that  $\pi$  has no irreducible subrepresentations if k > 1.



If  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}$ , then  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $\eta$  is a multiple of a wavelet.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

If  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}$ , then  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $\eta$  is a multiple of a wavelet.

< ロ > (四 > (四 > ( 四 > ( 四 > ) ) 권)

Definition: An irreducible  $\pi$  is called a *square-integrable* representation of *G* if there exists  $\eta \in \mathcal{H}_{\pi}$  such that  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}.$ 

If  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}$ , then  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $\eta$  is a multiple of a wavelet.

Definition: An irreducible  $\pi$  is called a *square-integrable* representation of *G* if there exists  $\eta \in \mathcal{H}_{\pi}$  such that  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}.$ 

How does  $\mathcal{A}_{\eta}$  move in  $\mathcal{A}_{\overline{\pi}}(G)$  or  $\mathcal{L}^2(G)$  as the wavelet  $\eta$  varies?

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

If  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}$ , then  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $\eta$  is a multiple of a wavelet.

Definition: An irreducible  $\pi$  is called a *square-integrable* representation of *G* if there exists  $\eta \in \mathcal{H}_{\pi}$  such that  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}.$ 

How does  $\mathcal{A}_{\eta}$  move in  $A_{\overline{\pi}}(G)$  or  $L^2(G)$  as the wavelet  $\eta$  varies?

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

First look at  $L^2(G)$ . Let  $\mathcal{K}_{\pi} = \overline{\langle \cup \{ \mathcal{A}_{\eta} : \eta \text{ wavelet for } \pi \} \rangle}^{L^2(G)}$ 

If  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}$ , then  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $\eta$  is a multiple of a wavelet.

Definition: An irreducible  $\pi$  is called a *square-integrable representation* of *G* if there exists  $\eta \in \mathcal{H}_{\pi}$  such that  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}.$ 

How does  $\mathcal{A}_{\eta}$  move in  $\mathcal{A}_{\overline{\pi}}(G)$  or  $\mathcal{L}^2(G)$  as the wavelet  $\eta$  varies?

First look at  $L^2(G)$ . Let  $\mathcal{K}_{\pi} = \overline{\langle \cup \{ \mathcal{A}_{\eta} : \eta \text{ wavelet for } \pi \} \rangle}^{L^2(G)}$ 

Fix any wavelet  $\eta$ . Then  $\mathcal{K}_{\pi} = \overline{\langle \cup \{ \mathcal{A}_{\pi(x)\eta} : x \in G \} \rangle}^{L^2(G)}$ , since  $\pi$  is irreducible.

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

If  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}$ , then  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  and  $\eta$  is a multiple of a wavelet.

Definition: An irreducible  $\pi$  is called a *square-integrable representation* of *G* if there exists  $\eta \in \mathcal{H}_{\pi}$  such that  $\mathcal{A}_{\eta} \cap L^{2}(G) \neq \{0\}.$ 

How does  $\mathcal{A}_{\eta}$  move in  $\mathcal{A}_{\overline{\pi}}(G)$  or  $\mathcal{L}^2(G)$  as the wavelet  $\eta$  varies?

First look at 
$$L^2(G)$$
. Let  $\mathcal{K}_{\pi} = \overline{\langle \cup \{ \mathcal{A}_{\eta} : \eta \text{ wavelet for } \pi \} \rangle}^{L^2(G)}$ 

Fix any wavelet  $\eta$ . Then  $\mathcal{K}_{\pi} = \overline{\langle \cup \{\mathcal{A}_{\pi(x)\eta} : x \in G\} \rangle}^{L^{2}(G)}$ , since  $\pi$  is irreducible.

Note that  $\lambda_{\mathcal{K}_{\pi}}$  is quasi-equivalent to  $\pi$  and  $\lambda_{\mathcal{K}_{\pi}^{\perp}}$  is disjoint from  $\pi$ 

Now look at  $A_{\overline{\pi}}(G)$ .

◆□▶ ◆舂▶ ◆注≯ ◆注≯ … 注

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

(a)  $\mathcal{A}_{\eta}$  is a  $\|\cdot\|_{\mathcal{B}(G)}$ -closed subspace of  $\mathcal{A}_{\overline{\pi}}(G)$ .

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

(a)  $\mathcal{A}_{\eta}$  is a  $\|\cdot\|_{\mathcal{B}(G)}$ -closed subspace of  $\mathcal{A}_{\overline{\pi}}(G)$ .

(b)  $A_{\eta}$  is left translation invariant, but the right translation of  $A_{\eta}$  by x is  $A_{\pi(x)\eta}$ .

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

(a)  $\mathcal{A}_{\eta}$  is a  $\|\cdot\|_{\mathcal{B}(G)}$ -closed subspace of  $\mathcal{A}_{\overline{\pi}}(G)$ .

(b)  $A_{\eta}$  is left translation invariant, but the right translation of  $A_{\eta}$  by x is  $A_{\pi(x)\eta}$ .

$$(\mathsf{c}) \ \textit{\textsf{A}}_{\overline{\pi}}(\textit{\textsf{G}}) = \overline{\langle \cup \{\mathcal{A}_{\pi(x)\eta}: x \in \textit{\textsf{G}}\} \rangle}^{\textit{\textsf{B}}(\textit{\textsf{G}})}$$

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

(a)  $\mathcal{A}_{\eta}$  is a  $\|\cdot\|_{B(G)}$ -closed subspace of  $A_{\overline{\pi}}(G)$ .

(b)  $A_{\eta}$  is left translation invariant, but the right translation of  $A_{\eta}$  by *x* is  $A_{\pi(x)\eta}$ .

(c) 
$$A_{\overline{\pi}}(G) = \overline{\langle \cup \{ \mathcal{A}_{\pi(x)\eta} : x \in G \} 
angle}^{\mathcal{B}(G)}$$

(d) Either  $A_{\eta} \cap A_{\eta'} = \{0\}$  or  $A_{\eta} = A_{\eta'}$  and the latter happens only if  $\eta' = c\eta$  for some  $c \in \mathbb{T}$ .

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

(a)  $\mathcal{A}_{\eta}$  is a  $\|\cdot\|_{\mathcal{B}(G)}$ -closed subspace of  $\mathcal{A}_{\overline{\pi}}(G)$ .

(b)  $A_{\eta}$  is left translation invariant, but the right translation of  $A_{\eta}$  by *x* is  $A_{\pi(x)\eta}$ .

(c) 
$$A_{\overline{\pi}}(G) = \overline{\langle \cup \{ \mathcal{A}_{\pi(x)\eta} : x \in G \} 
angle}^{\mathcal{B}(G)}$$

(d) Either  $\mathcal{A}_{\eta} \cap \mathcal{A}_{\eta'} = \{0\}$  or  $\mathcal{A}_{\eta} = \mathcal{A}_{\eta'}$  and the latter happens only if  $\eta' = c\eta$  for some  $c \in \mathbb{T}$ .

(e) If  $x, y \in G$  satisfy  $\mathcal{A}_{\pi(x)\eta} = \mathcal{A}_{\pi(y)\eta}$ , then  $\Delta(y^{-1}x) = 1$  and  $\pi(y^{-1}x)\eta = c\eta$ , for some  $c \in \mathbb{T}$ .

## Irreducible $\pi$ : 2

Now look at  $A_{\overline{\pi}}(G)$ .

#### Theorem

Let  $\pi$  be square integrable and let  $\eta$  and  $\eta'$  be wavelets for  $\pi$ .

(a)  $\mathcal{A}_{\eta}$  is a  $\|\cdot\|_{B(G)}$ -closed subspace of  $A_{\overline{\pi}}(G)$ .

(b)  $A_{\eta}$  is left translation invariant, but the right translation of  $A_{\eta}$  by *x* is  $A_{\pi(x)\eta}$ .

(c) 
$$A_{\overline{\pi}}(G) = \overline{\langle \cup \{ \mathcal{A}_{\pi(x)\eta} : x \in G \} 
angle}^{\mathcal{B}(G)}$$

(d) Either  $\mathcal{A}_{\eta} \cap \mathcal{A}_{\eta'} = \{0\}$  or  $\mathcal{A}_{\eta} = \mathcal{A}_{\eta'}$  and the latter happens only if  $\eta' = c\eta$  for some  $c \in \mathbb{T}$ .

(e) If  $x, y \in G$  satisfy  $\mathcal{A}_{\pi(x)\eta} = \mathcal{A}_{\pi(y)\eta}$ , then  $\Delta(y^{-1}x) = 1$  and  $\pi(y^{-1}x)\eta = c\eta$ , for some  $c \in \mathbb{T}$ .

(f) If *G* has no nontrivial compact subgroup, then  $\mathcal{A}_{\pi(x)\eta} \cap \mathcal{A}_{\pi(y)\eta} = \{0\}$  for any  $x \neq y$  in *G*.

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

(a) 
$$\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$$
,  $x \in G$ 

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

<ロ> (四) (四) (三) (三) (三) (三)

(a) 
$$\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$$
,  $x \in G$   
(b)  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  iff  $\eta \in \operatorname{dom} K^{-1/2}$ 

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

(a) 
$$\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$$
,  $x \in G$   
(b)  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  iff  $\eta \in \operatorname{dom} K^{-1/2}$   
(c) For  $\xi, \xi' \in \mathcal{H}_{\pi}, \eta, \eta' \in \operatorname{dom} K^{-1/2}$ ,

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = \langle \xi, \xi' \rangle \langle K^{-1/2}\eta', K^{-1/2}\eta \rangle.$$

<ロ> (四) (四) (三) (三) (三) (三)

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

(a)  $\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$ ,  $x \in G$ (b)  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  iff  $\eta \in \operatorname{dom} K^{-1/2}$ (c) For  $\xi, \xi' \in \mathcal{H}_{\pi}, \eta, \eta' \in \operatorname{dom} K^{-1/2}$ ,

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = \langle \xi, \xi' \rangle \langle K^{-1/2}\eta', K^{-1/2}\eta \rangle$$

< □ > < @ > < 注 > < 注 > ... 注

### Corollary

Let  $\pi$  be square-integrable and  $\eta \in \mathcal{H}_{\pi}$ . (a)  $\eta$  is a wavelet iff  $||K^{-1/2}\eta|| = 1$ .

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

(a)  $\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$ ,  $x \in G$ (b)  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  iff  $\eta \in \operatorname{dom} K^{-1/2}$ (c) For  $\xi, \xi' \in \mathcal{H}_{\pi}, \eta, \eta' \in \operatorname{dom} K^{-1/2}$ ,

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = \langle \xi, \xi' \rangle \langle K^{-1/2}\eta', K^{-1/2}\eta \rangle$$

< □ > < @ > < 注 > < 注 > ... 注

### Corollary

Let  $\pi$  be square-integrable and  $\eta \in \mathcal{H}_{\pi}$ . (a)  $\eta$  is a wavelet iff  $||K^{-1/2}\eta|| = 1$ .

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator *K* on  $\mathcal{H}_{\pi}$  such that

(a)  $\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$ ,  $x \in G$ (b)  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  iff  $\eta \in \operatorname{dom} K^{-1/2}$ (c) For  $\xi, \xi' \in \mathcal{H}_{\pi}, \eta, \eta' \in \operatorname{dom} K^{-1/2}$ ,

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = \langle \xi, \xi' \rangle \langle K^{-1/2}\eta', K^{-1/2}\eta \rangle$$

<ロト <四ト <注入 <注入 = 正

## Corollary

Let  $\pi$  be square-integrable and  $\eta \in \mathcal{H}_{\pi}$ . (a)  $\eta$  is a wavelet iff  $\|K^{-1/2}\eta\| = 1$ . (b) If  $\eta$  is a wavelet, then so is  $\Delta(x)^{1/2}\pi(x)\eta$ ,  $\forall x \in G$ .

Let  $\pi$  be square-integrable. There exists a unique densely defined positive operator K on  $\mathcal{H}_{\pi}$  such that

(a)  $\pi(x)K\pi(x)^{-1} = \Delta(x)^{-1}K$ ,  $x \in G$ (b)  $\mathcal{A}_{\eta} \subseteq L^{2}(G)$  iff  $\eta \in \operatorname{dom} K^{-1/2}$ (c) For  $\xi, \xi' \in \mathcal{H}_{\pi}, \eta, \eta' \in \operatorname{dom} K^{-1/2}$ ,

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = \langle \xi, \xi' \rangle \langle K^{-1/2}\eta', K^{-1/2}\eta \rangle.$$

## Corollary

Let  $\pi$  be square-integrable and  $\eta \in \mathcal{H}_{\pi}$ . (a)  $\eta$  is a wavelet iff  $\|K^{-1/2}\eta\| = 1$ . (b) If  $\eta$  is a wavelet, then so is  $\Delta(x)^{1/2}\pi(x)\eta$ ,  $\forall x \in G$ .

Note: In the important examples, K can be concretely identified.

《曰》 《聞》 《臣》 《臣》 三臣 …

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Each irreducible  $\pi$  is finite dimensional. Let  $d_{\pi} = \dim(\mathcal{H}_{\pi})$ .

< □ > < @ > < 注 > < 注 > ... 注

Each irreducible  $\pi$  is finite dimensional. Let  $d_{\pi} = \dim(\mathcal{H}_{\pi})$ .

#### Classic orthogonality relations

Let  $\pi$  and  $\sigma$  be irreducible representations of G. Let  $\eta, \xi \in \mathcal{H}_{\pi}, \eta', \xi' \in \mathcal{H}_{\sigma}$ . Then

< □ > < @ > < 注 > < 注 > ... 注

Each irreducible  $\pi$  is finite dimensional. Let  $d_{\pi} = \dim(\mathcal{H}_{\pi})$ .

#### Classic orthogonality relations

Let  $\pi$  and  $\sigma$  be irreducible representations of G. Let  $\eta, \xi \in \mathcal{H}_{\pi}, \eta', \xi' \in \mathcal{H}_{\sigma}$ . Then

Each irreducible  $\pi$  is finite dimensional. Let  $d_{\pi} = \dim(\mathcal{H}_{\pi})$ .

#### Classic orthogonality relations

Let  $\pi$  and  $\sigma$  be irreducible representations of *G*. Let  $\eta, \xi \in \mathcal{H}_{\pi}, \eta', \xi' \in \mathcal{H}_{\sigma}$ . Then (a) If  $\pi$  and  $\sigma$  are not equivalent then  $\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{l^{2}(G)} = 0$ .

Each irreducible  $\pi$  is finite dimensional. Let  $d_{\pi} = \dim(\mathcal{H}_{\pi})$ .

#### Classic orthogonality relations

Let  $\pi$  and  $\sigma$  be irreducible representations of G. Let  $\eta, \xi \in \mathcal{H}_{\pi}, \eta', \xi' \in \mathcal{H}_{\sigma}$ . Then (a) If  $\pi$  and  $\sigma$  are not equivalent then  $\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^{2}(G)} = 0$ . (b) If  $\pi = \sigma$  then

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = d_{\pi}^{-1} \langle \xi, \xi' \rangle \langle \eta', \eta \rangle.$$

< ロ > (四 > (四 > ( 四 > ( 四 > ) ) 권)

Each irreducible  $\pi$  is finite dimensional. Let  $d_{\pi} = \dim(\mathcal{H}_{\pi})$ .

#### Classic orthogonality relations

Let  $\pi$  and  $\sigma$  be irreducible representations of G. Let  $\eta, \xi \in \mathcal{H}_{\pi}, \eta', \xi' \in \mathcal{H}_{\sigma}$ . Then (a) If  $\pi$  and  $\sigma$  are not equivalent then  $\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^{2}(G)} = 0$ . (b) If  $\pi = \sigma$  then

$$\langle V_{\eta}\xi, V_{\eta'}\xi' \rangle_{L^2(G)} = d_{\pi}^{-1} \langle \xi, \xi' \rangle \langle \eta', \eta \rangle.$$

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

That is,  $K = d_{\pi} I_{\mathcal{H}_{\pi}}$  when *G* is compact.

# Let *G* be compact and $\pi \in \widehat{G}$ . Let $\{\nu_1, \cdots, \nu_{d_{\pi}}\}$ be an orthonormal basis of $\mathcal{H}_{\pi}$ .



Let *G* be compact and  $\pi \in \widehat{G}$ . Let  $\{\nu_1, \cdots, \nu_{d_{\pi}}\}$  be an orthonormal basis of  $\mathcal{H}_{\pi}$ .

For  $1 \le j \le d_{\pi}$ , let  $\eta_j = d_{\pi}^{1/2} \nu_j$ . So  $\eta_j$  is a wavelet for  $\pi$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let *G* be compact and  $\pi \in \widehat{G}$ . Let  $\{\nu_1, \dots, \nu_{d_{\pi}}\}$  be an orthonormal basis of  $\mathcal{H}_{\pi}$ .

For  $1 \le j \le d_{\pi}$ , let  $\eta_j = d_{\pi}^{1/2} \nu_j$ . So  $\eta_j$  is a wavelet for  $\pi$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then  $\mathcal{K}_{\pi} = \oplus_{j=1}^{d_{\pi}} \mathcal{A}_{\eta_j}.$ 

Let *G* be compact and  $\pi \in \widehat{G}$ . Let  $\{\nu_1, \dots, \nu_{d_{\pi}}\}$  be an orthonormal basis of  $\mathcal{H}_{\pi}$ .

For  $1 \le j \le d_{\pi}$ , let  $\eta_j = d_{\pi}^{1/2} \nu_j$ . So  $\eta_j$  is a wavelet for  $\pi$ .

Then  $\mathcal{K}_{\pi} = \oplus_{j=1}^{d_{\pi}} \mathcal{A}_{\eta_j}.$ 

The rest of Peter-Weyl says  $L^2(G) = \oplus$ 

$$L^2(G) = \oplus_{\pi \in \widehat{G}} \mathcal{K}_{\pi}.$$

Let *G* be compact and  $\pi \in \widehat{G}$ . Let  $\{\nu_1, \dots, \nu_{d_{\pi}}\}$  be an orthonormal basis of  $\mathcal{H}_{\pi}$ .

For  $1 \leq j \leq d_{\pi}$ , let  $\eta_j = d_{\pi}^{1/2} \nu_j$ . So  $\eta_j$  is a wavelet for  $\pi$ .

Then 
$$\mathcal{K}_{\pi}=\oplus_{j=1}^{d_{\pi}}\mathcal{A}_{\eta_{j}}.$$

The rest of Peter-Weyl says  $L^2(G) = \bigoplus_{\pi \in \widehat{G}} \mathcal{K}_{\pi}.$ 

How much of this holds when G is no longer compact?

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let  $\pi$  be a square integrable representation of a second countable locally compact *G*.

Let  $\pi$  be a square integrable representation of a second countable locally compact *G*.

#### Theorem

There exists a countable set  $\{\eta_j : j \in J\}$  of wavelets for  $\pi$  such that

$$\mathcal{K}_{\pi} = \oplus_{j \in J} \mathcal{A}_{\eta_j}.$$

Moreover, if  $\eta$  is a fixed wavelet, each  $\eta_j$  can be constructed as a finite linear combination of  $\{\pi(x)\eta : x \in G\}$ .

Let  $\pi$  be a square integrable representation of a second countable locally compact *G*.

#### Theorem

There exists a countable set  $\{\eta_j : j \in J\}$  of wavelets for  $\pi$  such that

$$\mathcal{K}_{\pi} = \oplus_{j \in J} \mathcal{A}_{\eta_j}.$$

Moreover, if  $\eta$  is a fixed wavelet, each  $\eta_j$  can be constructed as a finite linear combination of  $\{\pi(x)\eta : x \in G\}$ .

Let  $\pi$  be a square integrable representation of a second countable locally compact *G*.

#### Theorem

There exists a countable set  $\{\eta_j : j \in J\}$  of wavelets for  $\pi$  such that

$$\mathcal{K}_{\pi} = \oplus_{j \in J} \mathcal{A}_{\eta_j}.$$

Moreover, if  $\eta$  is a fixed wavelet, each  $\eta_j$  can be constructed as a finite linear combination of  $\{\pi(x)\eta : x \in G\}$ .

Proof sketch: Fix a wavelet  $\eta$  for  $\pi$ . Then { $\pi(x)\eta : x \in G$ } is total in  $\mathcal{H}_{\pi}$ .

Let  $\pi$  be a square integrable representation of a second countable locally compact *G*.

#### Theorem

There exists a countable set  $\{\eta_j : j \in J\}$  of wavelets for  $\pi$  such that

$$\mathcal{K}_{\pi} = \oplus_{j \in J} \mathcal{A}_{\eta_j}.$$

Moreover, if  $\eta$  is a fixed wavelet, each  $\eta_j$  can be constructed as a finite linear combination of  $\{\pi(x)\eta : x \in G\}$ .

## Proof sketch:

Fix a wavelet  $\eta$  for  $\pi$ . Then  $\{\pi(x)\eta : x \in G\}$  is total in  $\mathcal{H}_{\pi}$ .

Let  $\mathcal{D}_{\pi} = \operatorname{dom} K^{-1/2}$ . Then  $K^{-1/2}(\mathcal{D}_{\pi})$  is a subspace of  $\mathcal{H}_{\pi}$  and  $K^{-1/2}$  is a bijection. By separability of *G*, we can select a countable and linearly independent subset  $\mathcal{J}$  of  $\{\pi(x)\eta : x \in G\}$  that is still total in  $\mathcal{H}_{\pi}$ . Then perform Gram-Schmidt on  $K^{-1/2}(\mathcal{J})$ .

▲□▶ ▲圖▶ ▲圖▶ ▲圖

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Each irreducible subrepresentation  $\pi$  of  $\lambda$  is square-integrable. Let  $\widehat{G}^r = \{\pi \in \widehat{G} : \pi \text{ is a subrepresentation of } \lambda\}.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Each irreducible subrepresentation  $\pi$  of  $\lambda$  is square-integrable. Let  $\widehat{G}^r = \{\pi \in \widehat{G} : \pi \text{ is a subrepresentation of } \lambda\}.$ 

Then  $L^2(G) = \oplus_{\pi \in \widehat{G}^r} \mathcal{K}_{\pi}$ 



Each irreducible subrepresentation  $\pi$  of  $\lambda$  is square-integrable. Let  $\widehat{G}^r = \{\pi \in \widehat{G} : \pi \text{ is a subrepresentation of } \lambda\}.$ 

Then 
$$L^2(G)=\oplus_{\pi\in \widehat{G}^r}\mathcal{K}_\pi$$

For each  $\pi \in \widehat{G}^r$  identify  $\pi$  with a concrete realization. Let  $\{\eta_j^{\pi} : j \in J\}$  be a countable set of wavelets in  $\mathcal{H}_{\pi}$  such that

$$\mathcal{K}_{\pi} = \oplus_{j \in J} \mathcal{A}_{\eta_j^{\pi}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Each irreducible subrepresentation  $\pi$  of  $\lambda$  is square-integrable. Let  $\widehat{G}^r = \{\pi \in \widehat{G} : \pi \text{ is a subrepresentation of } \lambda\}.$ 

Then 
$$L^2(G) = \oplus_{\pi \in \widehat{G}^r} \mathcal{K}_{\pi}$$

For each  $\pi \in \widehat{G}^r$  identify  $\pi$  with a concrete realization. Let  $\{\eta_j^{\pi} : j \in J\}$  be a countable set of wavelets in  $\mathcal{H}_{\pi}$  such that

$$\mathcal{K}_{\pi} = \oplus_{j \in J} \mathcal{A}_{\eta_j^{\pi}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\lambda_{\mathcal{A}_{\eta_j^{\pi}}}$  is equivalent to  $\pi$  for each  $j \in J$ .

Fix  $c \in \mathbb{R}$ ,  $c \neq 0$ . Let

$$H_{c}=\left\{ \left(egin{array}{cc} a & 0\ b & a^{c} \end{array}
ight):a,b\in\mathbb{R},a>0
ight\}$$

act on  $\mathbb{R}^2$  with the natural matrix action.



Fix  $c \in \mathbb{R}$ ,  $c \neq 0$ . Let

$$\mathcal{H}_{c}=\left\{ \left(egin{array}{cc} a & 0\ b & a^{c} \end{array}
ight): a,b\in\mathbb{R},a>0
ight\}$$

act on  $\mathbb{R}^2$  with the natural matrix action.

Let  $G_c = \mathbb{R}^2 \rtimes H_c = \{[x, h] : x \in \mathbb{R}^2, h \in H_c\}$ . Group product [x, h][y, k] = [x + hy, hk]. When c = 1/2, this is the shearlet group.

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fix  $c \in \mathbb{R}$ ,  $c \neq 0$ . Let

$$\mathcal{H}_{c}=\left\{ \left(egin{array}{cc} a & 0\ b & a^{c} \end{array}
ight): a,b\in\mathbb{R},a>0
ight\}$$

act on  $\mathbb{R}^2$  with the natural matrix action.

Let  $G_c = \mathbb{R}^2 \rtimes H_c = \{[x, h] : x \in \mathbb{R}^2, h \in H_c\}$ . Group product [x, h][y, k] = [x + hy, hk]. When c = 1/2, this is the shearlet group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $G_c$  is an [AR]-group and  $\widehat{G_c}^r = \{\pi_+, \pi_-\}$ . We look at  $\pi_+$ .

Fix  $c \in \mathbb{R}$ ,  $c \neq 0$ . Let

$$H_c = \left\{ \left(egin{array}{cc} a & 0 \ b & a^c \end{array}
ight) : a, b \in \mathbb{R}, a > 0 
ight\}$$

act on  $\mathbb{R}^2$  with the natural matrix action.

Let  $G_c = \mathbb{R}^2 \rtimes H_c = \{[x, h] : x \in \mathbb{R}^2, h \in H_c\}$ . Group product [x, h][y, k] = [x + hy, hk]. When c = 1/2, this is the shearlet group.

 $G_c$  is an [AR]-group and  $\widehat{G_c}' = \{\pi_+, \pi_-\}$ . We look at  $\pi_+$ .

 $\mathcal{H}_{\pi_+} = \{f \in L^2(\mathbb{R}^2) : \mathrm{supp}\widehat{f} \subseteq U^+\}$ , where  $U^+$  is the upper half plane and

$$\pi_{+}\left[\left(\begin{array}{c}x_{1}\\x_{2}\end{array}\right),\left(\begin{array}{c}a&0\\b&a^{c}\end{array}\right)\right]f\left(\begin{array}{c}y_{1}\\y_{2}\end{array}\right)=\frac{1}{\sqrt{a^{c+1}}}f\left(\begin{array}{c}a^{-1}(y_{1}-x_{1})\\\frac{y_{2}-x_{2}-a^{-1}b(y_{1}-x_{1})}{a^{c}}\end{array}\right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Construct  $\{\eta_j : j \in J\}$  as a total set in  $L^2(U^+, da db)$  such that  $\{\eta_j : j \in J\}$  is orthonormal in  $L^2(U^+, \frac{da db}{a^c})$ .

Construct  $\{\eta_j : j \in J\}$  as a total set in  $L^2(U^+, da db)$  such that  $\{\eta_j : j \in J\}$  is orthonormal in  $L^2(U^+, \frac{da db}{a^c})$ .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

For each  $j \in J$ , let  $w_j \in L^2(\mathbb{R}^2)$  satisfy  $\widehat{w}_j = \eta_j$ .

Construct  $\{\eta_j : j \in J\}$  as a total set in  $L^2(U^+, da db)$  such that  $\{\eta_j : j \in J\}$  is orthonormal in  $L^2(U^+, \frac{da db}{a^c})$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

For each  $j \in J$ , let  $w_j \in L^2(\mathbb{R}^2)$  satisfy  $\widehat{w}_j = \eta_j$ .

Then  $V_{w_j}f[x, h] = \int_{\mathbb{R}^2} f(y) \overline{\pi_+[x, h]w_j(y)} \, dy$ , for  $f \in \mathcal{H}_{\pi_+}$ .

Construct  $\{\eta_j : j \in J\}$  as a total set in  $L^2(U^+, da db)$  such that  $\{\eta_j : j \in J\}$  is orthonormal in  $L^2(U^+, \frac{da db}{a^c})$ .

For each  $j \in J$ , let  $w_j \in L^2(\mathbb{R}^2)$  satisfy  $\widehat{w}_j = \eta_j$ .

Then  $V_{w_j}f[x, h] = \int_{\mathbb{R}^2} f(y) \overline{\pi_+[x, h]w_j(y)} \, dy$ , for  $f \in \mathcal{H}_{\pi_+}$ .

$$\mathcal{A}_{w_j} = V_{w_j} \mathcal{H}_{\pi_+} \quad ext{ and } \quad \lambda_{\mathcal{A}_{w_j}} \sim \pi_+$$

Construct  $\{\eta_j : j \in J\}$  as a total set in  $L^2(U^+, da db)$  such that  $\{\eta_j : j \in J\}$  is orthonormal in  $L^2(U^+, \frac{da db}{a^c})$ .

For each  $j \in J$ , let  $w_j \in L^2(\mathbb{R}^2)$  satisfy  $\widehat{w}_j = \eta_j$ .

Then  $V_{w_j}f[x, h] = \int_{\mathbb{R}^2} f(y)\overline{\pi_+[x, h]w_j(y)} \, dy$ , for  $f \in \mathcal{H}_{\pi_+}$ .

$$\mathcal{A}_{w_j} = V_{w_j} \mathcal{H}_{\pi_+} \quad ext{ and } \quad \lambda_{\mathcal{A}_{w_j}} \sim \pi_+$$

$$\mathcal{K}_{\pi_+} = \oplus_{j \in J} \mathcal{A}_{w_j}$$

Construct  $\{\eta_j : j \in J\}$  as a total set in  $L^2(U^+, da db)$  such that  $\{\eta_j : j \in J\}$  is orthonormal in  $L^2(U^+, \frac{da db}{a^c})$ .

For each  $j \in J$ , let  $w_j \in L^2(\mathbb{R}^2)$  satisfy  $\widehat{w}_j = \eta_j$ .

Then  $V_{w_j}f[x, h] = \int_{\mathbb{R}^2} f(y) \overline{\pi_+[x, h]w_j(y)} \, dy$ , for  $f \in \mathcal{H}_{\pi_+}$ .

$$\mathcal{A}_{w_j} = V_{w_j} \mathcal{H}_{\pi_+} \quad ext{ and } \quad \lambda_{\mathcal{A}_{w_j}} \sim \pi_+$$

$$\mathcal{K}_{\pi_+} = \oplus_{j \in J} \mathcal{A}_{w_j}$$

$$L^2(G_c) = \mathcal{K}_{\pi_+} \oplus \mathcal{K}_{\pi_-}$$

# **THANK YOU!**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで