WEIGHTED ORLICZ ALGEBRAS

Serap ÖZTOP İstanbul University

(This is joint work with Alen OSANÇLIOL.)

イロン イヨン イヨン イヨン 三日

1/19

Sections

- Weighted Orlicz Spaces
- Comparison of Weighted Orlicz Spaces
- Some Properties of Weighted Orlicz Spaces
- Weighted Orlicz Algebras

Definition [Rao and Ren, 2002] (Young Function)

A function $\Phi:[0,+\infty)\to [0,+\infty]$ is called a Young function if

(i) Φ is convex,

(ii)
$$\lim_{x\to 0^+} \Phi(x) = \Phi(0) = 0$$

(iii)
$$\lim_{x\to+\infty} \Phi(x) = +\infty$$
.

Definition(Complementary Young Function)

A Young function Ψ complementary to Φ is defined by

$$\Psi(y) = \sup\{xy - \Phi(x) : x \ge 0\}$$

for $y \ge 0$. Then (Φ, Ψ) is called a complementary pair of Young functions.

Young Function and Complementary Young Function

Example

1) Let
$$1 and $\frac{1}{p} + \frac{1}{q} = 1$. Then $\Phi(x) = \frac{x^p}{p}$, $x \ge 0$, and $\Psi(x) = \frac{x^q}{q}$, $x \ge 0$, are a complementary pair of Young functions.$$

Example

2) Especially if p = 1, then the complementary Young function of $\Phi(x) = x$ is

$$\Psi(x)=\left\{egin{array}{cc} 0, & 0\leq x\leq 1\ +\infty, & x>1 \end{array}
ight.$$

Example

3) If $\Phi(x) = e^x - 1$, $x \ge 0$, then

$$\Psi(x) = \begin{cases} 0, & 0 \le x \le 1\\ x \ln x - x + 1, & x > 1 \end{cases}$$

Definition (Weighted Orlicz Space)

Let G be a locally compact group with left Haar measure μ and w be a weight on G (i.e. w is a positive, Borel measurable function such that $w(xy) \leq w(x)w(y)$ for all $x, y \in G$). Given a Young function Φ , the weighted Orlicz space $L^{\Phi}_{w}(G)$ is defined by

$$L^{\Phi}_{w}(G) := \left\{ f: G \to K | \exists \alpha > 0, \int_{G} \Phi(\alpha | f w |) d\mu < +\infty \right\}$$

Then $L^{\Phi}_{w}(G)$ becomes a Banach space under the norm $|| \cdot ||_{\Phi,w}$ (called the weighted Orlicz norm) defined for $f \in L^{\Phi}_{w}(G)$ by

$$||f||_{\Phi,w}:= \sup igg\{\int_G |f \ w \ v| d\mu: v \in L^\Psi(G), \int_G \Psi(|v|) d\mu \leq 1igg\}$$

where Ψ is the complementary function to Φ .

For $f \in L^{\Phi}_{w}(G)$, one can also define the norm

$$||f||_{\Phi,w}^{\circ} = \inf \left\{ k > 0 : \int_{\mathcal{G}} \Phi\left(\frac{f w}{k}\right) d\mu \leq 1 \right\},$$

which is called the weighted Luxemburg norm and is equivalent to the weighted Orlicz norm.

Recall...

Notice that if $\Phi(x) = \frac{x^{p}}{p}$, $1 \le p < +\infty$, $L^{\Phi}_{w}(G)$ becomes the classical weighted Lebesgue space $L^{p}(G)$.

Comparison of Weighted Orlicz Spaces $L^{\Phi}_{w}(G)$

We compare the weighted Orlicz spaces with respect to Young function Φ and weight *w*. We need some definitions to do this.

Definition

Let w_1 and w_2 be two weights on G. Then

$$w_1 \preccurlyeq w_2 \Leftrightarrow \exists c > 0, \forall x \in G, w_1(x) \leq cw_2(x)$$

If $w_1 \preccurlyeq w_2$ and $w_2 \preccurlyeq w_1$, then we write $w_1 \approx w_2$.

Definition

Let Φ_1 and Φ_2 be two Young functions. Then

$$\Phi_1 \prec \Phi_2 \Leftrightarrow \exists d > 0, \forall x \ge 0, \Phi_1(x) \le \Phi_2(dx).$$

Theorem

Let w_1 , w_2 be two weights on G and let Φ_1 , Φ_2 be two Young functions. Then

$$w_1 \preccurlyeq w_2 \text{ ve } \Phi_1 \prec \Phi_2 \Rightarrow L^{\Phi_2}_{w_2}(G) \subseteq L^{\Phi_1}_{w_1}(G).$$

8/19

Notice that the converse is not true.

Comparison Between $L_{w_1}^{\Phi_1}(G)$ and $L_{w_2}^{\Phi_2}(G)$

Let Φ be a Young function. Putting $\Phi_1 = \Phi_2 = \Phi$, we compare the weighted spaces $L^{\Phi}_{w_1}(G)$ and $L^{\Phi}_{w_2}(G)$. To investigate this we need some definitions.

Definition (Δ_2 Condition)

Let Φ be a Young function

$$\Phi\in\Delta_2\Leftrightarrow \exists {\it K}>0, orall x\geq 0, \quad \Phi(2x)\leq {\it K}\Phi(x)$$

Mostly we consider the Δ_2 condition for the Young function Φ .

Examples

- If $1 \le p < \infty$, then for the Young function $\Phi(x) = \frac{x^p}{p}$, $x \ge 0$, $\Phi \in \Delta_2$.
- If $\Phi(x) = e^x 1, x \ge 0$, then $\Phi \notin \Delta_2$.
- If $\Phi(x) = x + x^p, x \ge 0$, $1 , then <math>\Phi \in \Delta_2$.
- If $\Phi(x) = (e + x) \ln(e + x) e, x \ge 0$, then $\Phi \in \Delta_2$.

Comparison Between $L^{\Phi}_{w_1}(G)$ and $L^{\Phi}_{w_2}(G)$

Theorem

Let w_1 , w_2 be two weights on G and let Φ be a continuous Young function such that $\Phi \in \Delta_2$. Then

$$w_1 \preccurlyeq w_2 \Leftrightarrow L^{\Phi}_{w_2}(G) \subseteq L^{\Phi}_{w_1}(G).$$

Note

If $w_1 \preccurlyeq w_2$, then it is clear that $L^{\Phi}_{w_2}(G) \subseteq L^{\Phi}_{w_1}(G)$ for any Young function Φ . The converse is not true in general. But if Φ is a continuous Young function such that $\Phi \in \Delta_2$, then the converse becomes true.

Corollary

Under the same conditions as in previous theorem,

$$w_1 \approx w_2 \Leftrightarrow L^{\Phi}_{w_1}(G) = L^{\Phi}_{w_2}(G).$$

Theorem(Dual Space)

Let G be a locally compact group and w be a weight on G. If (Φ, Ψ) is a complementary pair of Young functions such that $\Phi \in \Delta_2$, then the dual space of $(L^{\Phi}_w(G), || \cdot ||_{\Phi,w})$ is $L^{\Psi}_{w^{-1}}(G)$ formed by all measurable functions g on G such that $\frac{g}{w} \in L^{\Psi}(G)$ and endowed with the norm $|| \cdot ||_{\Psi,w^{-1}}^{\circ}$ defined for $g \in L^{\Psi}_{w^{-1}}(G)$ by

$$||g||_{\Psi,w^{-1}}^{\circ} := ||\frac{g}{w}||_{\Psi}^{\circ}.$$

イロン イロン イヨン イヨン 三日

Proposition

Let Φ be a continuous Young function such that $\Phi \in \Delta_2$ and $f \in L^{\Phi}_w(G)$. Then

i)
$$\overline{C_c(G)}^{||\cdot||_{\Phi,w}} = L^{\Phi}_w(G).$$

ii) For every $x \in G$, $L_x f \in L^{\Phi}_w(G)$ and $||L_x f||_{\Phi,w} \le w(x)||f||_{\Phi,w}$.

iii) The map

$$egin{array}{ccc} G & o & L^{\Phi}_w(G) \ x & \mapsto & L_x f \end{array}$$

is left continuous.

H.Hudzik (1985) gives necessary and sufficient conditions for an Orlicz space to be a Banach algebra with respect to pointwise multiplication on the measure space (X, Σ, μ) . We adapt the results of H. Hudzik to the locally compact group G.

Proposition

Let G be a locally compact group and w be a weight on G. If Φ is a strictly increasing continuous Young function, then the following statements are equivalent for $\lim_{x\to\infty} \frac{\Phi(x)}{x} = +\infty$

- i) $L^{\Phi}_w(G) \subseteq L^{\infty}_w(G)$.
- ii) G is discrete.
- iii) $L^1_w(G) \subseteq L^{\Phi}_w(G)$.

We need the limit condition for $iii) \Rightarrow ii$).

Banach Algebra with Respect to Pointwise Multiplication

Corollary

If $G=\mathbb{Z}$, then the weighted Orlicz sequence spaces are denoted by $L^\Phi_w(\mathbb{Z})=l^\Phi_w$ and

$$I_w^1 \subseteq I_w^\Phi \subseteq I_w^\infty.$$

Theorem (Banach Algebra with Respect to Pointwise Multiplication)

Let G be a locally compact group and w a weight on G such that $w(x) \ge 1$ for all $x \in G$. If Φ is a strictly increasing, continuous Young function, then

 $L^{\Phi}_w(G)$ is Banach algebra w.r.t. pointwise multiplication $\Leftrightarrow L^{\Phi}_w(G) \subseteq L^{\infty}_w(G)$

Observation

Under the same conditions as in the previous theorem,

 $L^{\Phi}_{w}(G)$ is Banach algebra w.r.t. pointwise multiplication $\Leftrightarrow G$ is discrete.

Theorem [H. Hudzik, 1985]

 $L^{\Phi}(G)$ is Banach algebra w.r.t. convolution $\Leftrightarrow L^{\Phi}(G) \subseteq L^{1}(G)$

Theorem (Banach Algebra with Respect to Convolution)

Let w be a weight on G and let Φ be a Young function. If $L^{\Phi}_{w}(G) \subseteq L^{1}_{w}(G)$, then the weighted Orlicz space $(L^{\Phi}_{w}(G), || \cdot ||_{\Phi,w})$ is a Banach algebra w.r.t. convolution.

Note that the converse is not true in general. For $\Phi(x) = \frac{x^p}{p}$, p > 1, $L^p_w(G)$ is a Banach algebra, but it is not in $L^1_w(G)$. (Kuznetsova, 2006)

Observation

If Φ is a continuous Young function such that $\Phi'_+(0) > 0$, then we have the inclusion $L^{\Phi}_w(G) \subseteq L^1_w(G)$. So the weighted Orlicz space $(L^{\Phi}_w(G), || \cdot ||_{\Phi,w})$ is a Banach algebra w.r.t. convolution.

Theorem

Let Φ be a continuous Young function such that $\Phi'_+(0) > 0$ and $\Phi \in \Delta_2$. Then the weighted Orlicz algebra $L^{\Phi}_w(G)$ has a left approximate identity bounded in $L^1_w(G)$.

Theorem

Let Φ be a continuous Young function such that $\Phi'_+(0) > 0$ and $\Phi \in \Delta_2$. If *G* is non-discrete, then the weighted Orlicz algebra $L^{\Phi}_w(G)$ has no bounded approximate identity.

Proposition

Let Φ be a continuous Young function such that $\Phi'_+(0) > 0$. Then the weighted Orlicz algebra $L^{\Phi}_w(G)$ is a left ideal in $L^1_w(G)$.

Observation

Without any assumption on Young function Φ , we can have the weighted Orlicz space $L^{\Phi}_{w}(G)$ as a left Banach $L^{1}_{w}(G)$ -module w.r.t. convolution.

Weighted Orlicz Algebra $L^{\Phi}_{w}(G)$

The next step is to describe the maximal ideal space of the algebra $L^{\Phi}_{w}(G)$ on an abelian group G. From now on, we assume that $w(x) \ge 1$ for all $x \in G$ and Φ is a continuous Young function satisfying $\Phi \in \Delta_2$.

Note

 $L^{\Phi}_w(G)$ is a commutative Banach algebra $\Leftrightarrow G$ is abelian.

Theorem

If the space $L^{\Phi}_{w}(G)$ is a convolution algebra, then its maximal ideal space can be identified with the subset of $L^{\Psi}_{w^{-1}}(G)$ consisting of continuous homomorphisms $\chi: G \to \mathbb{C} \setminus \{0\}$. Each character of this algebra can be expressed via the corresponding function χ by the formula

$$X(f) = \int_G f\chi d\mu, f \in L^{\Phi}_w(G).$$

Lemma

The weighted Orlicz algebra $L^{\Phi}_{w}(G)$ is not radical.

Theorem

If the space $L^{\Phi}_{w}(G)$ is an algebra, then

- (i) it is semisimple,
- (ii) its maximal ideal space contains a homeomorphic image of the group \widehat{G} ,
- (iii) it is unital if and only if G is discrete.