Completely Bounded Λ_p -Sets on Compact Groups

Parasar Mohanty

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Joint work with Kathryn E. Hare

May 21, 2013

< ロ > < 同 > < 回 > < 回 > < 回 > <

Overview

Classical Lacunary Sets Operator Space Structure of L^p Λ_D^{cb} for compact abelian Λ_D^{cb} for non-abelian compact

Outline of the Talk

Classical Lacunary Sets

 Λ_p^{cb} on compact abelian groups Λ_p^{cb} on compact non-abelian groups

イロト イポト イヨト イヨト

Overview

Classical Lacunary Sets Operator Space Structure of L^p Λ_D^{cb} for compact abelian Λ_D^{cb} for non-abelian compact

Outline of the Talk

Classical Lacunary Sets Λ_p^{cb} on compact abelian groups Λ_p^{cb} on compact non-abelian groups

Overview

Classical Lacunary Sets Operator Space Structure of L^p Λ_p^{cb} for compact abelian Λ_p^{cb} for non-abelian compact

Outline of the Talk

Classical Lacunary Sets Λ_p^{cb} on compact abelian groups Λ_p^{cb} on compact non-abelian groups

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and Hadamard

In 1861 Riemann guessed that the function $R(x) = \sum_{n=1}^{\infty} \frac{\sin n^2 x}{n^2}$ is

nowhere differentiable.

Weirstrass failed to prove it. Gave the famous example $\sum_{n=1}^{\infty} a_n \cos b^n x$ where $0 < a < 1, \ 1 < b \in \mathbb{N}$ and ab > 1.

In 1892, Hadamard proved that the Taylor series $\sum_{n=1}^{\infty} a_n z^{\lambda_n}$ has

|z| = 1 as natural boundary whenever $\exists q > 1$ such that $\frac{\lambda_{n+1}}{\lambda_n} > q > 1$.

This condition is known as Hadamard's Lacunary condition.

< ロ > < 同 > < 回 > < 回 >

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and Hadamard

In 1861 Riemann guessed that the function $R(x) = \sum_{n=1}^{\infty} \frac{\sin n^2 x}{n^2}$ is

nowhere differentiable.

Weirstrass failed to prove it. Gave the famous example $\sum_{n=1}^{\infty} a_n \cos b^n x$ where $0 < a < 1, \ 1 < b \in \mathbb{N}$ and ab > 1.

In 1892, Hadamard proved that the Taylor series $\sum_{n=1}^{\infty} a_n z^{\lambda_n}$ has

|z| = 1 as natural boundary whenever $\exists q > 1$ such that $\frac{\lambda_{n+1}}{\lambda_n} > q > 1$.

This condition is known as Hadamard's Lacunary condition.

イロト イポト イモト イモト

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and Hadamard

In 1861 Riemann guessed that the function $R(x) = \sum_{1}^{\infty} \frac{\sin n^2 x}{n^2}$ is

nowhere differentiable.

Weirstrass failed to prove it. Gave the famous example $\sum_{n=1}^{\infty} a_n \cos b^n x$ where $0 < a < 1, \ 1 < b \in \mathbb{N}$ and ab > 1.

In 1892, Hadamard proved that the Taylor series $\sum\limits_{n}^{\infty}a_{n}z^{\lambda_{n}}$ has

|z| = 1 as natural boundary whenever $\exists q > 1$ such that $\frac{\lambda_{n+1}}{\lambda_n} > q > 1$.

This condition is known as Hadamard's Lacunary condition.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and Hadamard

In 1861 Riemann guessed that the function $R(x) = \sum_{1}^{\infty} \frac{\sin n^2 x}{n^2}$ is

nowhere differentiable.

Weirstrass failed to prove it. Gave the famous example $\sum_{n=1}^{\infty} a_n \cos b^n x$ where 0 < a < 1, $1 < b \in \mathbb{N}$ and ab > 1.

In 1892, Hadamard proved that the Taylor series $\sum_{n=1}^{\infty} a_n z^{\lambda_n}$ has

|z| = 1 as natural boundary whenever $\exists q > 1$ such that $\frac{\lambda_{q+1}}{\lambda_q} > q > 1$.

This condition is known as Hadamard's Lacunary condition.

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and Hadamard

In 1861 Riemann guessed that the function $R(x) = \sum_{1}^{\infty} \frac{\sin n^2 x}{n^2}$ is

nowhere differentiable.

Weirstrass failed to prove it. Gave the famous example $\sum_{n=1}^{\infty} a_n \cos b^n x$ where 0 < a < 1, $1 < b \in \mathbb{N}$ and ab > 1.

In 1892, Hadamard proved that the Taylor series $\sum_{n=1}^{\infty} a_n z^{\lambda_n}$ has

$$|z| = 1$$
 as natural boundary whenever $\exists q > 1$ such that $\frac{\lambda_{n+1}}{\lambda_n} > q > 1$.

This condition is known as Hadamard's Lacunary condition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and Hadamard

In 1861 Riemann guessed that the function $R(x) = \sum_{1}^{\infty} \frac{\sin n^2 x}{n^2}$ is

nowhere differentiable.

Weirstrass failed to prove it. Gave the famous example $\sum_{n=1}^{\infty} a_n \cos b^n x$ where 0 < a < 1, $1 < b \in \mathbb{N}$ and ab > 1.

In 1892, Hadamard proved that the Taylor series $\sum_{n=1}^{\infty} a_n z^{\lambda_n}$ has |z| = 1 as natural boundary whenever $\exists q > 1$ such that

$$rac{\lambda_{n+1}}{\lambda_n} > q > 1$$
.

This condition is known as Hadamard's Lacunary condition.

イロト イポト イラト イラト

Sidon Sets

Sidon proved that the lacunary Fourier series $\sum a_n e^{2\pi i \lambda_n t}$ converges absolutely if $\{\lambda_n\}$ satisfies Hadamard's lacunar conditions.

Let $E \subseteq \mathbb{Z}$. A trigonometric polynomial *f* is called *E*-polynomial if $\hat{f}(n) = 0, \forall n \notin E$.

Definition

 $E \subseteq \mathbb{Z}$ is said to be a Sidon set if $\exists C > 0$ such that $\sum |\hat{f}(n)| \le C \|f\|_{\infty}$

for all trigonometric *E* polynomial *f*.

Kahane called these sets as Sidon sets.

Every Hadamard set is Sidon and finite union of Hadamard set is also Sidon.

Sidon Sets

Sidon proved that the lacunary Fourier series $\sum a_n e^{2\pi i \lambda_n t}$ converges absolutely if $\{\lambda_n\}$ satisfies Hadamard's lacunar conditions.

Let $E \subseteq \mathbb{Z}$. A trigonometric polynomial *f* is called *E*-polynomial if $\hat{f}(n) = 0, \forall n \notin E$.

Definition

 $E\subseteq\mathbb{Z}$ is said to be a Sidon set if $\exists C>0$ such that $\sum|\hat{f}(n)|\leq C\|f\|_{\infty}$

for all trigonometric *E* polynomial *f*.

Kahane called these sets as Sidon sets.

Every Hadamard set is Sidon and finite union of Hadamard set is also Sidon.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sidon Sets

Sidon proved that the lacunary Fourier series $\sum a_n e^{2\pi i \lambda_n t}$ converges absolutely if $\{\lambda_n\}$ satisfies Hadamard's lacunar conditions.

Let $E \subseteq \mathbb{Z}$. A trigonometric polynomial *f* is called *E*-polynomial if $\hat{f}(n) = 0, \forall n \notin E$.

Definition

 $E \subseteq \mathbb{Z}$ is said to be a Sidon set if $\exists C > 0$ such that $\sum |\hat{f}(n)| \leq C \|f\|_{\infty}$

for all trigonometric *E* polynomial *f*.

Kahane called these sets as Sidon sets.

Every Hadamard set is Sidon and finite union of Hadamard set is also Sidon.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sidon Sets

Sidon proved that the lacunary Fourier series $\sum a_n e^{2\pi i \lambda_n t}$ converges absolutely if $\{\lambda_n\}$ satisfies Hadamard's lacunar conditions.

Let $E \subseteq \mathbb{Z}$. A trigonometric polynomial *f* is called *E*-polynomial if $\hat{f}(n) = 0, \forall n \notin E$.

Definition

 $E\subseteq\mathbb{Z}$ is said to be a Sidon set if $\exists C>0$ such that $\sum|\hat{f}(n)|\leq C\|f\|_{\infty}$

for all trigonometric *E* polynomial *f*.

Kahane called these sets as Sidon sets.

Every Hadamard set is Sidon and finite union of Hadamard set is also Sidon.

 Λ_p -sets

In 1960 Walter Rudin introduced the concept of Λ_p sets for compact abelian group *G*.

Denote \hat{G} discrete dual group of G.

Denote $L_E^p(G) = \{ f \in L^p(G) : \hat{f}(\gamma) = 0, \forall \gamma \notin E \}.$

Definition

Let $2 . <math>E \subseteq \hat{G}$ is said to be an Λ_p -set if $\exists C > 0$ such that $\|f\|_p \leq C \|f\|_2$ for all E-polynomial f. In other words $L_E^p \simeq L_E^2$.

 Λ_p -sets

In 1960 Walter Rudin introduced the concept of Λ_p sets for compact abelian group *G*.

Denote \hat{G} discrete dual group of G.

Denote $L^p_E(G) = \{ f \in L^p(G) : \hat{f}(\gamma) = 0, \forall \gamma \notin E \}.$

Definition

Let $2 . <math>E \subseteq \hat{G}$ is said to be an Λ_p -set if $\exists C > 0$ such that $||f||_p \leq C||f||_2$ for all E-polynomial f. In other words $L_E^p \simeq L_E^2$.

< □ > < 同 > < 回 > < 回 > .

 Λ_p -sets

In 1960 Walter Rudin introduced the concept of Λ_p sets for compact abelian group *G*.

Denote \hat{G} discrete dual group of G.

Denote
$$L_E^p(G) = \{ f \in L^p(G) : \hat{f}(\gamma) = 0, \forall \gamma \notin E \}.$$

Definition

Let $2 . <math>E \subseteq \hat{G}$ is said to be an Λ_p -set if $\exists C > 0$ such that $||f||_p \leq C ||f||_2$ for all E-polynomial f. In other words $L_E^p \simeq L_E^2$.

 Λ_p -sets

In 1960 Walter Rudin introduced the concept of Λ_p sets for compact abelian group *G*.

Denote \hat{G} discrete dual group of G.

Denote
$$L^p_E(G) = \{ f \in L^p(G) : \hat{f}(\gamma) = 0, \forall \gamma \notin E \}.$$

Definition

Let $2 . <math>E \subseteq \hat{G}$ is said to be an Λ_p -set if $\exists C > 0$ such that $\|f\|_p \leq C \|f\|_2$ for all E-polynomial f. In other words $L_E^p \simeq L_E^2$.

Every Sidon set is Λ_p .

For circle \mathbb{T} Rudin gave example of non-Sidon Λ_{ρ} set.

For arbitrary compact abelian group this problem attracted many attention and finally solved by A. Bonami as well as Edward, Hewitt and Ross independently in 1970.

Every Sidon set is Λ_p .

For circle $\mathbb T$ Rudin gave example of non-Sidon Λ_ρ set.

For arbitrary compact abelian group this problem attracted many attention and finally solved by A. Bonami as well as Edward, Hewitt and Ross independently in 1970.

Every Sidon set is Λ_{ρ} .

For circle \mathbb{T} Rudin gave example of non-Sidon Λ_p set.

For arbitrary compact abelian group this problem attracted many attention and finally solved by A. Bonami as well as Edward, Hewitt and Ross independently in 1970.

< ロ > < 同 > < 回 > < 回 > < 回 > <

If $E \subseteq \hat{G}$ is Sidon then for every $\phi \in I_E^{\infty} \exists \mu \in M(G)$ such that $\phi(\gamma) = \hat{\mu}(\gamma) \ \forall \gamma \in \hat{G}$

Conversely if $\forall \phi \in I_E^{\infty} \exists \mu \in M(G)$ such that $\phi(\gamma) = \hat{\mu}(\gamma) \forall \gamma \in \hat{G}$ then *E* is Sidon.

Sidon sets are interpolation set for M(G).

If $E \subseteq \hat{G}$ is Sidon then for every $\phi \in I_E^{\infty} \exists \mu \in M(G)$ such that $\phi(\gamma) = \hat{\mu}(\gamma) \ \forall \gamma \in \hat{G}$

Conversely if $\forall \phi \in I_E^{\infty} \exists \mu \in M(G)$ such that $\phi(\gamma) = \hat{\mu}(\gamma) \forall \gamma \in \hat{G}$ then *E* is Sidon.

Sidon sets are interpolation set for M(G).

Definition

Let $1 \leq p < \infty$ a bounded operator $T : L^p(G) \to L^p(G)$ is said to be a multiplier of L^p if $\exists \phi \in I^{\infty}(\hat{G})$ such that $\widehat{Tf}(\gamma) = \phi(\gamma)\widehat{f}(\gamma) \ \forall f \in L^p \cap L^2 \text{ and } \gamma \in \widehat{G}.$

Denote $M_p(G)$ as set of all such multipliers. It is a Banach algebra.

As an application of Khintchine's inequality: For $2 one can show that <math>\Lambda_p$ sets are interpolation sets for $M_p(G)$.

Definition

Let $1 \leq p < \infty$ a bounded operator $T : L^p(G) \to L^p(G)$ is said to be a multiplier of L^p if $\exists \phi \in I^{\infty}(\hat{G})$ such that $\widehat{Tf}(\gamma) = \phi(\gamma)\widehat{f}(\gamma) \ \forall f \in L^p \cap L^2 \text{ and } \gamma \in \hat{G}.$

Denote $M_p(G)$ as set of all such multipliers. It is a Banach algebra.

As an application of Khintchine's inequality: For $2 one can show that <math>\Lambda_p$ sets are interpolation sets for $M_p(G)$.

< 口 > < 同 > < 回 > < 回 > .

Operator Space Interpolation

G.Pisier has developed complex interpolation for operator spaces.

Let X_0 and X_1 are compatible pair of Banach spaces. Denote $X_{\theta} = (X_0, X_1)_{\theta}$, in Pisier's interpolation theory $\mathbb{M}_n(X_{\theta})$ gets the norm of the Banach Space $(\mathbb{M}_n(X_0), \mathbb{M}_n(X_1))_{\theta}$.

Operator Space Interpolation

G.Pisier has developed complex interpolation for operator spaces.

Let X_0 and X_1 are compatible pair of Banach spaces.

Denote $X_{\theta} = (X_0, X_1)_{\theta}$, in Pisier's interpolation theory $\mathbb{M}_n(X_{\theta})$ gets the norm of the Banach Space $(\mathbb{M}_n(X_0), \mathbb{M}_n(X_1))_{\theta}$.

Operator Space Interpolation

G.Pisier has developed complex interpolation for operator spaces.

Let X_0 and X_1 are compatible pair of Banach spaces.

Denote $X_{\theta} = (X_0, X_1)_{\theta}$, in Pisier's interpolation theory $\mathbb{M}_n(X_{\theta})$ gets the norm of the Banach Space $(\mathbb{M}_n(X_0), \mathbb{M}_n(X_1))_{\theta}$.

Let $L^1(G)$ inherits operator space structure form $L^{\infty}(G)^*$. $L^1(G)^* \simeq L^{\infty}(G)$ complete isomorphic with this operator space structure.

Now the canonical operator space structure on $L^{p}(G)$ is the interpolated operator space structure $(L^{1}, L^{\infty})_{\frac{1}{2}}$.

Let $L^1(G)$ inherits operator space structure form $L^{\infty}(G)^*$.

 $L^1(G)^* \simeq L^{\infty}(G)$ complete isomorphic with this operator space structure.

Now the canonical operator space structure on $L^{p}(G)$ is the interpolated operator space structure $(L^{1}, L^{\infty})_{\frac{1}{2}}$.

Let $L^1(G)$ inherits operator space structure form $L^{\infty}(G)^*$.

 $L^1(G)^* \simeq L^{\infty}(G)$ complete isomorphic with this operator space structure.

Now the canonical operator space structure on $L^{p}(G)$ is the interpolated operator space structure $(L^{1}, L^{\infty})_{\frac{1}{2}}$.

Let $L^1(G)$ inherits operator space structure form $L^{\infty}(G)^*$.

 $L^1(G)^* \simeq L^{\infty}(G)$ complete isomorphic with this operator space structure.

Now the canonical operator space structure on $L^{p}(G)$ is the interpolated operator space structure $(L^{1}, L^{\infty})_{\frac{1}{2}}$.

Let us denote S_p , $1 \le p < \infty$ to be the space of compact operators on l_2 such that $||T||_{S_p} = (tr|T|^p)^{1/p}$ where $|T| = tr(T^*T)^{1/2}$.

Denote $L^{p}(G, S_{p})$ be the space of S_{p} valued measurable functions *f* such that

$$\|f\|_{L^p(G,S_p)}=\left(\int_G\|f(x)\|_{S_p}^pdx
ight)^{1/p}<\infty.$$

Proposition (Pisier)

Let $1 \le p < \infty$. A linear map $T : L^p(G) \to L^p(G)$ is completely bounded if and only if the mapping $T \otimes I_{S_p}$ is bounded on $L^p(G, S_p)$. Moreover,

$$\|T\|_{cb} = \|T \otimes I_{S_p}\|_{L^p(G,S_p) \to L^p(G,S_p)}.$$

< ロ > < 同 > < 三 > < 三 > -

Let us denote S_p , $1 \le p < \infty$ to be the space of compact operators on l_2 such that $||T||_{S_p} = (tr|T|^p)^{1/p}$ where $|T| = tr(T^*T)^{1/2}$.

Denote $L^{p}(G, S_{p})$ be the space of S_{p} valued measurable functions *f* such that

$$\|f\|_{L^p(G,S_p)}=\left(\int_G\|f(x)\|_{S_p}^pdx
ight)^{1/p}<\infty.$$

Proposition (Pisier)

Let $1 \le p < \infty$. A linear map $T : L^p(G) \to L^p(G)$ is completely bounded if and only if the mapping $T \otimes I_{S_p}$ is bounded on $L^p(G, S_p)$. Moreover,

$$\|T\|_{cb} = \|T \otimes I_{S_p}\|_{L^p(G,S_p) \to L^p(G,S_p)}.$$

< ロ > < 同 > < 三 > < 三 > -

Let us denote S_p , $1 \le p < \infty$ to be the space of compact operators on l_2 such that $||T||_{S_p} = (tr|T|^p)^{1/p}$ where $|T| = tr(T^*T)^{1/2}$.

Denote $L^{p}(G, S_{p})$ be the space of S_{p} valued measurable functions f such that

$$\|f\|_{L^p(G,S_p)}=\left(\int_G\|f(x)\|_{S_p}^pdx\right)^{1/p}<\infty.$$

Proposition (Pisier)

Let $1 \le p < \infty$. A linear map $T : L^p(G) \to L^p(G)$ is completely bounded if and only if the mapping $T \otimes I_{S_p}$ is bounded on $L^p(G, S_p)$. Moreover,

$$\|T\|_{cb} = \|T \otimes I_{\mathcal{S}_p}\|_{L^p(G,\mathcal{S}_p) \to L^p(G,\mathcal{S}_p)}.$$

$M_p^{cb}(G) = \{T \in M_p(G) : T \text{ is } cb\}.$

 $M_p^{cb}(G) = M_p(G)$ if p = 1, 2. What about other *p*'s.

Theorem

Let G be a locally compact abelian group. Then $M_p^{cb}(G) \subsetneq M_p(G)$ for 1 .

For *G* compact abelian proof is by Pisier/ Harcharras.

< 口 > < 同 > < 回 > < 回 > .
$$\begin{split} M^{cb}_p(G) &= \{T \in M_p(G) : T \text{ is } cb\}.\\ M^{cb}_p(G) &= M_p(G) \text{ if } p = 1, 2. \text{ What about other } p\text{'s.} \end{split}$$

Theorem

Let G be a locally compact abelian group. Then $M_p^{cb}(G) \subsetneq M_p(G)$ for 1 .

For *G* compact abelian proof is by Pisier/ Harcharras.

$$egin{aligned} M^{cb}_p(G) &= \{T \in M_p(G): T ext{ is } cb\}. \ M^{cb}_p(G) &= M_p(G) ext{ if } p = 1, 2. \end{aligned}$$
 What about other p 's.

Theorem

Let G be a locally compact abelian group. Then $M_p^{cb}(G) \subsetneq M_p(G)$ for 1 .

For *G* compact abelian proof is by Pisier/ Harcharras.

$$egin{aligned} M^{cb}_p(G) &= \{T \in M_p(G): T ext{ is } cb\}. \ M^{cb}_p(G) &= M_p(G) ext{ if } p = 1, 2. \ \text{What about other } p ext{ 's.} \end{aligned}$$

Theorem

Let G be a locally compact abelian group. Then $M_p^{cb}(G) \subsetneq M_p(G)$ for 1 .

For *G* compact abelian proof is by Pisier/ Harcharras.

<ロ> <問> <問> < 回> < 回> 、

$$egin{aligned} M^{cb}_p(G) &= \{T \in M_p(G) : T ext{ is } cb\}. \ M^{cb}_p(G) &= M_p(G) ext{ if } p = 1, 2. \ \text{What about other } p ext{ 's.} \end{aligned}$$

Theorem

Let G be a locally compact abelian group. Then $M^{cb}_p(G) \subsetneq M_p(G)$ for 1 .

For *G* compact abelian proof is by Pisier/ Harcharras.

イロン 不得 とくほう くほう

Comletely bounded Λ_p sets

The concept of Λ_p^{cb} is introduced by Harcharras for compact abelian group *G*.

Definition

Let $2 . A subset <math>E \subseteq \hat{G}$ is called Λ_p^{cb} set if there exists a constant *C*, depending only on *p* and *E* such that

$$\|f\|_{L^{p}(G,S_{p})} \leq C \max\{\|(\sum_{\gamma \in E} \hat{f}(\gamma)^{*} \hat{f}(\gamma))^{1/2}\|_{S_{p}}, \|(\sum_{\gamma \in E} \hat{f}(\gamma) \hat{f}(\gamma)^{*})^{1/2}\|_{S_{p}}\}$$

for all S_p valued E- polynomials f defined on G. We denote $\lambda_p^{cb}(E)$ the least constant C for which above inequality holds.

She showed that for $2 , <math>\Lambda_p^{cb}$ sets are interpolation sets for M_p^{cb} .

Comletely bounded Λ_p sets

The concept of Λ_p^{cb} is introduced by Harcharras for compact abelian group *G*.

Definition

Let $2 . A subset <math>E \subseteq \hat{G}$ is called Λ_p^{cb} set if there exists a constant *C*, depending only on *p* and *E* such that

$$\|f\|_{L^{p}(G,S_{p})} \leq C \max\{\|(\sum_{\gamma \in E} \hat{f}(\gamma)^{*} \hat{f}(\gamma))^{1/2}\|_{S_{p}}, \|(\sum_{\gamma \in E} \hat{f}(\gamma) \hat{f}(\gamma)^{*})^{1/2}\|_{S_{p}}\}$$

for all S_p valued E- polynomials f defined on G. We denote $\lambda_p^{cb}(E)$ the least constant C for which above inequality holds.

She showed that for $2 , <math>\Lambda_p^{cb}$ sets are interpolation sets for M_p^{cb} .

Comletely bounded Λ_p sets

The concept of Λ_p^{cb} is introduced by Harcharras for compact abelian group *G*.

Definition

Let $2 . A subset <math>E \subseteq \hat{G}$ is called Λ_p^{cb} set if there exists a constant *C*, depending only on *p* and *E* such that

$$\|f\|_{L^{p}(G,S_{p})} \leq C \max\{\|(\sum_{\gamma \in E} \hat{f}(\gamma)^{*} \hat{f}(\gamma))^{1/2}\|_{S_{p}}, \|(\sum_{\gamma \in E} \hat{f}(\gamma) \hat{f}(\gamma)^{*})^{1/2}\|_{S_{p}}\}$$

for all S_p valued E- polynomials f defined on G. We denote $\lambda_p^{cb}(E)$ the least constant C for which above inequality holds.

She showed that for $2 , <math>\Lambda_p^{cb}$ sets are interpolation sets for M_p^{cb} .

Classical Lacunary Sets Operator Space Structure of LP Acb for compact abelian Λ_{c}^{cb} for non-abelian compact

Remark

As an application of Jensen's inequality RHS is dominated by $\|f\|_{L^p(G,S_p)}.$

Remark

As an application of Jensen's inequality RHS is dominated by $||f||_{L^{p}(G,S_{n})}.$

- 2 Unlike classical setting for Λ_{p}^{cb} set E we cannot have $L_{E}^{p}(G, S_{p}) \approx L_{E}^{2}(G, S_{2})$. However, if E is Λ_{p}^{cb} then $L^2_{\mathcal{F}}(G, S_2) \subset L^p_{\mathcal{F}}(G, S_n).$

Remark

- As an application of Jensen's inequality RHS is dominated by $||f||_{L^{p}(G,S_{n})}.$
- 2 Unlike classical setting for Λ_{p}^{cb} set E we cannot have $L^p_{E}(G, S_p) \approx L^2_{E}(G, S_2)$. However, if E is Λ^{cb}_{p} then $L^2_{\mathcal{F}}(G, S_2) \subset L^p_{\mathcal{F}}(G, S_n).$
- **(a)** By considring $f = g \otimes x$ where g is an *E*-polynomial on *G* and $x \in S_{\rho}$ with $||x||_{S_{\rho}} = 1$ it is straight forward to see that $\Lambda_{\rho}^{cb} \subseteq \Lambda_{\rho}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Harcharras extensively studied various properties of Λ_{ρ}^{cb} sets and established, in particular, the existence of Λ_{ρ} sets which are not Λ_{ρ}^{cb} .

Given that all Sidon sets are Λ_{ρ}^{cb} for all p > 2, it is natural to ask, "Is there a non-Sidon, Λ_{ρ}^{cb} set?"

Harcharras and Banks answered this question for the circle group \mathbb{T} in by showing that for any finite set Q of prime numbers, the set of natural numbers whose prime divisors all lie in Q is Λ_p^{cb} for all p, but not Sidon if |Q| > 2.

A. Harcharras extensively studied various properties of Λ_p^{cb} sets and established, in particular, the existence of Λ_p sets which are not Λ_p^{cb} .

Given that all Sidon sets are Λ_p^{cb} for all p > 2, it is natural to ask, "Is there a non-Sidon, Λ_p^{cb} set?"

Harcharras and Banks answered this question for the circle group \mathbb{T} in by showing that for any finite set Q of prime numbers, the set of natural numbers whose prime divisors all lie in Q is Λ_p^{cb} for all p, but not Sidon if |Q| > 2.

A. Harcharras extensively studied various properties of Λ_p^{cb} sets and established, in particular, the existence of Λ_p sets which are not Λ_p^{cb} .

Given that all Sidon sets are Λ_{ρ}^{cb} for all p > 2, it is natural to ask, "Is there a non-Sidon, Λ_{ρ}^{cb} set?"

Harcharras and Banks answered this question for the circle group \mathbb{T} in by showing that for any finite set Q of prime numbers, the set of natural numbers whose prime divisors all lie in Q is Λ_p^{cb} for all p, but not Sidon if |Q| > 2.

A. Harcharras extensively studied various properties of Λ_p^{cb} sets and established, in particular, the existence of Λ_p sets which are not Λ_p^{cb} .

Given that all Sidon sets are Λ_p^{cb} for all p > 2, it is natural to ask, "Is there a non-Sidon, Λ_p^{cb} set?"

Harcharras and Banks answered this question for the circle group \mathbb{T} in by showing that for any finite set Q of prime numbers, the set of natural numbers whose prime divisors all lie in Q is Λ_p^{cb} for all p, but not Sidon if |Q| > 2.

Theorem (Hare and M)

Let G be an arbitrary compact abelian group. Then there exists $E \subseteq \hat{G}$ which is Λ_p^{cb} for all $p \in (2, \infty)$ but not Sidon.

イロト イポト イヨト イヨト

Sketch of the proof

Rudin introduced following combinatorial property to construct Λ_{ρ} sets.

For $p \ge 2$ an integer, let

$$\begin{aligned} A_{\rho}(E) &= \sup_{\gamma \in \Gamma} |\{(\gamma_1, \dots, \gamma_p) \in E^{\rho} : \gamma_1 \gamma_2 \dots \gamma_p = \gamma\}| \text{ and} \\ B_{\rho}(E) &= \sup_{\gamma \in \Gamma} \left|\{(\gamma_1, \dots, \gamma_p) \in E^{\rho} : \gamma_1^{-1} \gamma_2 \dots \gamma_p^{(-1)^{\rho}} = \gamma\}\right|. \end{aligned}$$

Characters γ_i may be repeated and this can cause complications with the counting

Harcharras was able to extend this result to Λ_p^{cb} sets, under the weaker assumption that the characters γ_i were distinct.

Sketch of the proof

Rudin introduced following combinatorial property to construct Λ_p sets.

For $p \ge 2$ an integer, let

$$\begin{aligned} \mathcal{A}_{\rho}(E) &= \sup_{\gamma \in \Gamma} \left| \{ (\gamma_1, \dots, \gamma_p) \in E^p : \gamma_1 \gamma_2 \dots \gamma_p = \gamma \} \right| \text{ and } \\ \mathcal{B}_{\rho}(E) &= \sup_{\gamma \in \Gamma} \left| \{ (\gamma_1, \dots, \gamma_p) \in E^p : \gamma_1^{-1} \gamma_2 \dots \gamma_p^{(-1)^p} = \gamma \} \right|. \end{aligned}$$

Characters γ_i may be repeated and this can cause complications with the counting

Harcharras was able to extend this result to Λ_p^{cb} sets, under the weaker assumption that the characters γ_i were distinct.

Sketch of the proof

Rudin introduced following combinatorial property to construct Λ_p sets.

For $p \ge 2$ an integer, let

$$\begin{aligned} \mathcal{A}_{\rho}(E) &= \sup_{\gamma \in \Gamma} \left| \{ (\gamma_1, \dots, \gamma_p) \in E^p : \gamma_1 \gamma_2 \dots \gamma_p = \gamma \} \right| \text{ and} \\ \mathcal{B}_{\rho}(E) &= \sup_{\gamma \in \Gamma} \left| \{ (\gamma_1, \dots, \gamma_p) \in E^p : \gamma_1^{-1} \gamma_2 \dots \gamma_p^{(-1)^p} = \gamma \} \right|. \end{aligned}$$

Characters γ_j may be repeated and this can cause complications with the counting

Harcharras was able to extend this result to Λ_p^{cb} sets, under the weaker assumption that the characters γ_i were distinct.

Sketch of the proof

Rudin introduced following combinatorial property to construct Λ_p sets.

For $p \ge 2$ an integer, let

$$\begin{aligned} \mathcal{A}_{p}(E) &= \sup_{\gamma \in \Gamma} \left| \{ (\gamma_{1}, \dots, \gamma_{p}) \in E^{p} : \gamma_{1} \gamma_{2} \dots \gamma_{p} = \gamma \} \right| \text{ and } \\ \mathcal{B}_{p}(E) &= \sup_{\gamma \in \Gamma} \left| \{ (\gamma_{1}, \dots, \gamma_{p}) \in E^{p} : \gamma_{1}^{-1} \gamma_{2} \dots \gamma_{p}^{(-1)^{p}} = \gamma \} \right|. \end{aligned}$$

Characters γ_j may be repeated and this can cause complications with the counting

Harcharras was able to extend this result to Λ_p^{cb} sets, under the weaker assumption that the characters γ_j were distinct.

Definition

Let $p \ge 2$ be an integer. The set *E* has the Z(p) property if

$$Z_{p}(E) = \sup_{\gamma \in \Gamma} |\{(\gamma_{1}, \dots, \gamma_{p}) \in E^{p} : \forall i \neq j, \gamma_{i} \neq \gamma_{j},$$

and $\gamma_{1}^{-1}\gamma_{2} \dots \gamma_{p}^{(-1)^{p}} = \gamma\}| < \infty.$

Theorem (Harcharras)

Let $p \ge 2$ be an integer. Then every subset E of \hat{G} with the Z(p) property is a Λ_{2p}^{cb} set. Moreover, there exists a constant C_p , depending only on p, such that $\lambda_{2p}^{cb}(E) \le C_p Z_p(E)^{1/2p}$ for each $E \subseteq \hat{G}$.

Definition

Let $p \ge 2$ be an integer. The set *E* has the Z(p) property if

$$Z_{p}(E) = \sup_{\gamma \in \Gamma} |\{(\gamma_{1}, \dots, \gamma_{p}) \in E^{p} : \forall i \neq j, \gamma_{i} \neq \gamma_{j},$$

and $\gamma_{1}^{-1} \gamma_{2} \dots \gamma_{p}^{(-1)^{p}} = \gamma\}| < \infty.$

Theorem (Harcharras)

Let $p \ge 2$ be an integer. Then every subset E of \hat{G} with the Z(p) property is a Λ_{2p}^{cb} set. Moreover, there exists a constant C_p , depending only on p, such that $\lambda_{2p}^{cb}(E) \le C_p Z_p(E)^{1/2p}$ for each $E \subseteq \hat{G}$.

Our strategy will be to find size limitations on the arithmetic structures that Sidon sets can contain, and then to construct Λ_{ρ}^{cb} sets, using Harcharras' sufficient condition, which violate this size limitation.

Lemma

Let $E \subset \Gamma$ be a Sidon set. If A is any arithmetic progression, then $|E \cap A| \leq O(\log |A|)$.

Our strategy will be to find size limitations on the arithmetic structures that Sidon sets can contain, and then to construct Λ_{p}^{cb} sets, using Harcharras' sufficient condition, which violate this size limitation.

_emma

Let $E \subset \Gamma$ be a Sidon set. If A is any arithmetic progression, then $|E \cap A| \leq O(\log |A|)$.

< □ > < 同 > < 回 > < 回 > .

Our strategy will be to find size limitations on the arithmetic structures that Sidon sets can contain, and then to construct Λ_p^{cb} sets, using Harcharras' sufficient condition, which violate this size limitation.

Lemma

Let $E \subset \Gamma$ be a Sidon set. If A is any arithmetic progression, then $|E \cap A| \leq O(\log |A|)$.

Lemma

Let $E = {\chi_j}_{j=1}^{\infty} \subseteq \hat{G}$, where χ_j^2 are all distinct and non-trivial. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for sufficiently large n,

 $|E' \cap {\chi_j}_{2^{n+2}}^{2^{n+2}}| \ge n^2.$

Lemma

Let $E = {\chi_j}_{j=1}^{\infty} \subseteq \hat{G}$, where χ_j^2 are all distinct and non-trivial. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for sufficiently large n,

 $E' \cap \{\chi_j\}_{2^{n+2}}^{2^{n+2}} \ge n^2.$

Lemma

Let $E = {\chi_j}_{j=1}^{\infty} \subseteq \hat{G}$, where χ_j^2 are all distinct and non-trivial. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for sufficiently large n,

 $E' \cap \{\chi_j\}_{2^{n+2}}^{2^{n+2}} \ge n^2.$

Lemma

Let $E = {\chi_j}_{j=1}^{\infty} \subseteq \hat{G}$, where χ_j^2 are all distinct and non-trivial. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for sufficiently large n,

 $|E' \cap {\chi_j}_{2^{n+2}}| \ge n^2.$

Lemma

Let $E = {\chi_j}_{j=1}^{\infty} \subseteq \hat{G}$, where χ_j are order 2. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for each sufficiently large n,

$$|E' \cap \{\chi_j\}_{2^{n+1}}^{2^{n+2}}| \ge n^2.$$

One of the following three possibilities will occur in Γ .

0

 \hat{G} contains an element χ of infinite order.

Solution For every integer N there is a character $\chi \in \hat{G}$ with order greater than N.

There is an integer N such that every element of Ĝ has order less than N.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical Lacunary Sets Operator Space Structure of LP Acb for compact abelian Λ_{p}^{cb} for non-abelian compact

Lemma

Let $E = \{\chi_i\}_{i=1}^{\infty} \subseteq \hat{G}$, where χ_i are order 2. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for each sufficiently large n,

$$E' \cap \{\chi_j\}_{2^{n+1}}^{2^{n+2}} \ge n^2.$$

One of the following three possibilities will occur in Γ .

- **(1)** \hat{G} contains an element χ of infinite order.
- 2 For every integer N there is a character $\chi \in \hat{G}$ with order areater than N.
- There is an integer N such that every element of Ĝ has order less than N.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 1: Let χ be an element of Γ of infinite order and consider $\chi_j = \chi^j$. Applying Lemma we obtain $E' \subseteq {\chi^j}$ with $Z_2(E') = 1$ and $|E' \cap {\chi_j}_{2^{n+1}}^{2^{n+2}}| \ge n^2$. By Harcharras's Theorem E' is a Λ_4^{cb} set, but it is not Sidon.

Case 1: Let χ be an element of Γ of infinite order and consider $\chi_j = \chi^j$. Applying Lemma we obtain $E' \subseteq {\chi^j}$ with $Z_2(E') = 1$ and $\left| E' \cap {\chi_j}_{2^{n+1}}^{2^{n+2}} \right| \ge n^2$.

By Harcharras's Theorem E' is a Λ_4^{cb} set, but it is not Sidon.

Case 1: Let χ be an element of Γ of infinite order and consider $\chi_j = \chi^j$. Applying Lemma we obtain $E' \subseteq {\chi^j}$ with $Z_2(E') = 1$ and $\left| E' \cap {\chi_j}_{2^{n+2}}^{2^{n+2}} \right| \ge n^2$.

By Harcharras's Theorem E' is a Λ_4^{cb} set, but it is not Sidon.

Case 2: For each *j*, choose $\chi_j \in \Gamma$ with order $N_j > \max(2N_{j-1}, 3 \cdot 2^j)$ and consider

$$E = \bigcup_{j=1}^{\infty} E_j \text{ where } E_j = \{\chi_j, \dots, \chi_j^{2^j}\}.$$

as in Case 1, we can obtain a subset E' which is Λ_4^{cb} and with $|E_j \cap E'| \ge j^2$ for large enough *j*. Since the sets E_j are arithmetic progressions of length 2^j we again conclude that E' is not Sidon.

Case 2: For each *j*, choose $\chi_j \in \Gamma$ with order $N_j > \max(2N_{j-1}, 3 \cdot 2^j)$ and consider

$$E = \bigcup_{j=1}^{\infty} E_j$$
 where $E_j = \{\chi_j, \dots, \chi_j^{2^j}\}.$

as in Case 1, we can obtain a subset E' which is Λ_4^{cb} and with $|E_j \cap E'| \ge j^2$ for large enough *j*. Since the sets E_j are arithmetic progressions of length 2^j we again conclude that E' is not Sidon.

Case 2: For each *j*, choose $\chi_j \in \Gamma$ with order $N_j > \max(2N_{j-1}, 3 \cdot 2^j)$ and consider

$$E = \bigcup_{j=1}^{\infty} E_j$$
 where $E_j = \{\chi_j, \dots, \chi_j^{2^j}\}$.

as in Case 1, we can obtain a subset E' which is Λ_4^{cb} and with $|E_j \cap E'| \ge j^2$ for large enough *j*. Since the sets E_j are arithmetic progressions of length 2^j we again conclude that E' is not Sidon.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Case 2: For each *j*, choose $\chi_j \in \Gamma$ with order $N_j > \max(2N_{j-1}, 3 \cdot 2^j)$ and consider

$$E = \bigcup_{j=1}^{\infty} E_j$$
 where $E_j = \{\chi_j, \dots, \chi_j^{2^j}\}$.

as in Case 1, we can obtain a subset E' which is Λ_4^{cb} and with $|E_j \cap E'| \ge j^2$ for large enough *j*. Since the sets E_j are arithmetic progressions of length 2^j we again conclude that E' is not Sidon.

Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$.

 \hat{G} contains an infinite subgroup $\oplus_{j=1}^{\infty} \mathbb{Z}_{p}^{(j)}$ for some prime p dividing n.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n . we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \ge n^2$.

Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$.

 \hat{G} contains an infinite subgroup $\oplus_{j=1}^{\infty} \mathbb{Z}_{p}^{(j)}$ for some prime p dividing n.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n . we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \ge n^2$.

Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$.

 \hat{G} contains an infinite subgroup $\bigoplus_{j=1}^{\infty} \mathbb{Z}_p^{(j)}$ for some prime p dividing n.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n . we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \ge n^2$.

イロト イポト イヨト イヨト

Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$.

 \hat{G} contains an infinite subgroup $\bigoplus_{j=1}^{\infty} \mathbb{Z}_p^{(j)}$ for some prime *p* dividing *n*.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n . we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \ge n^2$.

イロト イポト イヨト イヨト

Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$.

 \hat{G} contains an infinite subgroup $\bigoplus_{j=1}^{\infty} \mathbb{Z}_p^{(j)}$ for some prime *p* dividing *n*.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n , we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \ge n^2$.

Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$.

 \hat{G} contains an infinite subgroup $\bigoplus_{j=1}^{\infty} \mathbb{Z}_p^{(j)}$ for some prime *p* dividing *n*.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n . we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \ge n^2$.

We can construct a non-Sidon set, *E*, with the property that for each integer $s \ge 2$, a cofinite subset of *E* has the Z(s) property.

E will be Λ_{2s}^{cb} for all integers $s \ge 2$ and since any Λ_{2s}^{cb} is Λ_p^{cb} for all $p \le 2s$, *E* will be Λ_p^{cb} for all $p < \infty$.

We can construct a non-Sidon set, *E*, with the property that for each integer $s \ge 2$, a cofinite subset of *E* has the Z(s) property. *E* will be Λ_{2s}^{cb} for all integers $s \ge 2$ and since any Λ_{2s}^{cb} is Λ_{p}^{cb} for all $p \le 2s$, *E* will be Λ_{p}^{cb} for all $p < \infty$.

We can construct a non-Sidon set, *E*, with the property that for each integer $s \ge 2$, a cofinite subset of *E* has the Z(s) property. *E* will be Λ_{2s}^{cb} for all integers $s \ge 2$ and since any Λ_{2s}^{cb} is Λ_{p}^{cb} for all $p \le 2s$, *E* will be Λ_{p}^{cb} for all $p < \infty$.

We can construct a non-Sidon set, *E*, with the property that for each integer $s \ge 2$, a cofinite subset of *E* has the Z(s) property. *E* will be Λ_{2s}^{cb} for all integers $s \ge 2$ and since any Λ_{2s}^{cb} is Λ_{p}^{cb} for all $p \le 2s$, *E* will be Λ_{p}^{cb} for all $p < \infty$.

Λ_p for compact non-abelian group

Let *G* be a compact group \hat{G} be unitary dual i.e the set of pairwise inequivalent unitary irreducible representations of *G*. For $\sigma \in \hat{G}$ we denote d_{σ} as the dimension of underlying Hilbert space \mathcal{H}_{σ} .

Λ_p for compact non-abelian group

Let *G* be a compact group \hat{G} be unitary dual i.e the set of pairwise inequivalent unitary irreducible representations of *G*. For $\sigma \in \hat{G}$ we denote d_{σ} as the dimension of underlying Hilbert space \mathcal{H}_{σ} .

Λ_p for compact non-abelian group

Let *G* be a compact group \hat{G} be unitary dual i.e the set of pairwise inequivalent unitary irreducible representations of *G*. For $\sigma \in \hat{G}$ we denote d_{σ} as the dimension of underlying Hilbert space \mathcal{H}_{σ} .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Λ_p for compact non-abelian group

Let *G* be a compact group \hat{G} be unitary dual i.e the set of pairwise inequivalent unitary irreducible representations of *G*. For $\sigma \in \hat{G}$ we denote d_{σ} as the dimension of underlying Hilbert space \mathcal{H}_{σ} .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let $E \subseteq \hat{G}$. A trigonometric polynomial f is called an *E*-polynomial if $\hat{f}(\sigma) = 0, \forall \sigma \notin E$.

Definition

- A set $E \subseteq \hat{G}$ is called a *Sidon set* if there is a constant *C* such that $\sum_{\sigma \in E} d_{\sigma} tr |\hat{f}(\gamma)| \leq C ||f||_{\infty}$ for all *E*-polynomial *f*.
- 2 Let 2 p</sub> if there is a constant C_p such that ||f||_p ≤ C_p||f||₂ for all E-polynomial f.

<ロト <回ト < 回ト < 回ト :

Let $E \subseteq \hat{G}$. A trigonometric polynomial f is called an *E*-polynomial if $\hat{f}(\sigma) = 0, \forall \sigma \notin E$.

Definition

- A set $E \subseteq \hat{G}$ is called a *Sidon set* if there is a constant *C* such that $\sum_{\sigma \in E} d_{\sigma} tr |\hat{f}(\gamma)| \leq C ||f||_{\infty}$ for all *E*-polynomial *f*.
- 2 Let 2 p</sub> if there is a constant C_p such that ||f||_p ≤ C_p||f||₂ for all E-polynomial f.

イロト イポト イヨト イヨト

Let $E \subseteq \hat{G}$. A trigonometric polynomial f is called an *E*-polynomial if $\hat{f}(\sigma) = 0, \forall \sigma \notin E$.

Definition

- A set $E \subseteq \hat{G}$ is called a *Sidon set* if there is a constant *C* such that $\sum_{\sigma \in E} d_{\sigma} tr |\hat{f}(\gamma)| \leq C ||f||_{\infty}$ for all *E*-polynomial *f*.
- 2 Let 2 p</sub> if there is a constant C_p such that ||f||_p ≤ C_p||f||₂ for all E-polynomial f.

イロト イポト イヨト イヨト

Every Sidon set is a Λ_p set

Unlike the abelian situation there are compact non-abelian group G which has no infinite Sidon sets in \hat{G} .

Definition

An operator $T: L^p(G) \to L^p(G)$ defined by

$$\widehat{Tf}(\sigma) = \phi(\sigma)\widehat{f}(\gamma) \quad \forall f \in L^p \cap L^2(G)$$

where $\phi_{\sigma} \in \mathcal{B}(\mathcal{H}_{\sigma})$ is called an L^{p} multiplier if it is bounded.

Every Sidon set is a Λ_p set

Unlike the abelian situation there are compact non-abelian group G which has no infinite Sidon sets in \hat{G} .

Definition

An operator $T: L^p(G) \to L^p(G)$ defined by

$$\widehat{Tf}(\sigma) = \phi(\sigma)\widehat{f}(\gamma) \quad \forall f \in L^p \cap L^2(G)$$

where $\phi_{\sigma} \in \mathcal{B}(\mathcal{H}_{\sigma})$ is called an L^{p} multiplier if it is bounded.

Every Sidon set is a Λ_p set

Unlike the abelian situation there are compact non-abelian group G which has no infinite Sidon sets in \hat{G} .

Definition

An operator $T: L^p(G) \to L^p(G)$ defined by

$$\widehat{Tf}(\sigma) = \phi(\sigma)\widehat{f}(\gamma) \quad \forall f \in L^p \cap L^2(G)$$

where $\phi_{\sigma} \in \mathcal{B}(\mathcal{H}_{\sigma})$ is called an L^{p} multiplier if it is bounded.

In the case of non-abelian *G*, Figá-Talamanca and Rider proved the following result.

Theorem (Figá-Talamanca, Rider)

Let $E \subseteq \hat{G}$ and 2 .

- (i) E is Λ_p if and only if for every T ∈ M₂ there exists S ∈ M_p such that Tf = Sf for all f ∈ L^p_E(G).
- (ii) E is Sidon if and if for every T ∈ M₂ there exists µ ∈ M(G) such that Tf = µ * f for all f ∈ L^p_E(G).

In the case of non-abelian *G*, Figá-Talamanca and Rider proved the following result.

Theorem (Figá-Talamanca, Rider)

Let $E \subseteq \hat{G}$ and 2 .

 (i) E is Λ_p if and only if for every T ∈ M₂ there exists S ∈ M_p such that Tf = Sf for all f ∈ L^p_E(G).

 (ii) E is Sidon if and if for every T ∈ M₂ there exists µ ∈ M(G) such that Tf = µ * f for all f ∈ L^p_E(G).

In the case of non-abelian *G*, Figá-Talamanca and Rider proved the following result.

Theorem (Figá-Talamanca, Rider)

Let $E \subseteq \hat{G}$ and 2 .

- (i) E is Λ_p if and only if for every T ∈ M₂ there exists S ∈ M_p such that Tf = Sf for all f ∈ L^p_E(G).
- (ii) E is Sidon if and if for every T ∈ M₂ there exists µ ∈ M(G) such that Tf = µ * f for all f ∈ L^p_E(G).

Fourier transform of Vector valued functions

Let G be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_G f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for $\mathcal{H}_{\sigma}, \hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_p .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

Fourier transform of Vector valued functions

Let G be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_G f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for $\mathcal{H}_{\sigma}, \hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_p .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

Fourier transform of Vector valued functions

Let *G* be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_G f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_p^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for $\mathcal{H}_{\sigma}, \hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_p .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

Fourier transform of Vector valued functions

Let *G* be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_{G} f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{p}^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for $\mathcal{H}_{\sigma}, \hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_p .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

Fourier transform of Vector valued functions

Let *G* be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_G f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for $\mathcal{H}_{\sigma}, \hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_p .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

Fourier transform of Vector valued functions

Let *G* be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_G f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for \mathcal{H}_{σ} , $\hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_{p} .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

Fourier transform of Vector valued functions

Let *G* be a compact group.

Let $f \in L^1(G, S_p)$. For $\sigma \in \hat{G}$ the vector valued Fourier coefficient of f at σ with degree d_{σ} is defined as

$$\hat{f}(\sigma) = \int_G f(x)\sigma(x^{-1})dx.$$

The integral is interpreted as an element of $\mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ in weak sense.

By fixing an orthonormal basis $e_1, \ldots, e_{d_{\sigma}}$ for $\mathcal{H}_{\sigma}, \hat{f}(\pi)$ can be viewed as a $d_{\sigma} \times d_{\sigma}$ matrix of entries from S_{ρ} .

$$\int_G f(x) < \sigma(x^{-1}e_j, e_i > dx.$$

 Λ_p^{cb} -sets

For matrix
$$A = (A_{ij})_{i,j=1}^n$$
, $A_{ij} \in S_p$ denote $TrA = \sum_{i=1}^n A_{ii}$.

trV we mean the usual trace of $n \times n$ complex matrix *V*.

Definition

Let $E \subseteq \hat{G}$. For 2 , we say that*E* $is <math>\Lambda_p^{cb}$ if there exists a constant *C* such that

$$\|f\|_{L^p(G,S_p)} \leq C \left[\|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}(A_\sigma(A_\sigma)^*)^{1/2}\|_{S_p} + \|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}((A_\sigma)^*A_\sigma))\|_{S_p} \right]$$

where $f = \sum_{\sigma \in E} d_{\sigma} Tr(A_{\sigma}\sigma)$ a S_{ρ} valued trigonometric *E*-polynomial.

 Λ_p^{cb} -sets

For matrix
$$A = (A_{ij})_{i,j=1}^n$$
, $A_{ij} \in S_p$ denote $TrA = \sum_{i=1}^n A_{ii}$.

trV we mean the usual trace of $n \times n$ complex matrix *V*.

Definition

Let $E \subseteq \hat{G}$. For 2 , we say that*E* $is <math>\Lambda_p^{cb}$ if there exists a constant *C* such that

$$\|f\|_{L^p(G,S_p)} \leq C \left[\|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}(A_\sigma(A_\sigma)^*)^{1/2}\|_{S_p} + \|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}((A_\sigma)^*A_\sigma))\|_{S_p} \right]$$

where $f = \sum_{\sigma \in E} d_{\sigma} Tr(A_{\sigma}\sigma)$ a S_{ρ} valued trigonometric *E*-polynomial.

Overview Classical Lacunary Sets Operator Space Structure of L^p \wedge_p^{cb} for compact abelian Λ_p^{cb} to non-abelian compact

Λ_p^{cb} -sets

For matrix
$$A = (A_{ij})_{i,j=1}^n$$
, $A_{ij} \in S_p$ denote $TrA = \sum_{i=1}^n A_{ii}$.

trV we mean the usual trace of $n \times n$ complex matrix *V*.

Definition

Let $E \subseteq \hat{G}$. For 2 , we say that <math>E is Λ_p^{cb} if there exists a constant C such that

$$\|f\|_{L^p(G,S_p)} \leq C \left[\|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}(A_\sigma(A_\sigma)^*)^{1/2}\|_{S_p} + \|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}((A_\sigma)^*A_\sigma))\|_{S_p} \right]$$

where $f = \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma} \sigma)$ a S_{ρ} valued trigonometric *E*-polynomial.

くロン (雪) (ヨ) (ヨ)

Overview Classical Lacunary Sets Operator Space Structure of L^p $\wedge^{C^D}_{\rho}$ for compact abelian $\wedge^{C^D}_{C^D}$ for non-abelian compact

Λ_p^{cb} -sets

For matrix
$$A = (A_{ij})_{i,j=1}^n$$
, $A_{ij} \in S_p$ denote $TrA = \sum_{i=1}^n A_{ii}$.

trV we mean the usual trace of $n \times n$ complex matrix *V*.

Definition

Let $E \subseteq \hat{G}$. For 2 , we say that*E* $is <math>\Lambda_p^{cb}$ if there exists a constant *C* such that

$$\|f\|_{L^{p}(G,S_{p})} \leq C \left[\| (\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma}(A_{\sigma})^{*})^{1/2} \|_{S_{p}} + \| (\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}((A_{\sigma})^{*}A_{\sigma})) \|_{S_{p}} \right]$$

where $f = \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma}\sigma)$ a S_{p} valued trigonometric *E*-polynomial.

Overview Classical Lacunary Sets Operator Space Structure of L^p $\wedge^{C^D}_{\rho}$ for compact abelian $\wedge^{C^D}_{C^D}$ for non-abelian compact

Λ_p^{cb} -sets

For matrix
$$A = (A_{ij})_{i,j=1}^n$$
, $A_{ij} \in S_p$ denote $TrA = \sum_{i=1}^n A_{ii}$.

trV we mean the usual trace of $n \times n$ complex matrix *V*.

Definition

Let $E \subseteq \hat{G}$. For 2 , we say that*E* $is <math>\Lambda_p^{cb}$ if there exists a constant *C* such that

$$\|f\|_{L^{p}(G,S_{p})} \leq C \left[\| (\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma}(A_{\sigma})^{*})^{1/2} \|_{S_{p}} + \| (\sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}((A_{\sigma})^{*}A_{\sigma})) \|_{S_{p}} \right]$$

where $f = \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma}(A_{\sigma})^{*})^{1/2} \|_{S_{p}}$ where $f = \sum_{\sigma \in E} d_{\sigma} \operatorname{Tr}(A_{\sigma}(A_{\sigma})^{*})^{1/2} \|_{S_{p}}$
Overview Classical Lacunary Sets Operator Space Structure of L^p Λ^{Cb}_{cb} for compact abelian Λ^{Cb}_{cb} for non-abelian compact

Λ_p^{cb} -sets

For matrix
$$A = (A_{ij})_{i,j=1}^n$$
, $A_{ij} \in S_p$ denote $TrA = \sum_{i=1}^n A_{ii}$.

trV we mean the usual trace of $n \times n$ complex matrix *V*.

Definition

Let $E \subseteq \hat{G}$. For 2 , we say that*E* $is <math>\Lambda_p^{cb}$ if there exists a constant *C* such that

$$\|f\|_{L^p(G,S_p)} \leq C \left[\|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}(A_\sigma(A_\sigma)^*)^{1/2}\|_{S_p} + \|(\sum_{\sigma \in E} d_\sigma \operatorname{Tr}((A_\sigma)^*A_\sigma))\|_{S_p} \right]$$

where $f = \sum_{\sigma \in E} d_{\sigma} Tr(A_{\sigma}\sigma)$ a S_{ρ} valued trigonometric *E*-polynomial.

イロン 不得 とくほう くほう

Overview Classical Lacunary Sets Operator Space Structure of L^p Λ_D^{cb} for compact abelian Λ_D^{cb} ron non-abelian compact

Proposition

Let
$$V \in U(n)$$
 and $A \in \mathcal{B}(\mathbb{C}^n, S_p^n)$, $n > 4$. Then

$$\int_{U(n)} \| \operatorname{Tr}AV \|_{S_4}^4 dV \leq \frac{8c}{(\operatorname{deg}V)^2} \operatorname{tr} \left[(\sum_{m,n} A_{mn}^* A_{mn})^2 + (\sum_{m,n} A_{mn} A_{mn}^*)^2 \right]$$

In the abelian case Λ_p -sets are interpolation sets of M_p as a consequence of Khintchine inequality. For non-abelian groups G, it can be proved that if $\sum_{\sigma \in \hat{G}} d_{\sigma} tr(A_{\sigma}A_{\sigma}^*) < \infty$ then given $p < \infty$ there exists unitary transformations $\{U_{\sigma}\}$ such that $\sum_{\sigma} d_{\sigma} tr(U_{\sigma}A_{\sigma}\sigma(x))$ is the Fourier series of an $L^p(G)$ function.

<ロト <回ト < 回ト < 回ト :

Overview Classical Lacunary Sets Operator Space Structure of L^p Λ_D^{cb} for compact abelian Λ_D^{cb} for non-abelian compact

Proposition

Let
$$V \in U(n)$$
 and $A \in \mathcal{B}(\mathbb{C}^n, S_p^n)$, $n > 4$. Then

$$\int_{U(n)} \| \operatorname{Tr}AV \|_{S_4}^4 dV \leq \frac{8c}{(\operatorname{deg}V)^2} \operatorname{tr} \left[\left(\sum_{m,n} A_{mn}^* A_{mn} \right)^2 + \left(\sum_{m,n} A_{mn} A_{mn}^* \right)^2 \right]$$

In the abelian case Λ_p -sets are interpolation sets of M_p as a consequence of Khintchine inequality. For non-abelian groups G, it can be proved that if $\sum_{\sigma \in \hat{G}} d_{\sigma} tr(A_{\sigma}A_{\sigma}^*) < \infty$ then given $p < \infty$ there exists unitary transformations $\{U_{\sigma}\}$ such that $\sum_{\sigma} d_{\sigma} tr(U_{\sigma}A_{\sigma}\sigma(x))$ is the Fourier series of an $L^p(G)$ function.

イロト イポト イヨト イヨト

Overview Classical Lacunary Sets Operator Space Structure of L^p Λ_D^{cb} for compact abelian Λ_D^{cb} for non-abelian compact

Proposition

Let
$$V \in U(n)$$
 and $A \in \mathcal{B}(\mathbb{C}^n, S_p^n)$, $n > 4$. Then

$$\int_{U(n)} \| \operatorname{Tr}AV \|_{S_4}^4 dV \leq \frac{8c}{(\operatorname{deg}V)^2} \operatorname{tr} \left[(\sum_{m,n} A_{mn}^* A_{mn})^2 + (\sum_{m,n} A_{mn} A_{mn}^*)^2 \right]$$

In the abelian case Λ_p -sets are interpolation sets of M_p as a consequence of Khintchine inequality. For non-abelian groups G, it can be proved that if $\sum_{\sigma \in \hat{G}} d_{\sigma} tr(A_{\sigma}A_{\sigma}^*) < \infty$ then given $p < \infty$ there exists unitary transformations $\{U_{\sigma}\}$ such that $\sum_{\sigma} d_{\sigma} tr(U_{\sigma}A_{\sigma}\sigma(x))$ is the Fourier series of an $L^p(G)$ function.

Overview Classical Lacunary Sets Operator Space Structure of L^p Λ_D^{cb} for compact abelian Λ_D^{cb} ron non-abelian compact

Proposition

Let
$$V \in U(n)$$
 and $A \in \mathcal{B}(\mathbb{C}^n, S_p^n)$, $n > 4$. Then

$$\int_{U(n)} \| \operatorname{Tr}AV \|_{S_4}^4 dV \le \frac{8c}{(\deg V)^2} tr \left[(\sum_{m,n} A_{mn}^* A_{mn})^2 + (\sum_{m,n} A_{mn} A_{mn}^*)^2 \right]$$

In the abelian case Λ_p -sets are interpolation sets of M_p as a consequence of Khintchine inequality. For non-abelian groups G, it can be proved that if $\sum_{\sigma \in \hat{G}} d_{\sigma} tr(A_{\sigma}A_{\sigma}^*) < \infty$ then given $p < \infty$ there exists unitary transformations $\{U_{\sigma}\}$ such that $\sum_{\sigma} d_{\sigma} tr(U_{\sigma}A_{\sigma}\sigma(x))$ is the Fourier series of an $L^p(G)$ function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview Classical Lacunary Sets Operator Space Structure of L^{ρ} Λ_{p}^{cb} for compact abelian Λ_{p}^{cb} for non-abelian compact

Theorem

Let $V = \{V_{\sigma}\} \in \prod U(d_{\sigma})$ and $A^{\sigma} \in \mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ for $\sigma \in \hat{G}$ then

$$\begin{split} \int_{\mathcal{G}} \|\sum_{\sigma} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma}\|_{S_{4}}^{4} dV &\leq \quad Ctr[(\sum_{\sigma} d_{\sigma} \sum_{j,l} A_{jl}^{\sigma} (A^{\sigma})_{jl}^{*})^{2} \\ &+ \quad (\sum_{\sigma} d_{\sigma} \sum_{j,l} (A^{\sigma})_{jl}^{*} A_{jl}^{\sigma})^{2}] \end{split}$$

<ロト <回 > < 回 > < 回 > < 回 > … 回

Overview Classical Lacunary Sets Operator Space Structure of L^{ρ} Λ_{p}^{cb} for compact abelian Λ_{p}^{cb} for non-abelian compact

Theorem

Let $V = \{V_{\sigma}\} \in \prod U(d_{\sigma})$ and $A^{\sigma} \in \mathcal{B}(\mathbb{C}^{d_{\sigma}}, S_{\rho}^{d_{\sigma}})$ for $\sigma \in \hat{G}$ then

$$\int_{\mathcal{G}} \|\sum_{\sigma} d_{\sigma} \operatorname{Tr} A^{\sigma} V_{\sigma} \|_{S_{4}}^{4} dV \leq \operatorname{Ctr} [(\sum_{\sigma} d_{\sigma} \sum_{j,l} A_{jl}^{\sigma} (A^{\sigma})_{jl}^{*})^{2} + (\sum_{\sigma} d_{\sigma} \sum_{j,l} (A^{\sigma})_{jl}^{*} A_{jl}^{\sigma})^{2}]$$

Parasar Mohanty Indian Institute of Technology Kanpur

(日)

Overview Classical Lacunary Sets Operator Space Structure of L^p Λ_p^{Cb} for compact abelian Λ_p^{Cb} for non-abelian compact

Theorem (Hare & M)

Let $T \in M_2(G)$ and $E \subseteq \hat{G}$. If E is Λ_4^{cb} and $\widehat{Tf}(\sigma) = \phi(\sigma)\hat{f}(\sigma)$ with $\phi(\sigma) = 0$ for all $\sigma \notin E$ then $T \in M_4^{cb}$. Conversely if $T_{\phi} \in M_2$ implies $T_{\phi} \in M_4^{cb}$ for all $\phi \in I_E^{\infty}(\hat{G}) = \{\phi(\sigma) \in \mathcal{B}(\mathcal{H}_{\sigma}) : \phi(\sigma) = 0 \ \forall \sigma \notin E\}$ then E is Λ_4^{cb} .

< □ > < 同 > < 回 > < 回 > .

Overview Classical Lacunary Sets Operator Space Structure of L^p Λ^{cb}_{cb} for compact abelian Λ^{cb}_{cb} for non-abelian compact

References

- J.M. Lopez; K.A.Ross, Sidon sets. Lecture Notes in Pure and Applied Mathematics, Vol. 13. Marcel Dekker, Inc., New York, 1975.
- E.Hewitt; K.A. Ross, Abstract Harmonic Analysis II, Springer Verlag, 1970.
- K.E. Hare; C.Graham, Interpolation and Sidon sets for Compact groups, Springer Verlag, 2013.
- G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps. Astérisque No. 247 (1998).
- A. Harcharras, Fourier Analysis, Schur Multipliers on S^p and non-commutative Λ_p- sets Studia Math., 137(3), 1999, 203-258.
- A. Figá-Talamanca; D. Rider, A theorem of Littlewood and lacunary series for compact groups. Pacific J. Math. 16, 1966, 505-514.
- K.E. Hare; P. Mohanty, Completely bounded Λ_p sets that are not Sidon, Preprint.
- K.E. Hare; P. Mohanty, Completely bounded Lacunary sets for Compact non-abelian groups, in Preparation.