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Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and
Hadamard

In 1861 Riemann guessed that the function R(x) =
∞∑
1

sin n2x
n2 is

nowhere differentiable.
Weirstrass failed to prove it. Gave the famous example
∞∑

n=1
an cos bnx where 0 < a < 1, 1 < b ∈ N and ab > 1.

In 1892, Hadamard proved that the Taylor series
∞∑

n=1
anzλn has

|z| = 1 as natural boundary whenever ∃q > 1 such that
λn+1
λn

> q > 1.
This condition is known as Hadamard’s Lacunary condition.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and
Hadamard

In 1861 Riemann guessed that the function R(x) =
∞∑
1

sin n2x
n2 is

nowhere differentiable.
Weirstrass failed to prove it. Gave the famous example
∞∑

n=1
an cos bnx where 0 < a < 1, 1 < b ∈ N and ab > 1.

In 1892, Hadamard proved that the Taylor series
∞∑

n=1
anzλn has

|z| = 1 as natural boundary whenever ∃q > 1 such that
λn+1
λn

> q > 1.
This condition is known as Hadamard’s Lacunary condition.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and
Hadamard

In 1861 Riemann guessed that the function R(x) =
∞∑
1

sin n2x
n2 is

nowhere differentiable.
Weirstrass failed to prove it. Gave the famous example
∞∑

n=1
an cos bnx where 0 < a < 1, 1 < b ∈ N and ab > 1.

In 1892, Hadamard proved that the Taylor series
∞∑

n=1
anzλn has

|z| = 1 as natural boundary whenever ∃q > 1 such that
λn+1
λn

> q > 1.
This condition is known as Hadamard’s Lacunary condition.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and
Hadamard

In 1861 Riemann guessed that the function R(x) =
∞∑
1

sin n2x
n2 is

nowhere differentiable.
Weirstrass failed to prove it. Gave the famous example
∞∑

n=1
an cos bnx where 0 < a < 1, 1 < b ∈ N and ab > 1.

In 1892, Hadamard proved that the Taylor series
∞∑

n=1
anzλn has

|z| = 1 as natural boundary whenever ∃q > 1 such that
λn+1
λn

> q > 1.
This condition is known as Hadamard’s Lacunary condition.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and
Hadamard

In 1861 Riemann guessed that the function R(x) =
∞∑
1

sin n2x
n2 is

nowhere differentiable.
Weirstrass failed to prove it. Gave the famous example
∞∑

n=1
an cos bnx where 0 < a < 1, 1 < b ∈ N and ab > 1.

In 1892, Hadamard proved that the Taylor series
∞∑

n=1
anzλn has

|z| = 1 as natural boundary whenever ∃q > 1 such that
λn+1
λn

> q > 1.
This condition is known as Hadamard’s Lacunary condition.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Lacunary Sets

Concept of Lacunary sets dates back to Weirstrass and
Hadamard

In 1861 Riemann guessed that the function R(x) =
∞∑
1

sin n2x
n2 is

nowhere differentiable.
Weirstrass failed to prove it. Gave the famous example
∞∑

n=1
an cos bnx where 0 < a < 1, 1 < b ∈ N and ab > 1.

In 1892, Hadamard proved that the Taylor series
∞∑

n=1
anzλn has

|z| = 1 as natural boundary whenever ∃q > 1 such that
λn+1
λn

> q > 1.
This condition is known as Hadamard’s Lacunary condition.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Sidon Sets

Sidon proved that the lacunary Fourier series
∑

ane2πiλnt

converges absolutely if {λn} satisfies Hadamard’s lacunar
conditions.
Let E ⊆ Z. A trigonometric polynomial f is called E-polynomial if
f̂ (n) = 0, ∀n 6∈ E .

Definition

E ⊆ Z is said to be a Sidon set if ∃C > 0 such that
∑
n
|̂f (n)| ≤ C‖f‖∞

for all trigonometric E polynomial f .

Kahane called these sets as Sidon sets.
Every Hadamard set is Sidon and finite union of Hadamard set is
also Sidon.
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Λp-sets

In 1960 Walter Rudin introduced the concept of Λp sets for
compact abelian group G.

Denote Ĝ discrete dual group of G.

Denote Lp
E (G) = {f ∈ Lp(G) : f̂ (γ) = 0, ∀γ 6∈ E}.

Definition

Let 2 < p <∞. E ⊆ Ĝ is said to be an Λp−set if ∃ C > 0 such that
‖f‖p ≤ C‖f‖2 for all E−polynomial f . In other words Lp

E ' L2
E .
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Every Sidon set is Λp.
For circle T Rudin gave example of non-Sidon Λp set.
For arbitrary compact abelian group this problem attracted many
attention and finally solved by A. Bonami as well as Edward,
Hewitt and Ross independently in 1970.
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If E ⊆ Ĝ is Sidon then for every φ ∈ l∞E ∃µ ∈ M(G) such that
φ(γ) = µ̂(γ) ∀γ ∈ Ĝ

Conversely if ∀φ ∈ l∞E ∃µ ∈ M(G) such that φ(γ) = µ̂(γ) ∀γ ∈ Ĝ
then E is Sidon.
Sidon sets are interpolation set for M(G).
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Conversely if ∀φ ∈ l∞E ∃µ ∈ M(G) such that φ(γ) = µ̂(γ) ∀γ ∈ Ĝ
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Definition

Let 1 ≤ p <∞ a bounded operator T : Lp(G)→ Lp(G) is said to be a
multiplier of Lp if ∃φ ∈ l∞(Ĝ) such that
T̂f (γ) = φ(γ)f̂ (γ) ∀f ∈ Lp ∩ L2 and γ ∈ Ĝ.

Denote Mp(G) as set of all such multipliers. It is a Banach
algebra.
As an application of Khintchine’s inequality: For 2 < p <∞ one
can show that Λp sets are interpolation sets for Mp(G).

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Definition

Let 1 ≤ p <∞ a bounded operator T : Lp(G)→ Lp(G) is said to be a
multiplier of Lp if ∃φ ∈ l∞(Ĝ) such that
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Operator Space Interpolation

G.Pisier has developed complex interpolation for operator
spaces.
Let X0 and X1 are compatible pair of Banach spaces.
Denote Xθ = (X0,X1)θ, in Pisier’s interpolation theory Mn(Xθ)
gets the norm of the Banach Space (Mn(X0),Mn(X1))θ.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Operator Space Interpolation

G.Pisier has developed complex interpolation for operator
spaces.
Let X0 and X1 are compatible pair of Banach spaces.
Denote Xθ = (X0,X1)θ, in Pisier’s interpolation theory Mn(Xθ)
gets the norm of the Banach Space (Mn(X0),Mn(X1))θ.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Operator Space Interpolation

G.Pisier has developed complex interpolation for operator
spaces.
Let X0 and X1 are compatible pair of Banach spaces.
Denote Xθ = (X0,X1)θ, in Pisier’s interpolation theory Mn(Xθ)
gets the norm of the Banach Space (Mn(X0),Mn(X1))θ.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

For any locally compact group L∞(G) has a canonical operator
space structure being a C∗ algebra.
Let L1(G) inherits operator space structure form L∞(G)∗.
L1(G)∗ ' L∞(G) complete isomorphic with this operator space
structure.
Now the canonical operator space structure on Lp(G) is the
interpolated operator space structure (L1,L∞) 1

p
.
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Let us denote Sp,1 ≤ p <∞ to be the space of compact
operators on l2 such that ‖T‖Sp = (tr |T |p)1/p where
|T | = tr(T ∗T )1/2.
Denote Lp(G,Sp) be the space of Sp valued measurable
functions f such that

‖f‖Lp(G,Sp) =

(∫
G
‖f (x)‖p

Sp
dx
)1/p

<∞.

Proposition (Pisier)

Let 1 ≤ p <∞. A linear map T : Lp(G)→ Lp(G) is completely
bounded if and only if the mapping T ⊗ ISp is bounded on Lp(G,Sp).
Moreover,

‖T‖cb = ‖T ⊗ ISp‖Lp(G,Sp)→Lp(G,Sp).
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Mcb
p (G) = {T ∈ Mp(G) : T is cb}.

Mcb
p (G) = Mp(G) if p = 1,2. What about other p’s.

Theorem

Let G be a locally compact abelian group. Then Mcb
p (G) ( Mp(G) for

1 < p 6= 2 <∞.

For G compact abelian proof is by Pisier/ Harcharras.
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Comletely bounded Λp sets

The concept of Λcb
p is introduced by Harcharras for compact

abelian group G.

Definition

Let 2 < p <∞. A subset E ⊆ Ĝ is called Λcb
p set if there exists a

constant C, depending only on p and E such that

‖f‖Lp(G,Sp) ≤ C max{‖(
∑
γ∈E

f̂ (γ)∗ f̂ (γ))1/2‖Sp , ‖(
∑
γ∈E

f̂ (γ)f̂ (γ)∗)1/2‖Sp}

for all Sp valued E- polynomials f defined on G. We denote λcb
p (E)

the least constant C for which above inequality holds.

She showed that for 2 < p <∞, Λcb
p sets are interpolation sets

for Mcb
p .

Parasar Mohanty Indian Institute of Technology Kanpur
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for Mcb
p .
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Remark
1 As an application of Jensen’s inequality RHS is dominated by
‖f‖Lp(G,Sp).

2 Unlike classical setting for Λcb
p set E we cannot have

Lp
E (G,Sp) ≈ L2

E (G,S2). However, if E is Λcb
p then

L2
E (G,S2) ⊂ Lp

E (G,Sp).
3 By considring f = g ⊗ x where g is an E-polynomial on G and

x ∈ Sp with ‖x‖Sp = 1 it is straight forward to see that Λcb
p ⊆ Λp.
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A. Harcharras extensively studied various properties of Λcb
p sets

and established, in particular, the existence of Λp sets which are
not Λcb

p .

Given that all Sidon sets are Λcb
p for all p > 2,it is natural to ask,

“Is there a non-Sidon, Λcb
p set?"

Harcharras and Banks answered this question for the circle
group T in by showing that for any finite set Q of prime numbers,
the set of natural numbers whose prime divisors all lie in Q is Λcb

p
for all p, but not Sidon if |Q| > 2.
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Theorem (Hare and M)

Let G be an arbitrary compact abelian group. Then there exists
E ⊆ Ĝ which is Λcb

p for all p ∈ (2,∞) but not Sidon.
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Sketch of the proof

Rudin introduced following combinatorial property to construct Λp
sets.
For p ≥ 2 an integer, let

Ap(E) = sup
γ∈Γ
|{(γ1, . . . , γp) ∈ Ep : γ1γ2 . . . γp = γ}| and

Bp(E) = sup
γ∈Γ

∣∣∣{(γ1, . . . , γp) ∈ Ep : γ−1
1 γ2 . . . γ

(−1)p

p = γ}
∣∣∣ .

Characters γj may be repeated and this can cause complications
with the counting
Harcharras was able to extend this result to Λcb

p sets, under the
weaker assumption that the characters γj were distinct.
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Definition

Let p ≥ 2 be an integer. The set E has the Z (p) property if

Zp(E) = sup
γ∈Γ
|{(γ1, . . . , γp) ∈ Ep : ∀i 6= j , γi 6= γj ,

and γ−1
1 γ2 . . . γ

(−1)p

p = γ}| <∞.

Theorem (Harcharras)

Let p ≥ 2 be an integer. Then every subset E of Ĝ with the Z (p)
property is a Λcb

2p set. Moreover, there exists a constant Cp, depending
only on p, such that λcb

2p(E) ≤ CpZp(E)1/2p for each E ⊆ Ĝ.
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Our strategy will be to find size limitations on the arithmetic
structures that Sidon sets can contain, and then to construct Λcb

p
sets, using Harcharras’ sufficient condition, which violate this
size limitation.

Lemma
Let E ⊂ Γ be a Sidon set. If A is any arithmetic progression, then
|E ∩ A| ≤ O(log |A|).
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The key technical idea is the following combinatorial result that
enables us to construct sets with the Z (2) property, which
contain more than O(N) elements from predetermined subsets
of 2N characters.

Lemma

Let E = {χj}∞j=1 ⊆ Ĝ, where χ2
j are all distinct and non-trivial. We can

choose an infinite subset E ′ ⊆ E such that Z2(E ′) = 1 and for
sufficiently large n, ∣∣∣E ′ ∩ {χj}2n+2

2n+1

∣∣∣ ≥ n2.
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Lemma

Let E = {χj}∞j=1 ⊆ Ĝ, where χj are order 2. We can choose an infinite
subset E ′ ⊆ E such that Z2(E ′) = 1 and for each sufficiently large n,∣∣∣E ′ ∩ {χj}2n+2

2n+1

∣∣∣ ≥ n2.

One of the following three possibilities will occur in Γ.
1 Ĝ contains an element χ of infinite order.
2 For every integer N there is a character χ ∈ Ĝ with order greater

than N.
3 There is an integer N such that every element of Ĝ has order less

than N.
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Case 1: Let χ be an element of Γ of infinite order and consider
χj = χj .
Applying Lemma we obtain E ′ ⊆ {χj} with Z2(E ′) = 1 and∣∣∣E ′ ∩ {χj}2n+2

2n+1

∣∣∣ ≥ n2.

By Harcharras’s Theorem E ′ is a Λcb
4 set, but it is not Sidon.
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Case 2: For each j , choose χj ∈ Γ with order Nj >
max(2Nj−1,3 · 2j ) and consider

E =
∞⋃
j=1

Ej where Ej = {χj , . . . , χ
2j

j }.

as in Case 1, we can obtain a subset E ′ which is Λcb
4 and with

|Ej ∩ E ′| ≥ j2 for large enough j . Since the sets Ej are arithmetic
progressions of length 2j we again conclude that E ′ is not Sidon.
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Case 3: Suppose Γ is of bounded order K .
Being an infinite abelian group, Γ = ⊕j∈JZnj where nj ≤ K and
|J| =∞.

Ĝ contains an infinite subgroup ⊕∞j=1Z
(j)
p for some prime p

dividing n.
Consider

En =

(n+1)2∏
j=n2+1

Z(j)
p and let E =

∞⋃
n=1

En.

The sets En are disjoint and have cardinality at least pn. we can
choose an infinite subset E ′ of E which is Λcb

4 and such that
|E ′ ∩ En| ≥ n2.
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We can construct a non-Sidon set, E , with the property that for
each integer s ≥ 2, a cofinite subset of E has the Z (s) property.
E will be Λcb

2s for all integers s ≥ 2 and since any Λcb
2s is Λcb

p for all
p ≤ 2s, E will be Λcb

p for all p <∞.
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Λp for compact non-abelian group

Let G be a compact group Ĝ be unitary dual i.e the set of
pairwise inequivalent unitary irreducible representations of G.
For σ ∈ Ĝ we denote dσ as the dimension of underlying Hilbert
space Hσ.

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Λp for compact non-abelian group
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Let E ⊆ Ĝ. A trigonometric polynomial f is called an
E-polynomial if f̂ (σ) = 0, ∀σ 6∈ E .

Definition

1 A set E ⊆ Ĝ is called a Sidon set if there is a constant C such that∑
σ∈E

dσtr |̂f (γ)| ≤ C‖f‖∞ for all E-polynomial f .

2 Let 2 < p <∞. A set E ⊆ Ĝ is called a Λp if there is a constant Cp such
that ‖f‖p ≤ Cp‖f‖2 for all E-polynomial f .
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Every Sidon set is a Λp set
Unlike the abelian situation there are compact non-abelian group
G which has no infinte Sidon sets in Ĝ.

Definition

An operator T : Lp(G)→ Lp(G) defined by

T̂f (σ) = φ(σ)f̂ (γ) ∀f ∈ Lp ∩ L2(G)

where φσ ∈ B(Hσ) is called an Lp multiplier if it is bounded.
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In the case of non-abelian G, Figá-Talamanca and Rider proved
the following result.

Theorem (Figá-Talamanca , Rider)

Let E ⊆ Ĝ and 2 < p <∞.
(i) E is Λp if and only if for every T ∈ M2 there exists S ∈ Mp such that

Tf = Sf for all f ∈ Lp
E (G).

(ii) E is Sidon if and if for every T ∈ M2 there exists µ ∈ M(G) such that
Tf = µ ∗ f for all f ∈ Lp

E (G).
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Fourier transform of Vector valued functions

Let G be a compact group.
Let f ∈ L1(G,Sp). For σ ∈ Ĝ the vector valued Fourier coefficient
of f at σ with degree dσ is defined as

f̂ (σ) =

∫
G

f (x)σ(x−1)dx .

The integral is interpreted as an element of B(Cdσ ,Sdσ
p ) in weak

sense.
By fixing an orthonormal basis e1, . . . ,edσ

for Hσ, f̂ (π) can be
viewed as a dσ × dσ matrix of entries from Sp.

In particular the (i , j)th entry of f̂ (σ) with respect to this basis is
given by ∫

G
f (x) < σ(x−1ej ,ei > dx .
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Let f ∈ L1(G,Sp). For σ ∈ Ĝ the vector valued Fourier coefficient
of f at σ with degree dσ is defined as

f̂ (σ) =

∫
G

f (x)σ(x−1)dx .

The integral is interpreted as an element of B(Cdσ ,Sdσ
p ) in weak

sense.
By fixing an orthonormal basis e1, . . . ,edσ

for Hσ, f̂ (π) can be
viewed as a dσ × dσ matrix of entries from Sp.

In particular the (i , j)th entry of f̂ (σ) with respect to this basis is
given by ∫

G
f (x) < σ(x−1ej ,ei > dx .

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Fourier transform of Vector valued functions

Let G be a compact group.
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Λcb
p -sets

For matrix A = (Aij )
n
i,j=1, Aij ∈ Sp denote TrA =

n∑
i=1

Aii .

trV we mean the usual trace of n × n complex matrix V .

Definition

Let E ⊆ Ĝ. For 2 < p <∞, we say that E is Λcb
p if there exists a

constant C such that

‖f‖Lp(G,Sp) ≤ C

[
‖(
∑
σ∈E

dσTr(Aσ(Aσ)∗)1/2‖Sp + ‖(
∑
σ∈E

dσTr((Aσ)∗Aσ))‖Sp

]

where f =
∑
σ∈E

dσTr(Aσσ) a Sp valued trigonometric E-polynomial.
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Proposition

Let V ∈ U(n) and A ∈ B(Cn,Sn
p), n > 4. Then∫

U(n)
‖TrAV‖4

S4
dV ≤ 8c

(degV )2 tr

[
(
∑
m,n

A∗mnAmn)2 + (
∑
m,n

AmnA∗mn)2

]

In the abelian case Λp-sets are interpolation sets of Mp as a
consequence of Khintchine inequality. For non-abelian groups G,
it can be proved that if

∑
σ∈Ĝ

dσtr(AσA∗σ) <∞ then given p <∞

there exists unitary transformations {Uσ} such that∑
σ

dσtr(UσAσσ(x)) is the Fourier series of an Lp(G) function.
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Theorem

Let V = {Vσ} ∈
∏

U(dσ) and Aσ ∈ B(Cdσ ,Sdσ
p ) for σ ∈ Ĝ then∫

G
‖
∑
σ

dσTrAσVσ‖4
S4

dV ≤ Ctr [(
∑
σ

dσ
∑
j,l

Aσjl (Aσ)∗jl )
2

+ (
∑
σ

dσ
∑
j,l

(Aσ)∗jl A
σ
jl )2]

Parasar Mohanty Indian Institute of Technology Kanpur



Overview
Classical Lacunary Sets

Operator Space Structure of Lp

Λcb
p for compact abelian

Λcb
p for non-abelian compact

Theorem

Let V = {Vσ} ∈
∏

U(dσ) and Aσ ∈ B(Cdσ ,Sdσ
p ) for σ ∈ Ĝ then∫
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Theorem (Hare & M)

Let T ∈ M2(G) and E ⊆ Ĝ. If E is Λcb
4 and T̂f (σ) = φ(σ)f̂ (σ) with

φ(σ) = 0 for all σ 6∈ E then T ∈ Mcb
4 . Conversely if Tφ ∈ M2 implies

Tφ ∈ Mcb
4 for all φ ∈ l∞E (Ĝ) = {φ(σ) ∈ B(Hσ) : φ(σ) = 0 ∀σ 6∈ E} then

E is Λcb
4 .
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