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Some basic Notation and Definitions

A a regular and semisimple commutative Banach algebra

∆(A) = {ϕ : A→ C surjective homomorphism} ⊆ A∗1, equipped with
the w∗-topology

Gelfand transformation a→ â,A→ C0(∆(A)), â(ϕ) = ϕ(a)

hull of M ⊆ A: h(M) = {ϕ ∈ ∆(A) : ϕ(M) = {0}}

For a closed subset E of ∆(A), let

k(E ) = {a ∈ A : â = 0 on E}
j(E ) = {a ∈ A : â has compact support disjoint from E}

If I is any ideal of A with h(I ) = E , then j(E ) ⊆ I ⊆ k(E ).
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Synthesis Notions

Definition

A closed subset E of ∆(A) is called a

set of synthesis orspectral set if k(E ) = j(E )

Ditkin set if a ∈ aj(E ) for every a ∈ k(E ).

We say that

spectral synthesis holds for A if every closed subset of ∆(A) is a set
of synthesis.

A satisfies Ditkin’s condition at infinity if ∅ is a Ditkin set, i.e. given
any a ∈ A and ε > 0, there exists b ∈ A such that b̂ has compact
support and ‖a− ab‖ ≤ ε.

Remark

If A satisfies Ditkin’s condition at infinty and ∆(A) is discrete, then every
subset of ∆(A) is a Ditkin set. In particular, spectral synthesis holds for A.
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L1(G ), G locally compact abelian

∆(L1(G )) = Ĝ , the dual group of G
f̂ (γ) =

∫
G f (x)γ(x)dx , f ∈ L1(G ), γ ∈ Ĝ .

Example

(1) For n ≥ 3, Sn−1 ⊆ Rn = ∆(L1(Rn)) fails to be a set of synthesis
(L. Schwartz, 1948)

(2) S1 ⊆ R2 is a set of synthesis for L1(R2)
(C. Herz, 1958).

Theorem

(P. Malliavin, 1959)
Let G be any locally compact abelian group. Then spectral synthesis holds
for L1(G ) (if and) only if G is compact.

A more constructive proof than Malliavin’s was given by Varopoulos
(1967), using tensor product methods.
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Further examples

Every closed set in the coset ring of Ĝ is a set of synthesis (and the
ideal k(E ) has a bounded approximate identity)

Every closed convex set in Rn is set of synthesis

If ∂(E ) is compact and countable, then E is a spectral set

If E ,F ⊆ Ĝ are Ditkin sets, then E ∪ F is a Ditkin set

Problems

(1) E , F sets of synthesis ⇒ E ∪ F set of synthesis? (Union problem)
(2) E set of synthesis ⇒ E Ditkin set? (C-set/S-set problem)
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Fourier and Fourier-Stieltjes Algebras

Definition

Let G be a locally compact group. Let B(G ) denote the linear span of the
set of all continuous positive definite functions on G . Then B(G ) can be
identified with the dual space of the group C ∗-algebra C ∗(G ) through the
duality

〈u, f 〉 =

∫
G

f (x)u(x)dx , f ∈ L1(G ), u ∈ B(G ).

With pointwise multiplication and the dual norm, B(G ) is a semisimple
commutative Banach algebra, the Fourier-Stieltjes algebra of G .

The Fourier algebra A(G ) of G is the closed ideal of B(G ) generated by all
functions in B(G ) with compact support. Note that A(G ) ⊆ C0(G ).

P. Eymard, L’algebre de Fourier d’un groupe localement compact, Bull.
Soc. Math. France 92 (1964), 181-236.
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Remark

The spectrum σ(A(G )) of A(G ) can be canonically identified with G :
the map

x → ϕx , ϕx(u) = u(x), u ∈ A(G ),

is a homeomorphism from G onto σ(A(G )) .

Suppose that G is an abelian locally compact group with dual group
Ĝ . Then the Fourier-Stieltjes transform gives isometric isomorphisms

M(G )→ B(Ĝ ) and L1(G )→ A(Ĝ ).

Theorem

Let G be an arbitrary locally compact group. Then spectral synthesis holds
for A(G ) if and only if G is discrete and u ∈ uA(G ) for every u ∈ A(G ).

E. Kaniuth and A.T. Lau, Spectral synthesis for A(G ) and subspaces of
VN(G ), Proc. Amer. Math. Soc. 129 (2001), 3253-3263.

This result was later, but independently, also shown by Parthasarathy and
Prakash.
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Weak Spectral Sets

Definition

A closed subset E of ∆(A) is called a weak spectral set or set of weak
synthesis if there exists n ∈ N such that

an ∈ j(E ) for every a ∈ k(E ).

The smallest such n is called the characteristic, ξ(E ), of E .
Weak spectral synthesis holds for A if every closed E ⊆ ∆(A) is a weak
spectral set.

Remark

If E and F are weak spectral sets in ∆(A), then so is E ∪ F and
ξ(E ∪ F ) ≤ ξ(E ) + ξ(F ).

C.R. Warner, Weak spectral synthesis. Proc. Amer. Math. Soc. 99 (1987),
244-248.
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Examples

(1) For each n ∈ N, Sn−1 ⊆ Rn = ∆(L1(Rn)) is a weak spectral set with
ξ(Sn−1) = bn+1

2 c.
N.Th. Varopoulos, Spectral synthesis on spheres. Math. Proc. Cambr.
Phil. Soc. 62 (1966), 379-387.

(2) For each n ∈ N, T∞ = ∆(L1(T̂∞)) contains a weak spectral set E
with ξ(E ) = n.
(Warner)

(3) Cn[0, 1] = algebra of n-times continuously differentiable functions on
[0, 1]; identify ∆(Cn[0, 1]) with [0, 1]. Then, for a closed subset E of [0, 1],

E is a spectral set if and only if E has no isolated points.

ξ(E ) = n + 1 otherwise.
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(4) (X , d) a compact metric space, 0 < α ≤ 1. A function f : X → C
belongs to Lipα(X ) if

pα(f ) = sup

{
| f (x)− f (y) |

d(x , y)α
: x , y ∈ X , x 6= y

}
<∞.

Lipα(X ): ‖ f ‖=‖ f ‖∞ +pα(f ), ∆(Lipα(X )) = X . Then E ⊆ X closed

is a spectral set if and onyl if E is open in X

ξ(E ) = 2 otherwise

(5) The Mirkil algebra

M = {f ∈ L2(T) : f is continuous on I = [−π/2, π/2]}

with convolution and ‖ f ‖=‖ f ‖2 + ‖ f |I‖∞. Then ∆(M) = Z and

ξ(E ) ≤ 2 for every E ⊆ Z
E = 4Z and F = 4Z + 2 are sets of synthesis, but 2Z = E ∪ F is not.

A. Atzmon, On the union of sets of synthesis and Ditkin’s condition in
regular Banach algebras. Bull. Amer. Math. Soc. 2 (1980), 317-320.
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Theorem

Let G be a locally compact abelian group. If weak spectral synthesis holds
for L1(G ), then G is compact. Thus weak spectral synthesis holds for
A(G ) only if G is discrete.

K. Parthasarathy and S. Varma, On weak spectral synthesis. Bull. Austral.
Math. Soc. 43 (1991), 279-282.

Theorem

Let G be an arbitrary locally compact group. Then weak spectral synthesis
holds for the Fourier algebra A(G ) if and only if G is discrete.

E. Kaniuth, Weak spectral synthesis in commutative Banach algebras, J.
Funct. Anal. 254 (2008), 987-1002.
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Hypergroups

Definition

Let H be a locally compact Hausdorff space. Suppose that Mb(H) admits
a multiplication ∗, under which it is an algebra, and which satisfies the
following conditions:

For x , y ∈ H, δx ∗ δy is a probability measure with compact support

(x , y)→ δx ∗ δy ,H × H → M1(H) is continuous

(x , y)→ supp(δx ∗ δy ),H × H → K(H) is continuous

There exists e ∈ H such that δx ∗ δe = δe ∗ δx for all x ∈ H

There exists an involution x → x̃ such that (δx ∗ δy )∼ = δỹ ∗ δx̃ for all
x , y ∈ H

For x , y ∈ H, e ∈ supp(δx ∗ δy ) if and only if y = x̃

Then (H, ∗) is called a locally compact hypergroup
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Double Coset Hypergroups

G locally compact group

K a compact subgroup of G , with normalized Haar measure µK
G//K = {KxK : x ∈ G}, equipped with the quotient topology

For x , y ∈ G , define a probability measure on G//K by

δKxK ∗ δKyK =

∫
K
δKxtyKdµK (t)

This mapping G//K × G//K → M1(G//K ) and the involution
KxK → Kx−1K turn G//K into a locally compact hypergroup, a double
coset hypergroup. A left Haar measure on G//K is given by∫

G//K
f (ẋ)dẋ =

∫
G

f ◦ q(x)dx ,

the image of left Haar measure on G under the quotient map
q : G → G//K , x → ẋ = KxK .
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Spherical Hypergroups

Definition

Let G be a locally compact group. A map π : Cc(G )→ Cc(G ) is called a
spherical projector if π and its adjoint π∗ : M(G )→ M(G ) satisfy the
following conditions:

π2 = π and π(f ) ≥ 0 if f ≥ 0

π(π(f )g) = π(f )π(g)

〈π(f ), g〉 = 〈f , π(g)〉∫
G π(f )(x)dx =

∫
G f (x)dx

π(π(f ) ∗ π(g)) = π(f ) ∗ π(g)

For x , y ∈ G , either suppπ∗(δx) ∩ suppπ∗(δy ) = ∅ or
suppπ∗(δx) = suppπ∗(δy )

x → Ox = suppπ∗(δx),G → K(G ) is continuous

For x , y ∈ G , x ∈ Oy ⇒ x−1 ∈ Oy−1 and Oxy = Oe ⇒ Oy = Ox−1
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Definition

The set H = {Ox : x ∈ G}, equipped with the quotient topology and the
product

δẋ ∗ δẏ = π∗(π∗(δx) ∗ π∗(δy ))

becomes a hypergroup, the spherical hypergroup associated to (G , π).

A Haar measure on H is given by∫
H

f (ẋ)dẋ =

∫
G

(f ◦ q)(x)dx .

V. Muruganandam, Fourier algebra of a hypergroup II. Spherical
hypergroups. Math. Nachr. 281 (2008), 1590-1603.

A similar notion, called average projector, appears in work of Damek and
Ricci.

Definition

A function f on G is called π-radial if π(f ) = f . H is called an
ultraspherical hypergroup if the modular function on H is π-radial.
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The Fourier space of a hypergroup

H a locally compact hypergroup with left Haar measure

C ∗(H) enveloping C ∗-algebra of L1(H)

B(H) space of all coefficient functions of representations of L1(H) (or
C ∗(H))

B(H) = C ∗(H)∗, eqipped with the dual space norm

Definition

The Fourier space A(H) of H is defined to be the closure in B(G ) of all
functions of the form f ∗ f̃ , f ∈ Cc(H) where

f̃ (x) = f (x̃), f (x ∗ y) = 〈f , δx ∗ δy 〉
f ∗ g(x) =

∫
H f (x ∗ y)g(ỹ)dy
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When is the Fourier space a Banach algebra?

Theorem

Let H be the ultraspherical hypergroup defined by (G , π) and let

Aπ(G ) = {u ∈ A(G ) : π(u) = u}.

Then

A(H) is isometrically isomorphic to the subalgebra Aπ(G ) of A(G ).

The map ẋ → ϕẋ , where ϕẋ(u) = u(ẋ) for u ∈ A(H), is a
homeomorphism from H onto ∆(A(H)).

A(H) is regular, semisimple and Tauberian.

V. Muruganandam, Fourier algebra of a hypergroup. I, J. Austral. Math.
Soc. 82 (2007), 59-83.
V. Muruganandam, Fourier algebra of a hypergroup II. Spherical
hypergroups. Math. Nachr. 281 (2008), 1590-1603.
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Theorem

Let H be the ultraspherical hypergroup associated with (G , π), p : G → H
the projection and E a closed subset of H.

If p−1(E ) is a set of weak synthesis for A(G ), then E is a set of weak
synthesis for A(H), and ξ(E ) ≤ ξ(p−1(E ))

If p−1(E ) is a Ditkin set for A(G ), then E is Ditkin set for A(H)

In particular, every closed subhypergroup of H is a set of synthesis.

Example

G = SO(d), d ≥ 3, H = SO(d)//SO(d − 1). Homeomorphism

[−1, 1]→ H, x → SO(d − 1)a(x)SO(d − 1).

For any x ∈ ]− 1, 1[, {x} is a weak spectral set with ξ(x) = bd+1
2 c, and

hence ξ(SO(d − 1)a(x)SO(d − 1)) ≥ bd+1
2 c.

M. Vogel, Spectral synthesis on algebras of orthogonal polynomial series,
Math. Z. 194 (1987), 99-116.
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Theorem

Let G be a noncompact connected semisimple Lie group with finite centre
and K a maximal compact subgroup of G . Let G = KAN denote the
Iwasawa decomposition of G , and assume that dim A = 1 and
dim(G/K ) ≥ 3. Then KaK fails to be a set of synthesis for A(G ) for
almost all a ∈ A.

C. Meaney, Spherical functions and spectral synthesis, Compos. Math. 54
(1985), 311-329.

Example

G a compact connected semisimple Lie group, Inn(G ) the group of inner
automorphisms of G . Let G̃ = G o Inn(G ) and H = G̃//Inn(G ). Then
∆(A(H)) equals the space of conjugacy classes, and Cx is not a set of
synthesis for almost all x ∈ G .

C. Meaney, On the failure of spectral synthesis for compact semisimple Lie
groups, J. Funct. Anal. 48 (1982), 43-57.

Eberhard Kaniuth (University of Paderborn, Germany)Spectral Synthesis in Fourier Algebrasof Double Coset HypergroupsGranada, May 20, 2013 19 / 27



When does (weak) spectral synthesis hold for A(G//K )?

Clearly, if K is open in G . Does the converse hold?

Theorem

Let G be a nilpotent locally compact group and K a compact subgroup of
G . Then the following are equivalent.

1 Spectral synthesis holds for A(G//K ).

2 Weak spectral synthesis holds for A(G//K ).

3 K is open in G .

Later: This theorem does not remain true for solvable G !
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Lemma

Let K and N be compact subgroups of G with N normal. If (weak)
spectral synthesis holds for A(G//K ), then (weak) spectral synthesis also
holds for A((G/N)//(KN/N)).

Lemma

Let K and L be compact subgroups of G such that K ⊆ L and let

q : G//K → G//L, KxK → LxL.

Then, for any closed subset E of G//L, ξ(E ) ≤ ξ(q−1(E )). In particular, if
(weak) spectral synthesis holds for A(G//K ), then it also holds for
A(G//L).
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Lemma

Let G be a nilpotent compact group and K a closed subgroup of G . If
weak spectral synthesis holds for A(G//K ), then K has finite index in G .

Proof

Show by induction on j that Zj ∩ K has finite index in Zj .

[Zj : (Zj ∩ K )] ≤ [Zj : (Zj ∩ Zj−1K )] · [Zj−1 : (Zj−1 ∩ K )]

have to show that [Zj : (Zj ∩ Zj−1K )] <∞
weak spectral synthesis for A(G//K ) implies weak spectral synthesis
for A(ZjK//K )

then weak spectral synthesis holds for A(ZjK//Zj−1K ) by Lemma 2

Zj−1K is normal in ZjK and ZjK/Zj−1K is abelian, since Zj/Zj−1 is
contained in the centre of G/Zj−1

it follows that ZjK/Zj−1K = Zj/(Zj ∩ Zj−1K ) is finite.
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Lemma

Let G be a nilpotent locally compact group such that G0, the connected
component of the identity, has finite index in G . Suppose that there exists
a compact subgroup K of G such that weak spectral synthesis holds for
A(G//K ). Then G is compact.

Proof

Assume first that G = G0 and prove by induction on j that Zj ⊆ K .

if Zj−1 ⊆ K , then K is normal in ZjK

since weak spectral synthesis holds for A(G//K ), it also holds for
A(ZjK//K )

since ZjK//K is a group, it folllows that ZjK/K is discrete

Zj is connected, since G is connected, hence Zj ⊆ K .
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proof continued

Now assume that [G : G0] <∞ and consider G c , the set of all compact
elements of G

G c is a compact (normal) subgroup of G (since G is nilpotent and
compactly generated)

G/G c is a Lie group and compact-free

G/G0G c is discrete, trosion-free and finite, so that G = G0G c and
G/G c is connected

by Lemma 1, weak spectral synthesis holds for
A(G//KG c) = A((G/G c)//(KG c/G c))

the first part of the proof shows that KG c = G .
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G is solvable if there exists n ∈ N such that

G ⊇ G1 = [G ,G ] ⊇ . . . ⊇ Gn = [Gn−1,G ] = {e}.

Theorem

Let G be a solvable locally comopact group such that G0 is abelian. If K is
a compact subgroup of G such that weak spectral synthesis holds for
A(G//K ), then K ⊇ G0.

Theorem

Let G be a solvable locally compact group and F a finite group of
topological automorphisms of G . If weak spectral synthesis holds for
A(G o F//F ), then G is totally disconnected.
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The Counterexample

C.F. Dunkl and D.E. Ramirez, A family of countably compact
P∗-hypergroups, Trans. Amer. Math. Soc. 202 (1975), 339-356.

Let p be a prime number. The p-adic norm ‖ · ‖p on Q is defined by
‖0‖p = 0 and ‖x‖p = p−m if x = pmy , where the nominator and the
denominator of y are both not divisible by p

Ωp = completion of Q with respect to ‖ · ‖p is a locally compact field, and
Ωp is totally disconnected since, for each x ∈ Ωp and r > 0, the closed ball

K (x , r) = {y ∈ Ωp : ‖y − x‖p ≤ r}

is also open in Ωp.

K (0, r) is an additive subgroup of Ωp

∆p = K (0, 1) is a compact subring, the ring of p-adic integrers
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K = multiplicative group of all x ∈ Ωp with ‖x‖p = 1.
K is compact and acts on ∆p through multiplication and
K · x = {y ∈ ∆p : ‖y‖p = ‖x‖p}, which is open and closed in ∆p for every
x 6= 0

Let G = ∆p o K , the semidirect product of two abelian compact groups
H = G//K is topologically isomorphic to Z+ ∪ {infty} the one-point
compactification of Z+:
n ∈ Z+ → {x ∈ ∆p : ‖x‖p = p−n} × K and ∞→ {0} × K .

Theorem

Eevery closed subset of H is a set of synthesis.

Slightly better: Every closed subset E of H is a Ditkin set, and the ideal
k(E ) has a bounded approximate identity if and only if either E is finite or
H \ E is finite.
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