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Introduction

In this talk we are concerned with the extension to topological
groups of following classical result.

Theorem (Banach - Dieudonné)

If E is a metrizable locally convex space, the precompact-open
topology on its dual E ′ coincides with the topology of
N-convergence, where N is the collection of all compact subsets of
E each of which is the set of points of a sequence converging to 0.

So far, this result had been extended to metrizable abelian groups
by several authors: Banaszczyk (1991) for metrizable vector
groups, Aussenhofer (1999) and, independently, Chasco (1998) for
metrizable abelian groups.

I’m going to report on our findings concerning the extension of the
Banach - Dieudonné Theorem to non necessarily abelian,
metrizable, precompact groups.
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If E is a metrizable locally convex space, the precompact-open
topology on its dual E ′ coincides with the topology of
N-convergence, where N is the collection of all compact subsets of
E each of which is the set of points of a sequence converging to 0.

So far, this result had been extended to metrizable abelian groups
by several authors: Banaszczyk (1991) for metrizable vector
groups, Aussenhofer (1999) and, independently, Chasco (1998) for
metrizable abelian groups.

I’m going to report on our findings concerning the extension of the
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Notation and basic facts

For a topological group G , let Ĝ be the set of equivalence classes
of irreducible unitary representations of G . The set Ĝ can be
equipped with a natural topology, the so-called Fell topology.

If G is Abelian, then Ĝ is the standard Pontryagin-van
Kampen dual group and the Fell topology on Ĝ is the usual
compact-open topology;

When G is compact, the Fell topology on Ĝ is the discrete
topology;

When Ĝ is neither Abelian nor compact, Ĝ usually is
non-Hausdorff.

In general, little is known about the properties of the Fell topology.
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When Ĝ is neither Abelian nor compact, Ĝ usually is
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compact-open topology;

When G is compact, the Fell topology on Ĝ is the discrete
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When Ĝ is neither Abelian nor compact, Ĝ usually is
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Notation and basic facts

A topological group G is precompact if it is isomorphic (as a
topological group) to a subgroup of a compact group H (we
may assume that G is dense in H).

If G is a dense subgroup of a compact group H, the
precompact-open topology on Ĝ coincides with the
compact-open topology on Ĥ. Since the dual space of a
compact group is discrete, in order to prove that a
precompact group G satisfies the Banach - Dieudonné
Theorem, it suffices to verify that Ĝ is discrete.

Thus, we look at the following question: for what precompact
groups G is Ĝ discrete?
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Dual object

Two unitary representations ρ : G → U(H1) and
ψ : G → U(H2) are equivalent if there exists a Hilbert space
isomorphism M : H1 → H2 such that ρ(x) = M−1ψ(x)M for
all x ∈ G .

The dual object of G is the set Ĝ of equivalence classes of
irreducible unitary representations of G .

If G is a compact group, all irreducible unitary representation
of G are finite-dimensional and the Peter-Weyl Theorem
determines an embedding of G into the product of unitary
groups U(n).
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Functions of positive type

If ρ : G → U(H) is a unitary representation, a complex-valued
function f on G is called a function of positive type
associated with ρ if there exists a vector v ∈ H such that
f (g) = (ρ(g)v , v) ∀ g ∈ G

We denote by P ′
ρ be the set of all functions of positive type

associated with ρ. Let Pρ be the convex cone generated by
P ′
ρ.

If ρ1 and ρ2 are equivalent representations, then P ′
ρ1 = P ′

ρ2
and Pρ1 = Pρ2 .
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Fell topology

Let G be a topological group, R a set of equivalence classes
of unitary representations of G . The Fell topology on R is
defined as follows: a typical neighborhood of [ρ] ∈ R has the
form

W (f1, · · · , fn,C , ϵ) = {[σ] ∈ R : ∃g1, · · · , gn ∈ Pσ ∀x ∈ C |fi (x)−gi (x)| < ϵ},

where f1, · · · , fn ∈ Pρ (or P ′
ρ), C is a compact subspace of G ,

and ϵ > 0.

In particular, the Fell topology is defined on the dual object Ĝ .
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Kazhdan’s property (T)

The group G has property (T) if the trivial representation 1G
is isolated in R∪ {1G} for every set R of equivalence classes
of unitary representations of G without non-zero invariant
vectors.

Let π be a unitary representation of a topological group G on
a Hilbert space H. Let F ⊆ G and ϵ > 0. A unit vector v ∈ H
is called (F , ϵ)-invariant if ∥π(g)v − v∥ < ϵ for every g ∈ F .

Proposition

A topological group G has property (T) if and only if there exists a
pair (Q, ϵ) (called a Kazhdan pair), where Q is a compact subset of
G and ϵ > 0, such that for every unitary representation ρ having a
unit (Q, ϵ)-invariant vector there exists a non-zero invariant vector
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Precompact metrizable groups

Theorem 1

If G is a precompact metrizable group, then Ĝ is discrete.

Lemma 1

Let X be compact space, D a dense subset of X , and N a compact
subset of C (X ). If g ∈ C (X ) is at the distance > ϵ from N, there
exists a finite subset F ⊆ D such that the distance from g |F to
N|F in C (F ) is > ϵ.

Lemma 2

The space Ĝ , equipped with the Fell topology, is T1.
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Precompact metrizable groups

Idea of the proof

Since G is metrizable, it follows that Ĝ = {[ρi ]) : i ∈ N}.
Therefore, taking into account that Ĝ is T1, in order to prove
that Ĝ is discrete, it suffices to show that for every point
[ρ] ∈ Ĝ there is a a neighborhood W of [ρ] which for some
integer i0 does not contain any [ρi ] with i ≥ i0.

Our neighborhood is of the form W = W (h,F , ϵ), where h is
the normalized character of [ρ] and F = {e} ∪

∪
i≥i0

Fi is a
compact subset of G , where (Fi ) is a sequence of finite sets
which converges to e and the finite set Fi ensures that the
neighborhood W does not contain [ρi ].

We derive the existence of Fi from the orthogonality of
characters. If V is a neighborhood of e on which h is close to
1, we have that

∫
V χi → 0 as i → ∞, which forces Reχi to be

close to 0 somewhere on V for i ≥ i0. This implies that h and
hi are not close to each other on V .
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Precompact metrizable groups

Idea of the proof

With a little more work we can show that h is not close to any
element of Pi and, using Lemma 1, that this is witnessed by a
certain finite subset Fi of V .

We remark that there exists a single null sequence C ⊆ G
such that for every [ρi ] ∈ Ĝ the neighborhood
W (hi |G ,C , 1/6) of [ρi ] in Ĝ is finite.

Corollary

If G is a metrizable precompact group, there is a null sequence C
that topologically generates the group and defines the discrete
topology on Ĝ .
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Discrete metrics

Let G and L be a topological group and a compact Lie group,
respectively, and let C (G , L) denote the group of all continuous
functions of G into L. If K ⊆ G , E ⊆ C (G , L) and d is an
invariant metric defined on L, then we can define a pseudometric
dL
K on E in terms of d as follows

dL
K (φ,ψ) = sup{d(φ(x), ψ(x)) : x ∈ K}

for all φ,ψ in E . Furthermore, if K separate the points in E , then
dL
K is in fact a metric on E .

In the case that L = U(n) and E = irrepn(G ), we denote by dn
K

the pseudometric associated to K ⊆ G and the unitary group U(n)
as above.

It is possible to equip irrep(G ) with a single pseudometric dK that
“includes canonically” the pseudometrics {dn

K : n ∈ N} as follows:
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Discrete metrics

dK (ϕ, ψ) = dn
K (ϕ, ψ)

if {ϕ, ψ} ⊆ irrepn(G ) for some n ∈ N and

dK (ϕ, ψ) = 1

if dim(ϕ) ̸= dim(ψ).

Furthermore, if π : irrep(G ) −→ Ĝ is the canonical quotient
mapping, then the dual object Ĝ is equipped with a pseudometric
d̂K , inherited from irrep(G ), as follows:

d̂K ([φ], [ψ]) = inf{dK (ρ, µ) : ρ ∈ [φ], µ ∈ [ψ]}.

When G is compact, dG equips Ĝ with the discrete topology. The
so-called (pre)compact open topology on Ĝ is the topology
generated by the collection of pseudometrics
{d̂K : K is a (pre)compact subset of G}.
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Discrete metrics

Theorem

If G is a metrizable precompact group, there is a null sequence C
that satisfies the following properties:

C topologically generates the group G ;

C defines the discrete topology on Ĝ ; and

for all n ∈ N and [φ] ∈ Ĝn there is δn > 0 such that if ψ ∈ Ĝ
and dC ([ϕ], [ψ]) < δn then [ϕ] = [ψ].

As a consequence, the metric dC defines the discrete topology
on Ĝ and, furthermore, it is equivalent to the {0, 1}-valued
discrete metric on the subspaces Ĝn.
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Non-metrizable precompact groups

If G is a dense subgroup of a group H, the natural mapping
Ĥ → Ĝ is a bijection but in general need not be a
homeomorphism.

Following Comfort, Raczkowski and Trigos-Arrieta, we say
that G determines H if Ĝ is discrete (equivalently, if the
natural bijection Ĥ → Ĝ is a homeomorhism). A compact
group H is determined if every dense subgroup of G
determines G .

In the Abelian case, this question has been clarified in the
work of several authors. If G is an Abelian topological group,
Ĝ can be viewed as the group of all continuous
homomorphisms G → U(1) equipped with the compact-open
topology, where U(1) = {z ∈ C : |z | = 1}.
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group H is determined if every dense subgroup of G
determines G .

In the Abelian case, this question has been clarified in the
work of several authors. If G is an Abelian topological group,
Ĝ can be viewed as the group of all continuous
homomorphisms G → U(1) equipped with the compact-open
topology, where U(1) = {z ∈ C : |z | = 1}.
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Non-metrizable precompact groups

It follows from the Aussenhofer - Chasco result quoted above that
every metrizable Abelian group G is determined.

Comfort, Raczkowski and Trigos-Arrieta noted that the
Aussenhofer - Chasco theorem fails for non-metrizable Abelian
groups G even when G is compact. More precisely, they proved
that every non-metrizable compact Abelian group G of weight ≥ c
contains a dense subgroup that does not determine G . Hence,
under the assumption of the continuum hypothesis, every
determined compact Abelian group G is metrizable.

Subsequently, it was shown that the result also holds without
assuming the continuum hypothesis (H., Macario, and
Trigos-Arrieta, 2008) and (Dikranjan, Shakhmatov, 2009).
Therefore, a compact abelian group is determined iff it is
metrizable.

Our goal in this section is to extend this result to compact groups
that are not necessarily Abelian.
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Non-metrizable precompact groups

Theorem 2

If G is a countable precompact non-metrizable group, then 1G is
not an isolated point in Ĝ .

Theorem 3

If H is a non-metrizable compact group, then H has a dense
subgroup G such that Ĝ is not discrete.
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Idea of the proof

Let Ĝn ⊆ Ĝ be the set of classes of n-dimensional irreducible
unitary representations and let w(X ) denote the weight of a
topological space X .

Proposition

Suppose that there exists an integer n such that w(K ) < |Ĝn| for
every compact subset K of G . Then 1G is not an isolated point in
Ĝ .

Since countable compact groups are metrizable, Theorem 2
follows from this Proposition.

As for the proof of Theorem 3, it is enough to replace G by an
appropriate quotient of weight ω1.
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Non-metrizable precompact groups

Theorem 4

Let H be a compact group. The following conditions are
equivalent:

1 H is metrizable.

2 If G is an arbitrary dense subgroup of H, there is a null
sequence C ⊆ G that satisfies the following properties:

C topologically generates the group G ;
C defines the discrete topology on Ĝ ; and
for all n ∈ N and [φ] ∈ Ĝn there is δn > 0 such that if ψ ∈ Ĝ
and dC ([ϕ], [ψ]) < δn then [ϕ] = [ψ].

As a consequence, the metric dC defines the discrete topology
on Ĝ and, furthermore, it is equivalent to the {0, 1}-valued
discrete metric on the subspaces Ĝn.
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Property (T)

We have seen that for every metrizable precompact group G the
dual Ĝ is discrete. In contrast, we have the following result.

Theorem 5

If G is an Abelian, countable precompact group, then G does not
have property (T).

The result is no longer true if “Abelian” is dropped. Indeed,
certain compact Lie groups admit dense countable subgroups
which have property (T) as discrete groups and hence also as
precompact topological groups.

Question

Does there exist a non-compact precompact Abelian group with
property (T)?
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