Wavelet coorbit spaces over general dilation groups

Hartmut Führ fuehr@matha.rwth-aachen.de

AHA Granada, 2013

Lehrstuhl A für Mathematik, RNTH

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

▶ ▲ ≧ ▶ ▲ ≧ ▶ ≧ つへで
AHA Granada, 2013 1 / 31

Introduction: Nice wavelets in dimension one

イロト イポト イヨト イヨト

Introduction: Nice wavelets in dimension one 1

Square-integrability over general dilation groups 2

Э

< 口 > < 同

1 Introduction: Nice wavelets in dimension one

2 Square-integrability over general dilation groups

3 Outline of coorbit theory: Analyzing vectors and frame atoms

< 口 > < 同

1 Introduction: Nice wavelets in dimension one

- 2 Square-integrability over general dilation groups
- 3 Outline of coorbit theory: Analyzing vectors and frame atoms
- 4 Wavelet coorbit spaces over general dilation groups

∃ ► < ∃ ►</p>

1 Introduction: Nice wavelets in dimension one

- 2 Square-integrability over general dilation groups
- 3 Outline of coorbit theory: Analyzing vectors and frame atoms
- Wavelet coorbit spaces over general dilation groups
- 5 Vanishing moment conditions and coorbit spaces

Overview

1 Introduction: Nice wavelets in dimension one

- 2 Square-integrability over general dilation groups
- 3 Outline of coorbit theory: Analyzing vectors and frame atoms
- 4 Wavelet coorbit spaces over general dilation groups
- 5 Vanishing moment conditions and coorbit spaces

프 - - 프 -

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

 $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$ fixed

(日) (同) (三) (三)

Wavelet coorbit spaces

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

 ${\, \bullet \,}$ For sufficiently nice wavelets $\psi,$ the wavelet expansion

$$f = \sum_{j,k\in\mathbb{Z}} \langle f,\psi_{j,k}
angle \psi_{j,k}$$

converges in the norm of a homogeneous Besov space $\dot{B}^\alpha_{p,q},$ as soon as $f\in \dot{B}^\alpha_{p,q}.$

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

 ${\, {\circ}\, }$ For sufficiently nice wavelets $\psi,$ the wavelet expansion

$$f = \sum_{j,k\in\mathbb{Z}} \langle f,\psi_{j,k}
angle \psi_{j,k}$$

converges in the norm of a homogeneous Besov space $\dot{B}^{\alpha}_{p,q}$, as soon as $f \in \dot{B}^{\alpha}_{p,q}$. Furthermore, the property $f \in \dot{B}^{\alpha}_{p,q}$ is equivalent to weighted summability of the coefficients. (Frazier/Jawerth)

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

 ${\, \bullet \,}$ For sufficiently nice wavelets $\psi,$ the wavelet expansion

$$f = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}$$

converges in the norm of a homogeneous Besov space $\dot{B}^{\alpha}_{p,q}$, as soon as $f \in \dot{B}^{\alpha}_{p,q}$. Furthermore, the property $f \in \dot{B}^{\alpha}_{p,q}$ is equivalent to weighted summability of the coefficients. (Frazier/Jawerth)

• There exist arbitrarily nice compactly supported wavelets. (Daubechies)

Desirable properties of wavelets

©RWTH २००

Э

H. Führ (RWTH Aachen)	H. Führ	(RWTH	Aachen)
-----------------------	---------	-------	---------

イロト イポト イヨト イヨト

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

8 RWTH

ヨト・イヨト

< 口 > < 同 >

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

(a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n}$;

ORWTH

ヨト・イヨト

< 口 > < 同 >

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \le C(1+|x|)^{-n}$;
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \leq j \leq m$;

ORWTH

ヨト・イヨト

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n};$
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \le j \le m$;
- (c) Vanishing moments, e.g.

$$orall 0 \leq j < k$$
 : $\int_{\mathbb{R}} x^j \psi(x) dx = 0$

with absolute convergence of the integral

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n};$
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \le j \le m$;
- (c) Vanishing moments, e.g.

$$orall 0 \leq j < k$$
 : $\int_{\mathbb{R}} x^j \psi(x) dx = 0$

with absolute convergence of the integral

Shortly: Nice wavelets have good time-frequency localization.

		(ORWTH			
	4	ロト 《西 》 《 토 》 《 토 》	$\mathcal{O} \land \mathcal{O}$			
H. Führ (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	5 / 31			

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n};$
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \le j \le m$;
- (c) Vanishing moments, e.g.

$$\forall 0 \leq j < k : \int_{\mathbb{R}} x^j \psi(x) dx = 0$$

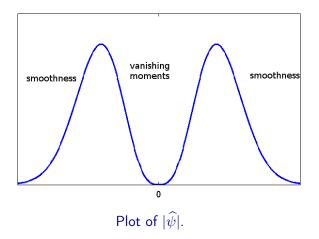
with absolute convergence of the integral

Shortly: Nice wavelets have good time-frequency localization. (Note: Frequency-side localization is understood away from zero.)

H. Führ	(RWTH	Aachen)	
---------	-------	---------	--

Cartoon: Fourier side decay of wavelets

H. Führ (R



		< □	ր ⊳	4	= ▶		= >	=	4)	Q (*
RWTH Aachen)	Wavelet coorbit spaces		AH	A	Gran	ada	a, 2013	3	6 /	31

Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $|\langle \psi, \psi_{j,k} \rangle|$:

$$|\langle \psi, \psi_{j,k} \rangle| \leq \left\| \partial^n \left(\widehat{\psi} \cdot \overline{\widehat{\psi}(2^{-j} \cdot)} \right) \right\|_1 2^{j/2} (1 + 2^j |k|)^{-n}$$

・ヨ・・ヨ・ ヨー うへで

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

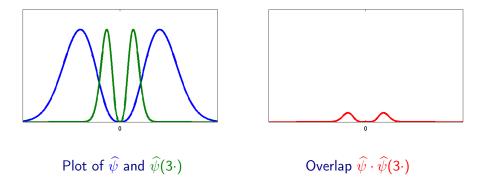
AHA Granada, 2013 7 / 31

< 口 > < 同 >

Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $|\langle \psi, \psi_{j,k} \rangle|$:

$$|\langle \psi, \psi_{j,k} \rangle| \leq \left\| \partial^n \left(\widehat{\psi} \cdot \overline{\widehat{\psi}(2^{-j} \cdot)} \right) \right\|_1 2^{j/2} (1 + 2^j |k|)^{-n}$$

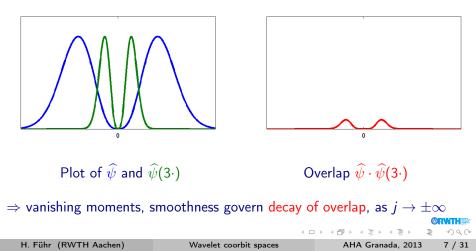


RWTH

Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $|\langle \psi, \psi_{j,k} \rangle|$:

$$|\langle \psi, \psi_{j,k} \rangle| \leq \left\| \partial^n \left(\widehat{\psi} \cdot \overline{\widehat{\psi}(2^{-j} \cdot)} \right) \right\|_1 2^{j/2} (1 + 2^j |k|)^{-n}$$



Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group.

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

Strategy

• Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of wavelet coefficient decay, associated smoothness spaces

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of wavelet coefficient decay, associated smoothness spaces
 - Useful notions of nice wavelets: Sets A_w (analyzing vectors) and B_w (frame atoms).

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of wavelet coefficient decay, associated smoothness spaces
 - Useful notions of nice wavelets: Sets A_w (analyzing vectors) and B_w (frame atoms).
- Additional task: Identify easily accessible subsets of the abstractly defined sets A_w and B_w .

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. This was previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of wavelet coefficient decay, associated smoothness spaces
 - Useful notions of nice wavelets: Sets A_w (analyzing vectors) and B_w (frame atoms).
- Additional task: Identify easily accessible subsets of the abstractly defined sets \mathcal{A}_w and \mathcal{B}_w . (\rightsquigarrow bandlimited Schwartz functions, vanishing moment criteria)

Overview

1) Introduction: Nice wavelets in dimension one

2 Square-integrability over general dilation groups

3 Outline of coorbit theory: Analyzing vectors and frame atoms

4 Wavelet coorbit spaces over general dilation groups

5) Vanishing moment conditions and coorbit spaces

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

AHA Granada, 2013 9 / 31

ヨトィヨト

H. Führ (RWTH Aachen)

• $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations. As a set, $G = \mathbb{R}^n \times H$, with group law

$$(x,h)(y,g) = (x+hy,hg)$$
.

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- G = ℝ^d ⋊ H, the affine group generated by H and translations. As a set, G = ℝⁿ × H, with group law

$$(x,h)(y,g) = (x + hy, hg) .$$

• $L^2(G)$ denotes L^2 -space w.r.t. left Haar measure

b 4 = b

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- G = ℝ^d ⋊ H, the affine group generated by H and translations. As a set, G = ℝⁿ × H, with group law

$$(x,h)(y,g) = (x + hy, hg) .$$

- $L^2(G)$ denotes L^2 -space w.r.t. left Haar measure
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations

E 6 4 E 6

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- G = ℝ^d ⋊ H, the affine group generated by H and translations. As a set, G = ℝⁿ × H, with group law

$$(x,h)(y,g) = (x + hy, hg) .$$

- $L^2(G)$ denotes L^2 -space w.r.t. left Haar measure
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations
- Quasi-regular representation of G on $L^2(\mathbb{R}^d)$, acting via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2}f(h^{-1}(y-x))$$
.

ヨトィヨト

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- G = ℝ^d ⋊ H, the affine group generated by H and translations. As a set, G = ℝⁿ × H, with group law

$$(x,h)(y,g) = (x + hy, hg) .$$

- $L^2(G)$ denotes L^2 -space w.r.t. left Haar measure
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations
- Quasi-regular representation of G on $L^2(\mathbb{R}^d)$, acting via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2}f(h^{-1}(y-x))$$
.

• Continuous wavelet transform: Given suitable $\psi \in L^2(\mathbb{R}^d)$ and $f \in L^2(\mathbb{R}^d)$, let

$$\mathcal{W}_{\psi}f: \mathcal{G}
ightarrow \mathbb{C} \ , \ \mathcal{W}_{\psi}f(x,h) = \langle f, \pi(x,h)\psi
angle$$

H. Führ (RWTH Aachen)

ヨトィヨト

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- G = ℝ^d ⋊ H, the affine group generated by H and translations. As a set, G = ℝⁿ × H, with group law

$$(x,h)(y,g) = (x + hy, hg) .$$

- $L^2(G)$ denotes L^2 -space w.r.t. left Haar measure
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations
- Quasi-regular representation of G on $L^2(\mathbb{R}^d)$, acting via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2} f(h^{-1}(y-x))$$
.

• Continuous wavelet transform: Given suitable $\psi \in L^2(\mathbb{R}^d)$ and $f \in L^2(\mathbb{R}^d)$, let

$$\mathcal{W}_{\psi}f: G \to \mathbb{C} \ , \ \mathcal{W}_{\psi}f(x,h) = \langle f, \pi(x,h)\psi \rangle$$

• Dual action of H on \mathbb{R}^d , defined by

$$H \times \mathbb{R}^d \ni (h,\xi) \mapsto h^T \xi .$$

10 / 31

ヨト・イヨト 990 < □ > < 🗗 11 / 31 Wavelet coorbit spaces AHA Granada, 2013

H. Führ (RWTH Aachen)

Definition

Definition

ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.

Definition

- ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.
- π is called discrete series representation if π is irreducible and has an admissible vector.

Definition

- ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.
- π is called discrete series representation if π is irreducible and has an admissible vector.

Wavelet inversion

If ψ is admissible, we obtain the wavelet inversion formula

$$f = \int_{\mathcal{G}} \mathcal{W}_{\psi} f(x,h) \ \pi(x,h) \psi \ d(x,h) \ .$$

with weak-sense convergence.

H. Führ (RWTH Aachen)

(日) (同) (三) (三)

Definition

- ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.
- π is called discrete series representation if π is irreducible and has an admissible vector.

Wavelet inversion

If ψ is admissible, we obtain the wavelet inversion formula

$$f = \int_{\mathcal{G}} \mathcal{W}_{\psi} f(x,h) \ \pi(x,h) \psi \ d(x,h) \ .$$

with weak-sense convergence. Furthermore: Right convolution with $W_{\psi}\psi$ is a reproducing kernel for the image space (important for frames and discretization).

		< ㅁ > < 쿱 > < 흔 > < 흔 >	$\equiv \mathcal{O} \land \mathcal{O}$		
H. Führ (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	11 / 31		

ヨト・イヨト 990 < 口 > < 同 > Э Wavelet coorbit spaces AHA Granada, 2013 12 / 31

H. Führ (RWTH Aachen)

Theorem (HF, 2010)

The quasiregular representation π is a discrete series representation iff there exists a single open orbit \mathcal{O} under the dual action, with the additional property that, for some (equivalently: any) $\xi_0 \in \mathcal{O}$, the associated dual stabilizer

$$H_{\xi_0} = \{h \in H ; h^T \xi_0 = \xi_0\} \subset H$$

is compact.

- E - b

Theorem (HF, 2010)

The quasiregular representation π is a discrete series representation iff there exists a single open orbit \mathcal{O} under the dual action, with the additional property that, for some (equivalently: any) $\xi_0 \in \mathcal{O}$, the associated dual stabilizer

$$H_{\xi_0} = \{h \in H ; h^T \xi_0 = \xi_0\} \subset H$$

is compact.

Remark

H. Eüh

 \mathcal{O} (if it exists) has full measure.

			ORWTH
			$\equiv \mathcal{O} \land \mathcal{O}$
ır (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	12 / 31

Theorem (HF, 2010)

The quasiregular representation π is a discrete series representation iff there exists a single open orbit \mathcal{O} under the dual action, with the additional property that, for some (equivalently: any) $\xi_0 \in \mathcal{O}$, the associated dual stabilizer

$$H_{\xi_0} = \{h \in H ; h^T \xi_0 = \xi_0\} \subset H$$

is compact.

Remark

 \mathcal{O} (if it exists) has full measure. Of particular interest will be the complement \mathcal{O}^c , the blind spot of the wavelet transform.

			ORWTH
		イロト イロト イヨト イヨト	$\equiv \mathcal{O} \land \mathcal{O}$
H. Führ (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	12 / 31

Overview

Introduction: Nice wavelets in dimension one

2 Square-integrability over general dilation groups

3 Outline of coorbit theory: Analyzing vectors and frame atoms

4 Wavelet coorbit spaces over general dilation groups

5) Vanishing moment conditions and coorbit spaces

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

AHA Granada, 2013 13 / 31

A E F A E F

			ORWTH
	$- + \square \rightarrow$	$< \blacksquare \succ < \Xi \succ < \Xi \succ =$	$\equiv \mathcal{O} \land \mathcal{O}$
velet coorbit spaces		AHA Granada, 2013	14 / 31

H. Führ (RWTH Aachen)

Wav

Informal definition of coorbit spaces

H. Führ	(RWTH	Aachen)
---------	-------	---------

2

< 112 ≥

Informal definition of coorbit spaces

• Fix a Banach space Y of functions on G (solid, two-sided invariant).

H. Führ	(RWTH	Aachen)
---------	-------	---------

2

Informal definition of coorbit spaces

• Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.

2

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

Informal definition of coorbit spaces

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

 $\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \ .$

Informal definition of coorbit spaces

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

• Define CoY as completion of $\{g \in \mathrm{L}^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

- Define CoY as completion of $\{g \in \mathrm{L}^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}.$
- If π is irreducible, CoY is independent of the choice of ψ ≠ 0, as long as W_ψψ ∈ L¹_{v₀}(G). Here v₀ a (continuous, submultiplicative) control weight depending on Y.

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

- Define CoY as completion of $\{g\in \mathrm{L}^2(\mathbb{R}^d): \|g\|_{CoY}<\infty\}.$
- If π is irreducible, CoY is independent of the choice of ψ ≠ 0, as long as W_ψψ ∈ L¹_{v₀}(G). Here v₀ a (continuous, submultiplicative) control weight depending on Y. We define A_{v₀} as the set of all such ψ.

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

- Define CoY as completion of $\{g \in \mathrm{L}^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}.$
- If π is irreducible, CoY is independent of the choice of $\psi \neq 0$, as long as $\mathcal{W}_{\psi}\psi \in L^{1}_{\nu_{0}}(G)$. Here ν_{0} a (continuous, submultiplicative) control weight depending on Y. We define $\mathcal{A}_{\nu_{0}}$ as the set of all such ψ .
- Key idea of coorbit theory: Use properties of the reproducing kernel $\mathcal{W}_{\psi}\psi$, and the fact that Y is a Banach convolution module over the algebra $L^1_{vo}(G)$.

Discretization

ORWTH

							And a second sec
		$ = \rightarrow $	< 🗗 >	$<\Xi > =$	≣ >	Ξ	$\mathcal{O} \land \mathcal{O}$
)	Wavelet coorbit spaces		AHA	Granada	, 2013	15	5 / 31

H. Führ (R	WTH Aachen
------------	------------

Discretization

H. Führ (RWTH Aacher

• Let Y be a Banach function space on G with well-defined CoY

ORWITH

							And a state of the
		• •	< 🗗 >	${}^{\scriptscriptstyle (4)} \equiv {}^{\scriptscriptstyle (4)}$	$<\Xi >$	≣ √.	$) \land (\bigcirc $
en)	Wavelet coorbit spaces		AHA	Granad	la, 2013	15	/ 31

Discretization

- Let Y be a Banach function space on G with well-defined CoY
- Pick a suitable frame atom $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

ORWTH

Discretization

- Let Y be a Banach function space on G with well-defined CoY
- Pick a suitable frame atom $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- For all suitably dense uniformly discrete subsets $\Gamma \subset G$, the family $(\pi(\gamma)\psi)_{\gamma\in\Gamma}$ is a Banach frame of CoY. There exists a discrete coefficient norm $\|\cdot\|_{Y_d}$ such that

$$\forall f \in \mathrm{L}^{2}(\mathbb{R}^{d}) \; : \; \|f\|_{\mathcal{C}oY} \asymp \|\mathcal{W}_{\psi}f|_{\mathsf{\Gamma}}\|_{Y_{d}}$$

Discretization

- Let Y be a Banach function space on G with well-defined CoY
- Pick a suitable frame atom $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- For all suitably dense uniformly discrete subsets Γ ⊂ G, the family (π(γ)ψ)_{γ∈Γ} is a Banach frame of CoY. There exists a discrete coefficient norm || · ||_{Y_d} such that

$$\forall f \in \mathrm{L}^2(\mathbb{R}^d) \; : \; \|f\|_{\mathcal{C}oY} \asymp \|\mathcal{W}_{\psi}f|_{\mathsf{\Gamma}}\|_{Y_d}$$

• Moreover, for all $f \in CoY$, there exist coefficients $(c_\gamma)_{\gamma \in \Gamma}$ such that

$$f = \sum_{\gamma \in \Gamma} c_{\gamma} \pi(\gamma) \psi \ , \ \|f\|_{CoY} symp \|(c_{\gamma})_{\gamma \in \Gamma}\|_{Y_d}$$

RWTH

Examples, comments

ORWTH 990

E

H. Führ	(RWTH Aachen)
---------	---------------

<ロト < 団ト < 巨ト < 巨ト</p>

Examples, comments

• For example, for $Y = L^{p}(G)$,

 $\|f\|_{CoY} \asymp \|\mathcal{W}_{\psi}f|_{\Gamma}\|_{\ell^p}$.

ि ति भागम र २ २ २

Э

→ Ξ > < Ξ >

< 口 > < 同 >

Examples, comments

• For example, for $Y = L^{p}(G)$,

$$\|f\|_{CoY} \asymp \|\mathcal{W}_{\psi}f|_{\Gamma}\|_{\ell^p}$$
 .

• Criterion for frame atoms: $\mathcal{W}_{\psi}\psi\in \mathcal{W}^{R}(\mathcal{C}^{0},\mathrm{L}^{1}_{v_{0}})$, i.e., the function

$$G
i (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{v_0}(G)$, for some compact neighborhood $U \subset G$ of the identity.

► < Ξ ►</p>

Examples, comments

• For example, for $Y = L^{p}(G)$,

$$\|f\|_{CoY} \asymp \|\mathcal{W}_{\psi}f|_{\Gamma}\|_{\ell^p}$$
 .

• Criterion for frame atoms: $\mathcal{W}_{\psi}\psi\in \mathcal{W}^{R}(\mathcal{C}^{0},\mathrm{L}^{1}_{v_{0}})$, i.e., the function

$$G
i (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{v_0}(G)$, for some compact neighborhood $U \subset G$ of the identity. Here v_0 is the control weight from above.

Examples, comments

• For example, for $Y = L^{p}(G)$,

$$\|f\|_{CoY} \asymp \|\mathcal{W}_{\psi}f|_{\Gamma}\|_{\ell^p}$$
 .

• Criterion for frame atoms: $\mathcal{W}_{\psi}\psi\in \mathcal{W}^{R}(\mathcal{C}^{0},\mathrm{L}^{1}_{v_{0}})$, i.e., the function

$$G
i (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

- is in $L^1_{v_0}(G)$, for some compact neighborhood $U \subset G$ of the identity. Here v_0 is the control weight from above.
- We let \mathcal{B}_{v_0} denote the set of all frame atoms associated to v_0 .

			ORWTH
			$\equiv \mathcal{O} \land \mathcal{O}$
H. Führ (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	16 / 31

Examples, comments

• For example, for $Y = L^{p}(G)$,

$$\|f\|_{CoY} \asymp \|\mathcal{W}_{\psi}f|_{\Gamma}\|_{\ell^p}$$
 .

• Criterion for frame atoms: $\mathcal{W}_{\psi}\psi\in W^{R}(C^{0},\mathrm{L}^{1}_{v_{0}})$, i.e., the function

$$G
i (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

- is in $L^1_{v_0}(G)$, for some compact neighborhood $U \subset G$ of the identity. Here v_0 is the control weight from above.
- We let \mathcal{B}_{v_0} denote the set of all frame atoms associated to v_0 .
- Note: One suitably chosen weight works for a whole scale of spaces \rightsquigarrow simultaneous Banach frames

DRWTH

Overview

1) Introduction: Nice wavelets in dimension one

- 2 Square-integrability over general dilation groups
- 3 Outline of coorbit theory: Analyzing vectors and frame atoms
- Wavelet coorbit spaces over general dilation groups
 - Vanishing moment conditions and coorbit spaces

H. Führ	(RWTH	Aachen)
---------	-------	---------

Wavelet coorbit spaces

ヨトィヨト

17 / 31

AHA Granada, 2013

Further assumptions and notations From now on:

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

Further assumptions and notations From now on:

• π is assumed to be in the discrete series.

From now on:

- π is assumed to be in the discrete series.
- The associated dual orbit is denoted by $\mathcal{O} = H^T \xi$, its complement by \mathcal{O}^c .

b 4 3 b

From now on:

- π is assumed to be in the discrete series.
- The associated dual orbit is denoted by $\mathcal{O} = H^T \xi$, its complement by \mathcal{O}^c . \mathcal{O}^c is a closed set of measure zero.

b 4 = b

From now on:

- π is assumed to be in the discrete series.
- The associated dual orbit is denoted by $\mathcal{O} = H^T \xi$, its complement by \mathcal{O}^c . \mathcal{O}^c is a closed set of measure zero.
- $\mathcal{F}^{-1}(C_c^{\infty}(\mathcal{O}))$ denotes the set of bandlimited Schwartz functions with Fourier support contained in \mathcal{O} .

b 4 = b

From now on:

- π is assumed to be in the discrete series.
- The associated dual orbit is denoted by $\mathcal{O} = H^T \xi$, its complement by \mathcal{O}^c . \mathcal{O}^c is a closed set of measure zero.
- $\mathcal{F}^{-1}(C_c^{\infty}(\mathcal{O}))$ denotes the set of bandlimited Schwartz functions with Fourier support contained in \mathcal{O} .
- ${\scriptstyle \bullet }$ We fix a weight $v: {\it G} \rightarrow \mathbb{R}^+$ is of the form

$$v(x,h) = (1 + |x| + ||h||)^{s}w(h)$$

with $s \ge 0$, a matrix norm $\|\cdot\|$, and $w: H \to \mathbb{R}^+$ an arbitrary weight.

From now on:

- π is assumed to be in the discrete series.
- The associated dual orbit is denoted by $\mathcal{O} = H^T \xi$, its complement by \mathcal{O}^c . \mathcal{O}^c is a closed set of measure zero.
- $\mathcal{F}^{-1}(C_c^{\infty}(\mathcal{O}))$ denotes the set of bandlimited Schwartz functions with Fourier support contained in \mathcal{O} .
- ${\scriptstyle \bullet }$ We fix a weight $v: {\it G} \rightarrow \mathbb{R}^+$ is of the form

$$v(x,h) = (1 + |x| + ||h||)^{s}w(h)$$

with $s \ge 0$, a matrix norm $\|\cdot\|$, and $w: H \to \mathbb{R}^+$ an arbitrary weight. • For $1 \le p, q \le \infty$, let

$$L^{p,q}_{v}(G) = \left\{ F: G \to \mathbb{C} : \int_{H} \left(\int_{\mathbb{R}^d} |F(x,h)|^p v(x,h)^p dx \right)^{q/p} \frac{dh}{|\det(h)|} < \infty \right\}$$

with obvious modifications for $p = \infty$ and/or $q = \infty$.

H. Führ (RWTH Aachen)

4 日 ・ (三) ・ (三) ・ 三 の へ (AHA Granada, 2013 18 / 31

From now on:

- π is assumed to be in the discrete series.
- The associated dual orbit is denoted by $\mathcal{O} = H^T \xi$, its complement by \mathcal{O}^c . \mathcal{O}^c is a closed set of measure zero.
- $\mathcal{F}^{-1}(C_c^{\infty}(\mathcal{O}))$ denotes the set of bandlimited Schwartz functions with Fourier support contained in \mathcal{O} .
- ${\scriptstyle \bullet }$ We fix a weight $v: {\it G} \rightarrow \mathbb{R}^+$ is of the form

$$v(x,h) = (1 + |x| + ||h||)^{s}w(h)$$

with $s \ge 0$, a matrix norm $\|\cdot\|$, and $w: H \to \mathbb{R}^+$ an arbitrary weight. • For $1 \le p, q \le \infty$, let

$$L^{p,q}_{v}(G) = \left\{ F: G \to \mathbb{C} : \int_{H} \left(\int_{\mathbb{R}^d} |F(x,h)|^p v(x,h)^p dx \right)^{q/p} \frac{dh}{|\det(h)|} < \infty \right\}$$

with obvious modifications for $p = \infty$ and/or $q = \infty$.

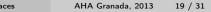
• Note: There is a control weight v_0 for $L_v^{p,q}(G)$ of the same type as v_0

18 / 31

Wavelet coorbit spaces

Theorem (Kaniuth/Taylor '96,HF '12)

The quasiregular representation is v₀-integrable: If $\psi \in \mathcal{F}^{-1}C^{\infty}_{c}(\mathcal{O})$, then $\mathcal{W}_{\psi}\psi \in L^{1}_{v_{0}}(G)$.



< <p>I > < </p>

ヨト・イヨト

Wavelet coorbit spaces

Theorem (Kaniuth/Taylor '96,HF '12)

The quasiregular representation is v₀-integrable: If $\psi \in \mathcal{F}^{-1}C^{\infty}_{c}(\mathcal{O})$, then $\mathcal{W}_{\psi}\psi \in L^{1}_{v_{0}}(G)$.

Corollary $\mathcal{F}^{-1}C^{\infty}_{c}(\mathcal{O}) \subset Co(L^{p,q}_{v}(G)).$

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

Theorem (Kaniuth/Taylor '96,HF '12)

The quasiregular representation is v₀-integrable: If $\psi \in \mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})$, then $\mathcal{W}_{\psi}\psi \in L^1_{v_0}(G)$.

Corollary $\mathcal{F}^{-1}C^\infty_c(\mathcal{O})\subset \mathit{Co}(L^{p,q}_v(G)).$

Theorem (HF, '12)

For all control weights v_0 satisfying $v_0(x, h) \le (1 + |x|)^t w_0(h)$, with suitable t > 0 and continuous weights w_0 on H, we have

$$\mathcal{F}^{-1}\mathcal{C}^\infty_c(\mathcal{O})\subset \mathcal{B}_{v_0}$$
 .

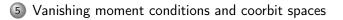
H. Führ (RWTH Aachen)

(日) (同) (三) (三)

Overview

1 Introduction: Nice wavelets in dimension one

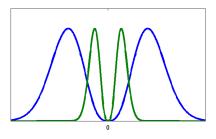
- 2 Square-integrability over general dilation groups
- 3 Outline of coorbit theory: Analyzing vectors and frame atoms
- 4 Wavelet coorbit spaces over general dilation groups

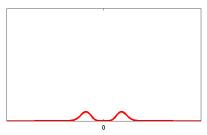


H. Führ	(RWTH	Aachen)
---------	-------	---------

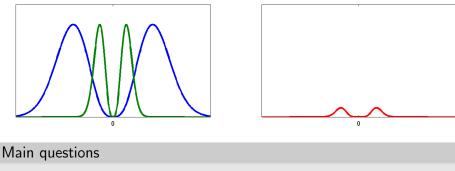
Wavelet coorbit spaces

Recall: Wavelet coefficient decay is related to overlap on the Fourier transform side



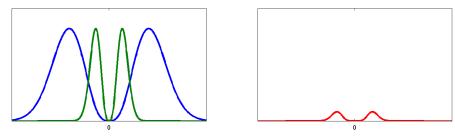


Recall: Wavelet coefficient decay is related to overlap on the Fourier transform side



			UNITED STORE
	4	ロト 《圖》 《문》 《문》	$\equiv \mathcal{O} \land \mathcal{O}$
H. Führ (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	21 / 31

Recall: Wavelet coefficient decay is related to overlap on the Fourier transform side

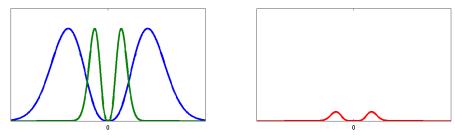


Main questions

• Which vanishing moment conditions do we need to impose?

		+ + + + + + + + + + + + + + + + + + +	
H. Führ (RWTH Aachen)	Wavelet coorbit spaces	AHA Granada, 2013	21 / 31

Recall: Wavelet coefficient decay is related to overlap on the Fourier transform side



Main questions

• Which vanishing moment conditions do we need to impose? (Answer: $\hat{\psi}$ needs to vanish on \mathcal{O}^c)

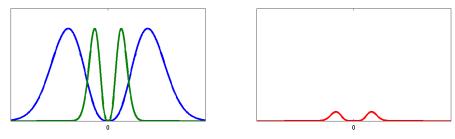
spaces

AHA Granada, 2013

21 / 31

H. Führ (RWTH Aachen)	Wavelet coorbit

Recall: Wavelet coefficient decay is related to overlap on the Fourier transform side



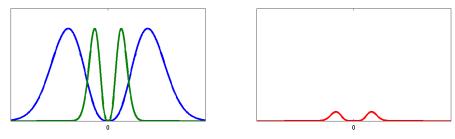
Main questions

- Which vanishing moment conditions do we need to impose? (Answer: $\hat{\psi}$ needs to vanish on \mathcal{O}^c)
- How do we control overlap from vanishing moment conditions and smoothness?

H. Führ (RWTH Aachen)

Wavelet coorbit spaces

Recall: Wavelet coefficient decay is related to overlap on the Fourier transform side



Main questions

- Which vanishing moment conditions do we need to impose? (Answer: $\hat{\psi}$ needs to vanish on \mathcal{O}^{c})
- How do we control overlap from vanishing moment conditions and smoothness? (Answer: Fourier envelopes, see next slide)

H. Führ (RWTH Aachen)

I > <
 I >
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Controlling overlap: Fourier envelopes

Definition $|\cdot|: \mathbb{R}^d \to \mathbb{R}^+_0$ denotes the euclidean norm. For $r, m \ge 0$ and $f: \mathbb{R}^d \to \mathbb{C}$, let $|f|_{r,m} = \sup_{x \in \mathbb{R}^d, |\alpha| \le r} (1+|x|)^m |\partial^{\alpha} f(x)|$.

Controlling overlap: Fourier envelopes

Definition

 $|\cdot|: \mathbb{R}^d \to \mathbb{R}^+_0$ denotes the euclidean norm. For $r, m \ge 0$ and $f: \mathbb{R}^d \to \mathbb{C}$, let

$$|f|_{r,m} = \sup_{x \in \mathbb{R}^d, |lpha| \leq r} (1+|x|)^m |\partial^{lpha} f(x)| \; .$$

Definition (Fourier envelope function)

Let $\mathcal{O} \subset \mathbb{R}^d$ denote the dual orbit. Given $\xi \in \mathcal{O}$, let $\operatorname{dist}(\xi, \mathcal{O}^c)$ denote the euclidean distance of ξ to \mathcal{O}^c . Let

$$A(\xi) = \min\left(\frac{\operatorname{dist}(\xi, \mathcal{O}^c)}{1 + \sqrt{|\xi|^2 - \operatorname{dist}(\xi, \mathcal{O}^c)^2}}, \frac{1}{1 + |\xi|}\right)$$

ORWTH

(日) (同) (三) (三)

Vanishing moment conditions and wavelet coefficient decay

Definition

Let $r \in \mathbb{N}$ be given. $f \in L^1(\mathbb{R}^d)$ has vanishing moments in \mathcal{O}^c of order r if all distributional derivatives $\partial^{\alpha} \widehat{f}$ with $|\alpha| < r$ are continuous functions, identically vanishing on \mathcal{O}^c .

Vanishing moment conditions and wavelet coefficient decay

Definition

Let $r \in \mathbb{N}$ be given. $f \in L^1(\mathbb{R}^d)$ has vanishing moments in \mathcal{O}^c of order r if all distributional derivatives $\partial^{\alpha} \widehat{f}$ with $|\alpha| < r$ are continuous functions, identically vanishing on \mathcal{O}^c .

Lemma

Let α be a multiindex with $|\alpha| < r$. Assume that $f, \psi \in L^1(\mathbb{R}^d)$ have vanishing moments of order r in \mathcal{O}^c , and fulfill $|\widehat{f}|_{r,r-|\alpha|} < \infty$, $|\widehat{\psi}|_{r,r-|\alpha|} < \infty$. Then there exists a constant C > 0, independent of f and ψ , such that

$$egin{aligned} &\partial^lpha(\widehat{f}\cdot D_h\widehat{\psi})(\xi)|\ &\leq & \mathcal{C}|\widehat{f}|_{r,r-|lpha|}|\widehat{\psi}|_{r,r-|lpha|}|\det(h)|^{1/2}(1+\|h\|)^{|lpha|}\mathcal{A}(\xi)^{r-|lpha|}\mathcal{A}(h^T\xi)^{r-|lpha|} \end{aligned}$$

イロト イポト イヨト イヨト

Quantifying overlap of Fourier envelopes

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

H. Führ (RWTH Aachen)

Quantifying overlap of Fourier envelopes

Definition Let $\Phi_\ell : H \to \mathbb{R}^+ \cup \{\infty\}$ via $\Phi_\ell(h) = \int_{\mathbb{R}^d} A(\xi)^\ell A(h^T \xi)^\ell d\xi$

Quantifying overlap of Fourier envelopes

Definition

Let $\Phi_{\ell}: H \to \mathbb{R}^+ \cup \{\infty\}$ via

$$\Phi_{\ell}(h) = \int_{\mathbb{R}^d} A(\xi)^{\ell} A(h^{\mathsf{T}}\xi)^{\ell} d\xi$$

Lemma (Wavelet coefficient decay)

Let 0 < m < r, and let $\psi \in L^1(\mathbb{R}^d)$ denote a function with vanishing moments of order r in \mathcal{O}^c and $|\widehat{\psi}|_{r,r} < \infty$. Then

$$\mathcal{W}_{\psi}\psi(x,h)|\prec |\widehat{\psi}|^2_{r,r}(1+|x|)^{-m}|\det(h)|^{1/2}(1+\|h\|_{\infty})^m\Phi_{r-m}(h)\;.$$

H. Führ (RWTH Aachen)

(日) (同) (三) (三)

Main result: Vanishing moment criteria for atoms

(ペロト・(ア・ベミト・(王・)) Wavelet coorbit spaces AHA Granada, 2013 25 / 31

H. Führ (RWTH Aachen)

Main result: Vanishing moment criteria for atoms

Definition

Let $w_0 : H \to \mathbb{R}^+$ denote a weight, $s \ge 0$. We call \mathcal{O} strongly (s, w_0) -temperately embedded (with index $\ell \in \mathbb{N}$) if $\Phi_\ell \in W(C^0, L^1_m)$, where the weight $m : H \to \mathbb{R}^+$ is defined by

 $m(h) = w_0(h) |\det(h)|^{-1/2} (1 + ||h||)^{2(s+d+1)}$.

Main result: Vanishing moment criteria for atoms

Definition

Let $w_0 : H \to \mathbb{R}^+$ denote a weight, $s \ge 0$. We call \mathcal{O} strongly (s, w_0) -temperately embedded (with index $\ell \in \mathbb{N}$) if $\Phi_\ell \in W(C^0, L^1_m)$, where the weight $m : H \to \mathbb{R}^+$ is defined by

$$m(h) = w_0(h) |\det(h)|^{-1/2} (1 + ||h||)^{2(s+d+1)}$$

Theorem (HF '13)

Assume that \mathcal{O} is strongly temperately (s, w_0) -embedded with index ℓ . Then any function $\psi \in L^1(\mathbb{R}^d) \cap C^{\ell+d+1}(\mathbb{R}^d)$ with vanishing moments in \mathcal{O}^c of order $t > \ell + s + d$ and $|\widehat{\psi}|_{t,t} < \infty$ is contained in \mathcal{B}_{v_0} , for any weight v_0 satisfying $v_0(x, h) \leq (1 + |x|)^s w_0(h)$. There exists $\psi \in C_c^{\infty}(\mathbb{R}^d)$ satisfying this condition.

२ २ २ २ २ २ २ २ २ २ २

イロト イポト イヨト イヨト

.

		ORWTH
Wavelet coorbit spaces	AHA Granada, 20	13 26 / 31

H. Führ (RWTH Aachen)

• Fix $V = B_1(0)$ and $W = \{h \in H : ||h - id||_{\infty} < 1/2\}$, and let $U = V \times W \subset G$.

- Fix $V = B_1(0)$ and $W = \{h \in H : ||h id||_{\infty} < 1/2\}$, and let $U = V \times W \subset G$.
- Let $k = t \ell > s + d$. The wavelet coefficient decay lemma yields

$$egin{aligned} \|\mathcal{W}_{\psi}\psi\|_{W^{R}(C^{0},\mathrm{L}^{1}_{v_{0}})}\ &\preceq & \int_{H}\int_{\mathbb{R}^{d}}\left(\sup_{y\in V}(1+|x+hy|)^{-k}
ight)(1+|x|)^{s}dx\ & \left(\sup_{g\in W}\Psi(hg)
ight)w_{0}(h)rac{dh}{|\mathrm{det}(h)|} \end{aligned}$$

with auxiliary function

$$\Psi(h) = (1 + \|h\|_{\infty})^k |\det(h)|^{1/2} \Phi_{t-k}(h) \; .$$

H. Führ (RWTH Aachen)

A E F A E F

< 口 > < 同 >

- Fix $V = B_1(0)$ and $W = \{h \in H : ||h id||_{\infty} < 1/2\}$, and let $U = V \times W \subset G$.
- Let $k = t \ell > s + d$. The wavelet coefficient decay lemma yields

$$\begin{split} \|\mathcal{W}_{\psi}\psi\|_{W^{R}(C^{0},\mathrm{L}^{1}_{v_{0}})} \\ & \preceq \int_{H} \int_{\mathbb{R}^{d}} \left(\sup_{y \in V} (1+|x+hy|)^{-k} \right) (1+|x|)^{s} dx \\ & \left(\sup_{g \in W} \Psi(hg) \right) w_{0}(h) \frac{dh}{|\mathrm{det}(h)|} \end{split}$$

with auxiliary function

$$\Psi(h) = (1 + \|h\|_{\infty})^{k} |\det(h)|^{1/2} \Phi_{t-k}(h) .$$

• Using that V is the unit ball, we find

$$\sup_{y\in V}(1+|x+hy|)^{-k}\leq \left(1+\max(0,|x|-\|h\|_{\infty})\right)^{-k}.$$

H. Führ (RWTH Aachen)

26 / 31

Sketch of proof, cont'd

H. Führ (RWTH Aachen)

Sketch of proof, cont'd

• With some computation

$$\int_{\mathbb{R}^d} \left(\sup_{y \in V} (1 + |x + hy|)^{-k} (1 + |x|)^s \right) dx \preceq (1 + \|h\|_{\infty})^k$$

Sketch of proof, cont'd

• With some computation

$$\int_{\mathbb{R}^d} \left(\sup_{y \in V} (1 + |x + hy|)^{-k} (1 + |x|)^s \right) dx \preceq (1 + \|h\|_{\infty})^k$$

• Combining the estimates with $\mathcal{M}_U^R(w_1\Phi_{t-k}) \asymp w_1\mathcal{M}_U^R(\Phi_{t-k})$ for any continuous submultiplicative function w_1 yields

$$\begin{aligned} \|\mathcal{W}_{\psi}\psi\|_{W^{R}(C^{0},\mathrm{L}^{1}_{v_{0}})} \\ & \leq \int_{H} (1+\|h\|_{\infty})^{k} \mathcal{M}^{R}_{U}(\Psi)(h) w_{0}(h) \frac{dh}{|\mathrm{det}(h)|} \end{aligned}$$

H. Führ (RWTH Aachen)

A E > A E >

< 口 > < 同 >

Sketch of proof, cont'd

• With some computation

$$\int_{\mathbb{R}^d} \left(\sup_{y \in V} (1 + |x + hy|)^{-k} (1 + |x|)^s \right) dx \preceq (1 + \|h\|_{\infty})^k$$

• Combining the estimates with $\mathcal{M}_U^R(w_1\Phi_{t-k}) \asymp w_1\mathcal{M}_U^R(\Phi_{t-k})$ for any continuous submultiplicative function w_1 yields

$$\begin{split} & |\mathcal{W}_{\psi}\psi\|_{W^{R}(C^{0}, \mathrm{L}^{1}_{v_{0}})} \\ & \leq \int_{H} (1 + \|h\|_{\infty})^{k} \mathcal{M}^{R}_{U}(\Psi)(h) w_{0}(h) \frac{dh}{|\mathrm{det}(h)|} \\ & \leq \int_{H} \mathcal{M}^{R}_{U}(\Phi_{t-k})(h) (1 + \|h\|_{\infty})^{2k} w_{0}(h) |\mathrm{det}(h)|^{1/2} dh \\ & = \|\Phi_{t-k}\|_{W^{R}(C^{0}, \mathrm{L}^{1}_{m})} \,. \end{split}$$

H. Führ (RWTH Aachen)

▶ < Ξ ▶</p>

Sketch of proof, cont'd

• With some computation

$$\int_{\mathbb{R}^d} \left(\sup_{y \in V} (1 + |x + hy|)^{-k} (1 + |x|)^s \right) dx \preceq (1 + \|h\|_{\infty})^k$$

• Combining the estimates with $\mathcal{M}_U^R(w_1\Phi_{t-k}) \asymp w_1\mathcal{M}_U^R(\Phi_{t-k})$ for any continuous submultiplicative function w_1 yields

$$\begin{split} \|\mathcal{W}_{\psi}\psi\|_{W^{R}(C^{0}, \mathrm{L}^{1}_{v_{0}})} \\ & \leq \int_{H} (1+\|h\|_{\infty})^{k} \mathcal{M}_{U}^{R}(\Psi)(h) w_{0}(h) \frac{dh}{|\mathrm{det}(h)|} \\ & \leq \int_{H} \mathcal{M}_{U}^{R}(\Phi_{t-k})(h) (1+\|h\|_{\infty})^{2k} w_{0}(h) |\mathrm{det}(h)|^{1/2} dh \\ & = \|\Phi_{t-k}\|_{W^{R}(C^{0}, \mathrm{L}^{1}_{m})} . \end{split}$$

The last expression is finite by assumption.

H. Führ (RWTH Aachen)

Η.	Führ	(RWTH	Aachen)
----	------	-------	---------

Wavelet coorbit spaces

• There exists a polynomial $P \in \mathbb{R}[X_1, \cdots, X_d]$ such that $\xi \in \mathcal{O}$ iff $P(\xi) \neq 0$.

- There exists a polynomial $P \in \mathbb{R}[X_1, \cdots, X_d]$ such that $\xi \in \mathcal{O}$ iff $P(\xi) \neq 0$.
- Let $D = P((2\pi i)^{-1}\partial^{1,0,\dots,0},\dots,(2\pi i)^{-1}\partial^{0,\dots,0,1})$ denote the induced differential operator, i.e., $(Df)^{\wedge} = P \cdot \hat{f}$.

(日) (同) (三) (三)

- There exists a polynomial $P \in \mathbb{R}[X_1, \cdots, X_d]$ such that $\xi \in \mathcal{O}$ iff $P(\xi) \neq 0$.
- Let $D = P((2\pi i)^{-1}\partial^{1,0,\dots,0},\dots,(2\pi i)^{-1}\partial^{0,\dots,0,1})$ denote the induced differential operator, i.e., $(Df)^{\wedge} = P \cdot \hat{f}$.
- Pick any $\rho \in C^\infty_c(\mathbb{R}^d)$, and let $\psi = D^t \rho$

(日) (同) (三) (三)

- There exists a polynomial $P \in \mathbb{R}[X_1, \cdots, X_d]$ such that $\xi \in \mathcal{O}$ iff $P(\xi) \neq 0$.
- Let $D = P((2\pi i)^{-1}\partial^{1,0,\dots,0},\dots,(2\pi i)^{-1}\partial^{0,\dots,0,1})$ denote the induced differential operator, i.e., $(Df)^{\wedge} = P \cdot \hat{f}$.
- Pick any $\rho \in C^\infty_c(\mathbb{R}^d)$, and let $\psi = D^t \rho$
- ψ has vanishing moments in \mathcal{O}^c of order t.

イロト イポト イヨト イヨト

The dual orbit ${\mathcal O}$ is strongly temperately embedded for typically employed weights w on

The dual orbit ${\mathcal O}$ is strongly temperately embedded for typically employed weights w on

• all dilation groups in dimension 2;

The dual orbit ${\mathcal O}$ is strongly temperately embedded for typically employed weights w on

- all dilation groups in dimension 2;
- diagonal groups in any dimension;

The dual orbit ${\mathcal O}$ is strongly temperately embedded for typically employed weights w on

- all dilation groups in dimension 2;
- diagonal groups in any dimension;
- similitude groups in any dimension;

b 4 = b

The dual orbit ${\mathcal O}$ is strongly temperately embedded for typically employed weights w on

- all dilation groups in dimension 2;
- diagonal groups in any dimension;
- similitude groups in any dimension;

Proof method for 2-dimensional case: Check representatives of all possible groups up to conjugacy

The dual orbit ${\mathcal O}$ is strongly temperately embedded for typically employed weights w on

- all dilation groups in dimension 2;
- diagonal groups in any dimension;
- similitude groups in any dimension;

Proof method for 2-dimensional case: Check representatives of all possible groups up to conjugacy

ØR\\∏H∭ イロト イポト イヨト イヨト Э 990 30 / 31 AHA Granada, 2013

H. Führ	(RWTH	Aachen)
---------	-------	---------

Wavelet coorbit spaces

• As a consequence of atomic decomposition: Density of $\mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})$ in CoY, for a large class of coorbit spaces

▶ < ∃ >

- As a consequence of atomic decomposition: Density of $\mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})$ in CoY, for a large class of coorbit spaces
- Using similar techniques (but somewhat different conditions): Vanishing moment criteria for $f \in Co(L_{v}^{p,q}(G))$, in particular for $f \in \mathcal{A}_{v_0}$.

- As a consequence of atomic decomposition: Density of $\mathcal{F}^{-1}C^{\infty}_{c}(\mathcal{O})$ in *CoY*, for a large class of coorbit spaces
- Using similar techniques (but somewhat different conditions): Vanishing moment criteria for $f \in Co(L_v^{p,q}(G))$, in particular for $f \in \mathcal{A}_{v_0}$.
- For temperately embedded dual orbits: Besov-type coorbit spaces embed naturally into quotient spaces of tempered distributions; compare homogeneous Besov spaces as spaces of tempered distributions mod polynomials.

< 口 > < 同 >

Open problems

Open problems

• Existence of unconditional wavelet bases

Open problems

- Existence of unconditional wavelet bases
- (Related:) Precise relation between nonlinear approximation rate and Co(L^p) (for frames, only one direction is clear)

< <p>I > < A</p>

▶ < ∃ >

Open problems

- Existence of unconditional wavelet bases
- (Related:) Precise relation between nonlinear approximation rate and Co(L^p) (for frames, only one direction is clear)
- Pointwise properties (or even: characterization) of coorbit space elements

- (∃)

Open problems

- Existence of unconditional wavelet bases
- (Related:) Precise relation between nonlinear approximation rate and Co(L^p) (for frames, only one direction is clear)
- Pointwise properties (or even: characterization) of coorbit space elements
- Include other types of coefficients spaces: p, q < 1, or Triebel-Lizorkin-type coorbit spaces

Open problems

- Existence of unconditional wavelet bases
- (Related:) Precise relation between nonlinear approximation rate and Co(L^p) (for frames, only one direction is clear)
- Pointwise properties (or even: characterization) of coorbit space elements
- Include other types of coefficients spaces: p, q < 1, or Triebel-Lizorkin-type coorbit spaces
- More easily checked conditions for (strong) temperate embeddedness

Open problems

- Existence of unconditional wavelet bases
- (Related:) Precise relation between nonlinear approximation rate and Co(L^p) (for frames, only one direction is clear)
- Pointwise properties (or even: characterization) of coorbit space elements
- Include other types of coefficients spaces: p, q < 1, or Triebel-Lizorkin-type coorbit spaces
- More easily checked conditions for (strong) temperate embeddedness

References

- IF, Coorbit spaces and wavelet coefficient decay over general dilation groups, 2012, http://arxiv.org/abs/1208.2196v4
- ② HF, Vanishing moment conditions for wavelet atoms in higher dimensions, 2013, http://arxiv.org/abs/1303.3135