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Wavelet orthonormal bases
Definition
A wavelet ONB (ψj ,k)j ,k∈Z ⊂ L2(R) is an ONB of the form

(ψj ,k)j ,k∈Z ⊂ L2(R) , ψj ,k = 2j/2ψ(2jx − k) , ψ fixed

Simultaneous wavelet bases of smoothness spaces
For sufficiently nice wavelets ψ, the wavelet expansion

f =
∑
j ,k∈Z
〈f , ψj ,k〉ψj ,k

converges in the norm of a homogeneous Besov space Ḃαp,q, as soon as
f ∈ Ḃαp,q. Furthermore, the property f ∈ Ḃαp,q is equivalent to weighted
summability of the coefficients. (Frazier/Jawerth)
There exist arbitrarily nice compactly supported wavelets.
(Daubechies)
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What are nice wavelets?

Desirable properties of wavelets

A nice wavelet ψ ∈ L2(R) typically has three properties
(a) Fast decay, e.g. |ψ(x)| ≤ C (1 + |x |)−n;
(b) Smoothness, e.g. ψ(j) ∈ L1(R), for all 1 ≤ j ≤ m;
(c) Vanishing moments, e.g.

∀0 ≤ j < k :

∫
R
x jψ(x)dx = 0

with absolute convergence of the integral
Shortly: Nice wavelets have good time-frequency localization.
(Note: Frequency-side localization is understood away from zero.)
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Cartoon: Fourier side decay of wavelets

Plot of |ψ̂|.
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Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of |〈ψ,ψj ,k〉|:

|〈ψ,ψj ,k〉| ≤
∥∥∥∂n (ψ̂ · ψ̂(2−j ·)

)∥∥∥
1
2j/2(1 + 2j |k |)−n

Plot of ψ̂ and ψ̂(3·) Overlap ψ̂ · ψ̂(3·)

⇒ vanishing moments, smoothness govern decay of overlap, as j → ±∞
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Aims of this talk
Main objective
Establish notion of nice wavelets for higher-dimensional wavelet transforms,
with dilations coming from a suitable matrix group, the dilation group.

This
was previously studied for: Similitude groups ( isotropic Besov spaces),
shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke et. al.)

Strategy
Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This
provides access to:

I Consistent notion of wavelet coefficient decay, associated smoothness
spaces

I Useful notions of nice wavelets: Sets Aw (analyzing vectors) and Bw
(frame atoms).

Additional task: Identify easily accessible subsets of the abstractly
defined sets Aw and Bw . ( bandlimited Schwartz functions,
vanishing moment criteria)
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Setup: d -dimensional CWT

H < GL(d ,R) a closed matrix group
G = Rd o H, the affine group generated by H and translations. As a
set, G = Rn × H, with group law

(x , h)(y , g) = (x + hy , hg) .

L2(G ) denotes L2-space w.r.t. left Haar measure
G = Rd o H, the affine group generated by H and translations
Quasi-regular representation of G on L2(Rd), acting via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given suitable ψ ∈ L2(Rd) and
f ∈ L2(Rd), let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉

Dual action of H on Rd , defined by

H × Rd 3 (h, ξ) 7→ hT ξ .
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Admissible vectors and wavelet inversion

Definition
ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.
π is called discrete series representation if π is irreducible and has an
admissible vector.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence. Furthermore: Right convolution with Wψψ is
a reproducing kernel for the image space (important for frames and
discretization).
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Discrete-series representations and open dual orbits

Theorem (HF, 2010)
The quasiregular representation π is a discrete series representation iff
there exists a single open orbit O under the dual action, with the additional
property that, for some (equivalently: any) ξ0 ∈ O, the associated dual
stabilizer

Hξ0 = {h ∈ H ; hT ξ0 = ξ0} ⊂ H

is compact.

Remark
O (if it exists) has full measure. Of particular interest will be the
complement Oc , the blind spot of the wavelet transform.
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Overview

1 Introduction: Nice wavelets in dimension one

2 Square-integrability over general dilation groups

3 Outline of coorbit theory: Analyzing vectors and frame atoms

4 Wavelet coorbit spaces over general dilation groups

5 Vanishing moment conditions and coorbit spaces
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Construction of coorbit spaces

Informal definition of coorbit spaces

Fix a Banach space Y of functions on G (solid, two-sided invariant).
E.g., Y = Lp(G ).
Pick a suitable analyzing vector ψ ∈ L2(Rd)

Coorbit space norm on L2(Rd):

‖f ‖CoY = ‖Wψf ‖Y .

Define CoY as completion of {g ∈ L2(Rd) : ‖g‖CoY <∞}.
If π is irreducible, CoY is independent of the choice of ψ 6= 0, as long
as Wψψ ∈ L1

v0(G ). Here v0 a (continuous, submultiplicative) control
weight depending on Y . We define Av0 as the set of all such ψ.
Key idea of coorbit theory: Use properties of the reproducing kernel
Wψψ, and the fact that Y is a Banach convolution module over the
algebra L1

v0(G ).
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Discretization and Banach frames

Discretization

Let Y be a Banach function space on G with well-defined CoY

Pick a suitable frame atom ψ ∈ L2(Rd)

For all suitably dense uniformly discrete subsets Γ ⊂ G , the family
(π(γ)ψ)γ∈Γ is a Banach frame of CoY . There exists a discrete
coefficient norm ‖ · ‖Yd

such that

∀f ∈ L2(Rd) : ‖f ‖CoY � ‖Wψf |Γ‖Yd
.

Moreover, for all f ∈ CoY , there exist coefficients (cγ)γ∈Γ such that

f =
∑
γ∈Γ

cγπ(γ)ψ , ‖f ‖CoY � ‖(cγ)γ∈Γ‖Yd
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Discretization continued

Examples, comments

For example, for Y = Lp(G ),

‖f ‖CoY � ‖Wψf |Γ‖`p .

Criterion for frame atoms: Wψψ ∈W R(C 0,L1
v0), i.e., the function

G 3 (x , h) 7→ sup
(y ,g)∈U

|Wψψ ((x , h)(y , g))| ∈ R+

is in L1
v0(G ), for some compact neighborhood U ⊂ G of the identity.

Here v0 is the control weight from above.
We let Bv0 denote the set of all frame atoms associated to v0.
Note: One suitably chosen weight works for a whole scale of spaces  
simultaneous Banach frames
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Further assumptions and notations
From now on:

π is assumed to be in the discrete series.
The associated dual orbit is denoted by O = HT ξ, its complement by
Oc . Oc is a closed set of measure zero.
F−1(C∞c (O)) denotes the set of bandlimited Schwartz functions with
Fourier support contained in O.
We fix a weight v : G → R+ is of the form

v(x , h) = (1 + |x |+ ‖h‖)sw(h)

with s ≥ 0, a matrix norm ‖ · ‖, and w : H → R+ an arbitrary weight.
For 1 ≤ p, q ≤ ∞, let

Lp,qv (G ) =

{
F : G → C :

∫
H

(∫
Rd

|F (x , h)|pv(x , h)pdx

)q/p dh

| det(h)|
<∞

}
,

with obvious modifications for p =∞ and/or q =∞.
Note: There is a control weight v0 for Lp,qv (G ) of the same type as v
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Wavelet coorbit spaces

Theorem (Kaniuth/Taylor ’96,HF ’12)

The quasiregular representation is v0-integrable: If ψ ∈ F−1C∞c (O), then
Wψψ ∈ L1

v0(G ).

Corollary
F−1C∞c (O) ⊂ Co(Lp,qv (G )).

Theorem (HF, ’12)
For all control weights v0 satisfying v0(x , h) ≤ (1 + |x |)tw0(h), with
suitable t > 0 and continuous weights w0 on H, we have

F−1C∞c (O) ⊂ Bv0 .
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Overview

1 Introduction: Nice wavelets in dimension one

2 Square-integrability over general dilation groups

3 Outline of coorbit theory: Analyzing vectors and frame atoms

4 Wavelet coorbit spaces over general dilation groups

5 Vanishing moment conditions and coorbit spaces
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Chief problem: Measuring and controlling overlap
Recall: Wavelet coefficient decay is related to overlap on the Fourier
transform side

Main questions
Which vanishing moment conditions do we need to impose? (Answer:
ψ̂ needs to vanish on Oc)
How do we control overlap from vanishing moment conditions and
smoothness? (Answer: Fourier envelopes, see next slide)
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Controlling overlap: Fourier envelopes

Definition
| · | : Rd → R+

0 denotes the euclidean norm. For r ,m ≥ 0 and f : Rd → C,
let

|f |r ,m = sup
x∈Rd ,|α|≤r

(1 + |x |)m|∂αf (x)| .

Definition (Fourier envelope function)

Let O ⊂ Rd denote the dual orbit. Given ξ ∈ O, let dist(ξ,Oc) denote the
euclidean distance of ξ to Oc . Let

A(ξ) = min

(
dist(ξ,Oc)

1 +
√
|ξ|2 − dist(ξ,Oc)2

,
1

1 + |ξ|

)
.
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Vanishing moment conditions and wavelet coefficient decay

Definition

Let r ∈ N be given. f ∈ L1(Rd) has vanishing moments in Oc of order r if
all distributional derivatives ∂αf̂ with |α| < r are continuous functions,
identically vanishing on Oc .

Lemma

Let α be a multiindex with |α| < r . Assume that f , ψ ∈ L1(Rd) have
vanishing moments of order r in Oc , and fulfill
|f̂ |r ,r−|α| <∞, |ψ̂|r ,r−|α| <∞. Then there exists a constant C > 0,
independent of f and ψ, such that

|∂α(f̂ · Dhψ̂)(ξ)|
≤ C |f̂ |r ,r−|α||ψ̂|r ,r−|α||det(h)|1/2(1 + ‖h‖)|α|A(ξ)r−|α|A(hT ξ)r−|α|
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Quantifying overlap of Fourier envelopes

Definition
Let Φ` : H → R+ ∪ {∞} via

Φ`(h) =

∫
Rd

A(ξ)`A(hT ξ)`dξ

Lemma (Wavelet coefficient decay)

Let 0 < m < r , and let ψ ∈ L1(Rd) denote a function with vanishing
moments of order r in Oc and |ψ̂|r ,r <∞. Then

|Wψψ(x , h)| ≺ |ψ̂|2r ,r (1 + |x |)−m| det(h)|1/2(1 + ‖h‖∞)mΦr−m(h) .
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Main result: Vanishing moment criteria for atoms

Definition

Let w0 : H → R+ denote a weight, s ≥ 0. We call O strongly
(s,w0)-temperately embedded (with index ` ∈ N) if Φ` ∈W (C 0,L1

m),
where the weight m : H → R+ is defined by

m(h) = w0(h)|det(h)|−1/2(1 + ‖h‖)2(s+d+1) .

Theorem (HF ’13)

Assume that O is strongly temperately (s,w0)-embedded with index `.
Then any function ψ ∈ L1(Rd) ∩ C `+d+1(Rd) with vanishing moments in
Oc of order t > `+ s + d and |ψ̂|t,t <∞ is contained in Bv0 , for any
weight v0 satisfying v0(x , h) ≤ (1 + |x |)sw0(h).
There exists ψ ∈ C∞c (Rd) satisfying this condition.
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Sketch of proof

Fix V = B1(0) and W = {h ∈ H : ‖h − id‖∞ < 1/2}, and let
U = V ×W ⊂ G .
Let k = t − ` > s + d . The wavelet coefficient decay lemma yields

‖Wψψ‖W R(C0,L1
v0

)

�
∫
H

∫
Rd

(
sup
y∈V

(1 + |x + hy |)−k
)

(1 + |x |)sdx(
sup
g∈W

Ψ(hg)

)
w0(h)

dh

|det(h)|

with auxiliary function

Ψ(h) = (1 + ‖h‖∞)k |det(h)|1/2Φt−k(h) .

Using that V is the unit ball, we find

sup
y∈V

(1 + |x + hy |)−k ≤ (1 + max(0, |x | − ‖h‖∞))−k .
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Sketch of proof, cont’d

With some computation∫
Rd

(
sup
y∈V

(1 + |x + hy |)−k(1 + |x |)s
)
dx � (1 + ‖h‖∞)k

Combining the estimates withMR
U(w1Φt−k) � w1MR

U(Φt−k) for any
continuous submultiplicative function w1 yields

‖Wψψ‖W R(C0,L1
v0

)

�
∫
H

(1 + ‖h‖∞)kMR
U(Ψ)(h)w0(h)

dh

|det(h)|

�
∫
H
MR

U(Φt−k)(h)(1 + ‖h‖∞)2kw0(h)|det(h)|1/2dh

= ‖Φt−k‖W R(C0,L1
m) .

The last expression is finite by assumption.
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The last expression is finite by assumption.
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Constructing compactly supported atoms

There exists a polynomial P ∈ R[X1, · · · ,Xd ] such that ξ ∈ O iff
P(ξ) 6= 0.
Let D = P((2πi)−1∂1,0,...,0, . . . , (2πi)−1∂0,...,0,1) denote the induced
differential operator, i.e., (Df )∧ = P · f̂ .
Pick any ρ ∈ C∞c (Rd), and let ψ = Dtρ

ψ has vanishing moments in Oc of order t.
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Which dual orbits are strongly temperately embedded?

The dual orbit O is strongly temperately embedded for typically employed
weights w on

all dilation groups in dimension 2;
diagonal groups in any dimension;
similitude groups in any dimension;

Proof method for 2-dimensional case:
Check representatives of all possible groups up to conjugacy
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Consequences and further results

As a consequence of atomic decomposition: Density of F−1C∞c (O) in
CoY , for a large class of coorbit spaces
Using similar techniques (but somewhat different conditions):
Vanishing moment criteria for f ∈ Co(Lp,q

v (G )), in particular for
f ∈ Av0 .
For temperately embedded dual orbits: Besov-type coorbit spaces
embed naturally into quotient spaces of tempered distributions;
compare homogeneous Besov spaces as spaces of tempered
distributions mod polynomials.
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Concluding remarks
Open problems

Existence of unconditional wavelet bases
(Related:) Precise relation between nonlinear approximation rate and
Co(Lp) (for frames, only one direction is clear)
Pointwise properties (or even: characterization) of coorbit space
elements
Include other types of coefficients spaces: p, q < 1, or
Triebel-Lizorkin-type coorbit spaces
More easily checked conditions for (strong) temperate embeddedness

References
1 HF, Coorbit spaces and wavelet coefficient decay over general dilation

groups, 2012, http://arxiv.org/abs/1208.2196v4
2 HF, Vanishing moment conditions for wavelet atoms in higher

dimensions, 2013, http://arxiv.org/abs/1303.3135
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