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1. Function spaces

G is a locally compact group.

ℓ∞(G): bounded, scalar-valued fncts on G.

CB(G): continuous bounded scalar-valued fncts on G.

C0(G) : continuous functions vanishing at infinity on G.

LUC(G): right uniformly continuous bounded fncts onG.
f ∈ LUC(G) when

∀ϵ > 0 ∃U ∈ N (e) s.t. st−1 ∈ U ⇒ |f (s)− f (t)| < ϵ.

iff
s 7→ fs : G → CB(G) is continuous,

where fs(t) = f(st).

RUC(G): left uniformly continuous.

UC(G) = LUC(G) ∩ RUC(G).

WAP(G): weakly almost periodic functions.
f ∈ WAP(G) if {fs : s ∈ G} is a rel. weakly compact.

If µ is the unique invariant mean on WAP(G), put

WAP0(G) = {f ∈ WAP(G) : µ(|f |) = 0}.
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AP(G): almost periodic functions on G.
f ∈ AP(G) if {fs : s ∈ G} is a rel. norm compact subset.

The Fourier-Stieltjes algebra B(G) is the space of co-
efficients of unitary representations of G. Equivalently,
B(G) is the linear span of the set of all continuous posi-
tive definite functions on G.

The Eberlein algebra B(G) = B(G)
∥·∥∞

.

C0(G)⊕AP(G) ⊆ B(G) ⊆ WAP(G) = AP(G)⊕WAP0(G)

⊆ LUC(G) ∩ RUC(G) ⊆ LUC(G) ⊆ CB(G)

⊆ L∞(G).

WhenG is finite, the diagram is trivial. WhenG is infinite
and compact, the diagram reduces to CB(G) ⊆ L∞(G).



3

2. A brief historical review:

κ is the compact covering number of G.

Comparing L∞(G) with its subspaces.

Civin and Yood (1961): L∞(G)/CB(G) is infinite-dimensional
for any non-discrete lca G.
The radical of the Banach algebra L∞(G)∗ (with one of
the Arens products) is also infinite-dimensional.

Gulick (1966): The quotient is not separable.

Granirer (1973): for any non-discrete locally compact group.

Young (1973): for any infinite lc group G, L∞(G) ̸=
WAP(G), proving the non-Arens regularity of L1(G).

Bouziad-Filali (2011): LUC(G)/WAP(G) contains a lin-
ear isometric copy of ℓ∞(κ(G)).
A fortiori, L∞(G)/WAP(G) contains the same copy.
L1(G) is extremely non-Arens regular (enAr) in the sense
of Granirer, whenever κ is larger than or equal to w(G),
the minimal cardinal of a basis of neighbourhoods at the
identity.

L∞(G)/CB(G) always contains a copy of ℓ∞, so L1(G) is
enAr for compact metrizable groups.

Filali-Galindo (2012): For any compact groupG, L∞(G)/CB(G)
contains a copy of L∞(G).

L1(G) is enAr for any infinite locally compact group.
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Comparing CB(G) with its subspaces.

Comfort and Ross (1966): CB(G) = AP(G) for a topo.
group iff G is pseudocompact.

Burckel (1970): CB(G) = WAP(G) for lc groups iff G is
compact.

Baker and Butcher (1976): CB(G) = LUC(G) for lc
group iff G is either discrete or compact.

Filali-Vedenjuoksu (2010): If G is a topological group
which is not a P -group, then CB(G) = LUC(G) if and
only if G is pseudocompact.

Dzinotyiweyi (1982): CB(G)/LUC(G) is non-separable if
G is a non-compact, non-discrete, lc group.

Bouziad-Filali (2010 and 2012): CB(G)/LUC(G)) con-
tains a linear isometric copy of ℓ∞ whenever G is a non-
precompact, non-P-group, topo. group.

For non-discrete, P -groups, the quotient CB(G)/LUC(G)
may be trivial as it is the case when G is a Lindelöf P -
group but may also contain a linear isometric copy of ℓ∞
for some other P -groups.

CB(G)/LUC(G) contains a linear isometric copy of ℓ∞
whenever G is a non-SIN topo. group.
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Comparing LUC(G) with WAP(G).

Granirer (1972): LUC(G) = WAP(G) if and only if G is
compact.

Lau and Pym (1995): Granirer’s thm from their main
theorem on the topological centre of GLUC being G.

Lau and Ülger (1996): Granirer’s thm from the topologi-
cal centre of L1(G)∗∗ being L1(G).

Granirer (1972): If G is non-compact and amenable, then
LUC(G)/WAP(G) contains a linear isometric copy of ℓ∞.

This result was extended by Chou (1975) to E-groups
then by Dzinotyiweyi (1982) to all non-compact lc groups,
and generalized by Bouziad and Filali (2011) to all non-
precompact topological groups.

Bouziad-Filali (2011): There is a copy of ℓ∞(κ) in
LUC(G)/WAP(G) when G is a non-compact lc group.
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Comparing WAP(G) with its subspaces.
Chou 1990, Veech 1979, Ruppert 1984: WAP(G) = B(G) =
WAP(G) = AP(G)⊕C0(G) when G is minimally weakly
almost periodic group.

Rudin (1959): B(G) ( WAP(G) if G is a lca group
and contains a closed discrete subgroup which is not of
bounded order.

Ramirez (1968): Rudin’s result to any non-compact, lca
group.

Chou (1990): WAP(G)/B(G) contains a linear isomet-
ric copy of ℓ∞ when G is a non-compact, IN -group or
nilpotent group.

Burckel (1970): C0(G) ( WAP0(G) when G is a non-
compact, lca group.

Chou (1975): WAP0(G)/C0(G) contains a linear isomet-
ric copy of ℓ∞ when G is an E-group.
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3. Interpolation sets

-Interpolation sets help to construct functions on infinite
discrete or, more generally, locally compact groups G.

-They have the crucial property that any function defined
on them extends to the whole group as a function of the
required type.

• Almost periodic functions: I0-sets, introduced by
Hartman and Ryll-Nardzewsky [1964].
Galindo, Graham, Hare, Hernández, and Körner,
[1999-2008].

• Fourier-Stieltjes functions: Sidon sets when G is
discrete Abelian and weak Sidon sets in general.
Lopez and Ross [1975] and Picardello [1973].
A Sidon set T is in fact uniformly approximable
(Drury [1970]): in addition of being interpolation
set, its characteristic function 1T ∈ B(G). This is
the key in the proof of Drury’s union theorem: the
union of two Sidon sets remains Sidon.

•Weakly almost periodic functions on infinite dis-
crete groups: Ruppert [1985] and Chou [1990] con-
sidered interpolation sets T with the extra condi-
tion that 1T is also weakly almost periodic. Translation-
finite sets by Ruppert and RW -sets by Chou.
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• Right uniformly continuous functions: right uni-
formly discrete sets are used.

•Weakly almost periodic on locally compactE-groups:
Recent work with Jorge Galindo. Interpolation sets
with an additional condition analogue to the one
above. Translation compact-sets.

Strategy
Appro. interpolation sets forA2 that are not interpolation
sets for A1 give a copy of ℓ∞(κ) in A2/A1.

Definition 3.1. Let G be a topological group and A ⊆
ℓ∞(G). A subset T ⊆ G is said to be:

(i) an A-interpolation set if every bounded function
f : T → C can be extended to a function f̃ : G →
C such that f̃ ∈ A.

(ii) an approximable A-interpolation set if it is an A-
interpolation set and for every U ∈ N (e), there
are V1, V2 ∈ N (e) with V1 ⊆ V2 ⊆ U such that,
for each T1 ⊆ T there is h ∈ A with h(V1T1) =
{1} and h(G \ (V2T1)) = {0}.
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Definition 3.2. Let G be a topological group, T be a
subset of G and U be a neighbourhood of the identity.
We say that T is right U -uniformly discrete if

Us ∩ Us′ = ∅ for every s ̸= s′ ∈ T.

Definition 3.3. Let G be a non-compact topological
group. We say that a subset S of G is

(i) right translation-compact if every non-relatively
compact subset L ⊆ G contains a finite subset
F such that∩

{b−1S : b ∈ F}
is relatively compact,

(ii) a right t-set if there exists a compact subset K
of G containing e such that gS ∩ S is relatively
compact for every g /∈ K.

We also need to establish the range of locally compact
groups to which our methods apply, these are those locally
compact groups for which the existence of a good supply
of WAP-functions is guaranteed.
Recall thatG is an IN−group if it has an invariant neigh-
bourhood of e. We recall also that G is an E-group if it
contains a non-relatively compact setX such that for each
neighbourhood U of e, the set∩

{x−1Ux : x ∈ X ∪X−1}
is again a neighbourhood of e. The set X is called an
E-set.
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(F+Galindo 2013) Let G be a topological group and let
T ⊂ G.

(i) If the underlying topological space of G is normal,
then all discrete closed subsets of G are approx-
imable CB(G)-interpolation sets.

(ii) If T is right uniformly discrete (resp. left-uniformly
discrete), then T is an approximableLUC-interpolation
set (resp. RUC-interpolation set).

(iii) If G is assumed to be metrizable, then every LUC-
interpolation set is right uniformly discrete.

(iv) If G is an E-group and T is an E-set in G which
is right (or left) uniformly discrete with respect to
U 2 for some neighbourhood U of the identity such
that UT is translation-compact, then T is an ap-
proximable WAP0(G)-interpolation set.

(v) If G is a metrizable E-group, T ⊂ G is an approx.
WAP(G)-interpolation set if and only if UT is
translation-compact for some compact neighbour-
hood U of the identity such that T is right (or left)
uniformly discrete with respect to U 2.
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4. Interpolation and quotient

Theorem 4.1 ((Chou, 1982)). Let G be a discrete group.
A subset T ⊆ G fails to be a B(G)-interpolation set
if and only if there is a bounded function f ∈ ℓ∞(G),
with ∥f∥∞ = 1 such that

f (G\T ) = {0} and ∥ϕ−f∥T ≥ 1 for all ϕ ∈ B(G).

Lemma 4.2. Let A be a C∗-subalgebra of CB(G) with
1 ∈ A and T ⊆ G.

(i) T is an A-interpolation set if and only if T
A

is homeomorphic to βT , where the homeomor-
phism leaves the points of T fixed.

(ii) T is an A-interpolation set if and only if for
every pair of subsets T1, T2 ⊂ T , T1 ∩ T2 = ∅
implies T1

A ∩ T2
A
= ∅.

(iii) If T is an A-interpolation set and f : T → C
is a bounded function, then f has an extension
fA ∈ A with ∥fA∥∞ = ∥f∥T .

(iv) If T is an approximable A-interpolation set, then
for every bounded function h : T → C and every
ngh. U of e there is f ∈ A such that

f �T= h, f (G \ UT ) = {0} and ∥f∥∞ = ∥h∥T .

Proof. (iii). Take f : T → C, extend it continuously by

(i) to T
A
, then by Tietze’s extension theorem, toGA, then

restrict to G.
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(iv). Using (iii), we find f1 ∈ A with f1 �T= h and
∥f1∥∞ = ∥h∥T . Pick two nghs V1, V2 with V1 ⊆ V2 ⊆ U
and f2 ∈ A such that

f2(V1T ) = {1} and f2(G \ V2T ) = {0}.
We may assume (taking the minimum of f2 and the cte
function 1) that ∥f2∥∞ = 1. Then f1 · f2 = h on T and
vanishes off V2T . �

Lemma 4.3. Let G be a topo. group, A1 ⊆ A2 ⊆
CB(G) be C∗-subalgebras with 1 ∈ A1, and (Tη)η<κ a
family of disjoint subsets of G such that

(i) each Tη fails to be an A1-interpolation, but
(ii) T =

∪
Tη is an appro. A2-interpolation set.

Then for each open ngh. U of e, there is f ∈ A2 with
∥f∥∞ = 1 s.t

f (G\UT ) = {0} and ∥f−ϕ∥Tη
≥ 1 for all η < κ and ϕ ∈ A1.
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Proof. By (ii) of Lemma 4.2, each Tη contains disjoint

subsets T1,η, T2,η such that T1,η
A1 ∩ T2,η

A1 ̸= ∅.
Define for each η < κ, a function hη : G → [−1, 1] sup-
ported on Tη with

hη(T1,η) = {1} and hη(T2,η) = {−1}.
Then consider the function h : G → [−1, 1] supported on
T and given by

h(t) = hη(t) if t ∈ Tη for some η < κ.

By (iv) of Lemma 4.2, there is f ∈ A2 such that

f (G \ UT ) = 0, f �T= h and ∥f∥∞ = ∥h∥T = 1.

Let now ϕ be any function in A1, and take ε > 0.

Fix η < κ. Take pη ∈ T1,η
A1 ∩ T2,η

A1
, pick t1,η ∈ T1,η and

t2,η ∈ T2,η with

|ϕ(t1,η)− ϕA1(pη)| < ε and |ϕ(t2,η)− ϕA1(pη)| < ε,

where ϕA1 denotes the extension of ϕ to GA1.
Then

2 = |hη(t1,η)− hη(t2,η)| = |h(t1,η)− h(t2,η)| = |f (t1,η)− f (t2,η)|
≤ |f (t1,η)− ϕ(t1,η)| + |ϕ(t1,η)− ϕA1(pη)|
+ |ϕA1(pη)− ϕ(t2,η)| + |ϕ(t2,η)− f (t2,η)|.

So |f (t1,η)−ϕ(t1,η)| ≥ 1−ε or |f (t2,η)−ϕ(t2,η)| ≥ 1−ε.

Thus ∥f − ϕ∥Tη
≥ 1.

Since ∥f∥∞ = 1 and f(G \ UT ) = {0}, we see that f is
the required function. �
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Lemma 4.4. Let A be a left invariant, unital C∗-
subalgebra of LUC(G), U a compact ngh. of e, and
T an approximable A-interpolation, right U-uniformly
discrete set. Partition T into (Tη)η<κ.
Then there is a compact ngh. V of e with V 2 ⊆ U
such that whenever functions f, g ∈ ℓ∞(G) supported
in V T and a function c ∈ ℓ∞(κ) are such that

f �V Tη
= c(η)g �V Tη

for each η < κ,

we have:

g ∈ A =⇒ f ∈ A.

Proof. f is well defined follows from UTη ∩ UTη′ = ∅.
Let V1 and V2 be two nghs provided by the definition of
approximableA-interpolation set for the ngh. U . We take
the set V as V1, we can obviously assume that V 2 ⊆ U .
Define for every pair (s, x) ∈ G × GA, the functional sx
on A by sx(f ) = x(fs).
Then sx ∈ GA.
Now define φ on T by φ(t) = c(η) for every t ∈ Tη.
Extend φ to a function f0 ∈ A.
Let gA and fA

0 be the respective extensions of g and f0 to
GA.
Define fA : GA → C by

fA(vp) = fA
0 (p) · gA(vp) if v ∈ V and p ∈ T

fA(x) = 0 if x /∈ V T .
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We check that fA is a well-defined, continuous extension
of f to GA.
(1) fA is well defined. fA does not depend of the choice
of the decomposition of vp.
Let v1p1 = v2p2 with v1, v2 ∈ V and p1, p2 ∈ T .
If p1 ̸= p2, by (ii) of Lemma 4.2, we may choose T1, T2 ⊂
T such that

T1 ∩ T2 = ∅, p1 ∈ T1 and p2 ∈ T2

Pick h ∈ A such that

h(V T1) = {1} and h(G \ V2T1) = {0}.
By Ellis-Lawson’s Theorem on joint continuity, the map

G×GA → GA : (s, x) 7→ sx

is jointly continuous. So hA(v1p1) = 1.
By the same reason, and since T is right U -uniformly
discrete, hA(v2p2) must be zero.
This contradiction shows that v1p1 = v2p2 implies p2 =
p1. This shows already that fA is well defined, since
v1p1 = v2p2 and p1 = p2 give us

fA(v1p1) = fA
0 (p1)g

A(v1p1) = fA(v2p2).

(In fact, v1 and v2 must be also equal, but this is enough
for our purposes.)

(2) fA is continuous.
Using the continuity of

G×GA → GA : (s, x) 7→ sx,

we see that V T is closed in GA. So the continuity of fA

at thee points outside of V T is clear.
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So let x = vp ∈ V T .
Let P be a ngh. of p in GA such that |gA(x)−gA(y)| < ϵ
whenever y ∈ vP.
We may choose P such that |fA

0 (p)−fA
0 (q)| < ϵ for every

q ∈ P.
Then, for every y = vq ∈ vP , we have

|fA(x)− fA(y)| = |fA
0 (p)g

A(x)− fA
0 (q)g

A(y)|
≤ |fA

0 (p)||gA(x)− gA(y)| + |gA(y)||fA
0 (p)− fA

0 (q)|,
which yields the continuity of fA.

(3) fA coincides with f on G. Easy.

From (1), (2), (3) we conclude that f ∈ A. �

Theorem 4.5. Let G be a locally compact group, A1 ⊂
A2 ⊆ LUC(G) be unital C∗-subalgebras with A2 left
invariant. Suppose that G contains a family of sets
(Tη)η<κ such that

(i) each Tη fails to be an A1-interpolation set,
(ii) T =

∪
η<κ Tη is an appro. A2-interpolation set.

(iii) T is right U-uniformly discrete for some com-
pact ngh. of e.

Then there is a linear isometry Ψ: ℓ∞(κ) → A2/A1.

Proof. Let V be the ngh. of e provided by Lemma 4.4.
Pick by Lemma 4.3 a function f ∈ A2 with ∥f∥∞ = 1
such that

f (G\V T ) = {0} and ∥f−ϕ∥Tη
≥ 1 for all ϕ ∈ A1 and η < κ.
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For each c ∈ ℓ∞(κ), define fc : G → C supported in V T
with

fc�V Tη
= c(η)f �V Tη

.

Then fc ∈ A2 by Lemma 4.4. Obviously, the map Ψ: ℓ∞(κ) →
A2/A1 given by

Ψ(c) = fc +A1 for every c ∈ ℓ∞(κ)

is linear. We next check that it is isometric.
The same argument of Chou shows now that, for every
η0 < κ,

∥Ψ (c)) ∥A2/A1
= inf{∥fc − ϕ∥∞ : ϕ ∈ A1}
≥ inf{∥fc − ϕ∥Tη0

: ϕ ∈ A1}
= inf{∥c(η0)f − ϕ∥Tη0

: ϕ ∈ A1}
= |c(η0)| inf{∥f − ϕ∥Tη0

: ϕ ∈ A1}
≥ |c(η0)|,

where the last inequality follows from the choice of f .
Since, obviously,

∥Ψ(c)∥A2/A1
≤ ∥fc∥∞ = ∥c∥, for every c = (cη)η<κ ∈ ℓ∞(κ),

we see that Ψ is the required isometry. �

Corollary 4.6. If in the above theorem A2 = CB(G)
and T is not assumed to be right U-uniformly discrete
but still UTη ∩ UTη′ = ∅, then the quotient CB(G)/A1

contains a linearly isometric copy of ℓ∞(κ).

Remark 4.7. Two C∗-subalgebras of ℓ∞(G) may be
different, and yet produce a small quotient (i.e., sepa-
rable), for example if G is a minimally weakly almost
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periodic group (Chou 1990, Ruppert 1984, Veech 1979)
then WAP(G)/AP(G) = C0(G). If G = SL(2,R), then
WAP(G) = C0(G)⊕ C1, and so WAP(G)/C0(G) = C.
In the theorem above, we have just met conditions un-
der which this is not so.

Corollary 4.8.Under the hypotheses of Theorem 4.5,
the quotient space A2/A1 is non-separable.
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5. Application

Theorem 5.1. Let G be a non-compact locally com-
pact E-group with an E-set X having a compact cov-
ering number κ. Then WAP(G)/(AP(G)⊕C0(G) con-
tains a linear isometric copy of ℓ∞(κ).

Theorem 5.2. Let G be a non-compact locally com-
pact E-group with an E-set X having a compact cover-
ing number κ. Then the quotient space WAP0(G)/C0(G)
contains a linear isometric copy of ℓ∞(κ).

Theorem 5.3. Let G be a locally compact group and
κ = κ(Z(G)). There is always a linear isometry ℓ∞(κ)
in WAP(G)/B(G).

Theorem 5.4. Let G be a a non-compact, locally com-
pact, IN -group and put κ = κ(G). Then there is a
linear isometry copy of ℓ∞(κ) in WAP(G)/B(G).

Corollary 5.5. Let G be a non-compact IN -group
with compact covering κ. Then WAP0(G)/C0(G) con-
tains a linear isometric copy of ℓ∞(κ).

Corollary 5.6. Let G be a a non-compact, locally com-
pact, nilpotent group and put κ = κ(G). Then WAP(G)/B(G)
contains a linear isometric copy of ℓ∞(κ).

Theorem 5.7. Let G be a locally compact group. Then
CB(G)/LUC(G) contains a linear isometric copy of
ℓ∞(κ(G)) if and only if G is neither compact nor dis-
crete.


