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Introduction

It is a well known theorem in harmonic analysis that a locally
compact group G is compact if and only if its dual Ĝ is discrete.
This dual is just the spectrum of the full C ∗-algebra C ∗(G ) of G .
There is a bunch of properties of the weak∗ topology for the
Fourier–Stieltjes algebra B(G ) of G , which are equivalent to the
compactness of the group.
Some of them, which can be formulated in purely C ∗-algebraic
terms are the topic of this note.
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Let E be a Banach space and K be a non–empty bounded closed
convex subset. K has the fixed point property if any non–expansive
map T : K → K (i.e. ‖Tx − Ty ‖ ≤ ‖ x − y ‖ for all x , y ∈ K ) has
a fixed point in K .

Definition

E has the fixed point property if any non–empty bounded closed
convex subset K has the fixed point property.

E has the weak fixed point property if every non–empty weakly
compact convex subset K of E has the fixed point property.

If E is a dual Banach space:

Definition

E weak∗-fixed point property of E every non–empty weak∗

compact convex subset K of E has the fixed point property.

Since convex weakly compact sets are weak∗ compact,

weak∗ fixed point property =⇒ weak fixed point property.
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Denote S a semitopological left reversible semigroup acting by
non-expansive mappings separately continuously on a non-empty
weak∗ compact convex set K ⊂ E .
(left-reversible: aS ∩ bS 6= ∅, ∀a, b ∈ S.)

Definition

E has the weak∗-fixed point property for left reversible semigroups
if such S has a common fixed point in K .

Remark

A locally compact group G is compact if and only if B(G ) has the
weak∗ fixed point property for non-expansive maps, equivalently for
left reversible semigroups.
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A a C ∗-algebra , π : A→ B(H) a *-representation.
Denote π

′ ' π unitary equivalence of ∗-representations π
′

and π.
Â – the set of unitary equivalence classes with topology induced
from the Jacobson topology on the kernels – the spectrum of A.

Theorem

A separable C ∗-algebra has a discrete spectrum if and only if its
Banach space dual has the weak∗ fixed point property.
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Why separable C ∗-algebras only?
H a Hilbert space K = K(H) compact operators on H.

Remark (Naimark ’48)

K̂ is a point. If Â is a point, is A = K(H), for some H?

Remark (Rosenberg ’73)

If A is separable then the question has a positive answer.

Remark (Akemann, Weaver 2004)

Assuming a set diamond theoretic axiom, independent from ZFC,
there is a counterexample.

Remark (Conjecture)

There is a (non-separable) C ∗-algebra with discrete spectrum and
without w*fpp, at least when assuming the diamond axiom.
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Weak* Fixed Point Property

H a Hilbert space A ⊂ B(H) a C ∗-algebra, and K ⊂ B(H) the
compact operators. For ξ ∈ H let ωξ(a) =< a ξ, ξ > be the
associated vector state.

Lemma (Glimm ’61)

If ϕ ∈ A∗ is a state ϕ|A∩K = 0 then ϕ ∈ {ωξ : ξ ∈ H}w∗.

Theorem (Anderson ’77)

If A is separable ϕ ∈ A∗ is a state ϕ|A∩K = 0 then there is an
orthonormal sequence ξn, such that ϕ = w∗ − limωξn .

Proposition

Let π
′ 6' π ∈ Â with π

′ ∈ {π} be given and assume that ϕ is a
state of A associated with π

′
. Then there is an orthonormal

sequence (ξn) in Hπ with (π(.)ξn|ξn)→ ϕ weakly∗.
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By assumption, ker π ⊂ ker π
′

so there is a representation π◦ of
π(A) such that π

′
= π◦ ◦ π. We may therefore assume that π is

the identical representation.

(i) Suppose ϕ|K(Hπ)∩A 6= ∅. Then π
′

= πϕ does not annihilate
K(Hπ) ∩ A. Hence K(Hπ) ⊂ A and it is a two sided ideal.
Moreover π

′
is faithful on K(Hπ) and π

′

|K(Hπ)
is an irreducible

representation. Therefore it is equivalent to the identical
representation of K(Hπ). Then π

′
is equivalent to the identical

representation of A. This contradicts the assumption, so this case
can not happen.

(ii) The case ϕ|K(Hπ)∩A = 0 is covered by Anderson’s theorem.
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Proposition

If A∗ has the weak∗fpp then points in Â are closed.

Assume A∗ has w∗fpp. Proof a contrario.
If {π} is non–closed then there is π

′ 6' π contained in {π}. For ϕ,
a pure state associated with π

′
, there exists (ξn) in Hπ an

orthonormal sequence such that ϕn :=< π(.)ξn|ξn >→ ϕ weakly∗.
Set ϕ0 = ϕ.

1 A∗ has wfpp.

2 A∗∗ is a type I von Neumann algebra, otherwise
L([0, 1], leb)→ L(R, τR)→ A∗ isometrically
(R the hyper finite II1 factor). Randrianantoanina 2010,
Marcolino Nhany ’97.

3 L([0, 1], leb) does not have wfpp (Alspach 81).

4 Moreover A = ⊕1l(Nk)⊗γ T (Hk) an l1 direct sum and has a
faithful trace τ .
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Introduction Weak* Fixed Point Property Uniform Weak* Kadec-Klee References

Proposition

If A∗ has the weak∗fpp then points in Â are closed.
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1 A∗ = L(A∗∗, τ) is atomic (and has the Radon Nykodim
Property). (Lau and Leinert 2008)

2 Hence we find pairwise orthogonal projections P ′j separating
the ϕi , i.e. ϕi (P ′j ) = δj ,i

(ϕ0 was the bad guy the others are
dealt with by Andersons lemma).

3 C = {
∑∞

0 αiϕi |0 ≤ αi ≤ 1,
∑∞

0 αi = 1} is convex weak∗

compact.

4 The coefficients of every f =
∑∞

0 αiϕi ∈ C are uniquely
determined. (consider f (P ′i ))

5 Define a distance preserving fixed point free map on C :

T
∞∑
0

αiϕi =
∞∑
0

αiϕi+1.
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1 A∗ = L(A∗∗, τ) is atomic (and has the Radon Nykodim
Property). (Lau and Leinert 2008)

2 Hence we find pairwise orthogonal projections P ′j separating
the ϕi , i.e. ϕi (P ′j ) = δj ,i (ϕ0 was the bad guy the others are
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Theorem

For a separable C ∗-algebra the following are equivalent

(i) The dual Â is discrete.

(ii) A∗ has the weak∗ fixed point property.

(iii) A∗ has the weak∗ fixed point property for left reversible
semigroups.

(i) =⇒ (iii)
N.Randrianantoanina 2010 proved that the trace class operators
(the dual of K) have the weak∗ fixed point property for left
reversible semigroups.
If Â is discrete, then A = ⊕c0An, where Ân = {one point}, hence
An = K(Hn).
(iii) =⇒ (ii) by restriction
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(ii) =⇒ (i)
If Â is not discrete: π0 ∈ M

w∗
, π0 /∈ M and M must be infinite.

So, since A is separable, for any state ϕ0 associated to π0 there is
a sequence of states (ϕn) associated to pairwise non-equivalent
representations πn with ϕn → ϕ0 weakly∗. The support projections
(of the states ϕn) in the universal representation of A are mutually
orthogonal. As above the set

C = {
∞∑
0

αiϕi : αi ≥ 0,
∑

αi = 1}

is convex and weak∗ compact. The map T : C → C defined like
there is well defined and isometric because of the orthogonality of
the supports, and it has no fixed point in C .
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Uniform Weak* Kadec-Klee

K ⊂ E – a closed convex bounded subset of a Banach space E .
x ∈ K is a diametral point if sup{‖ x − y ‖ : y ∈ K} = diam(K ).

Definition

1 The set K is said to have normal structure if every convex
non-trivial (i.e. containing at least two different points) subset
H ⊂ K contains a non-diametral point of H.

2 E has weak normal structure if every convex weakly compact
subset has normal structure.

3 A dual Banach space has weak∗ normal structure if every
convex weakly∗ compact subset has normal structure.
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Definition

1 A dual Banach space E has weak∗ Kadec-Klee property (KK∗)
if weak∗ and norm convergence coincide on sequences of its
unit sphere.

2 A dual Banach space E has uniform weak∗ Kadec-Klee
property (UKK∗) if for ε > 0 there is 0 < δ < 1 such that for
any subset C of its closed unit ball containing an infinite
sequence (xi )i∈N with separation
sep((xi )i ) := inf{‖ xi − xj ‖ : i 6= j} > ε, there is an x in the
weak∗-closure of C with ‖ x ‖ < δ.
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Well known fact:

Proposition

Let E be a dual Banach space.

(i) The uniform weak∗ Kadec-Klee property implies the weak∗

Kadec-Klee property.

(ii) If E is the dual of a separable Banach space E∗ and has the
uniform weak∗ Kadec-Klee property then the weak∗ topology
and the norm topology coincide on the unit sphere of E .
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Theorem

For a separable C ∗-algebra A the following are equivalent

(i) The dual Â is discrete,

(ii) The Banach space dual A∗ has the UKK∗ property,

(iii) On the unit sphere of A∗ the weak∗ and the norm topology
coincide,

(iv) On the set of states S(A) of A the weak∗ and the norm
topology coincide,

(v) On the set of pure states P(A) of A the weak∗ and the norm
topology coincide.

(vi) A∗ has weak∗ normal structure.

(vii) A∗ has the weak∗ fixed point property for non-expansive
mappings.

(viii) A∗ has the weak∗ fixed point property for left reversible
semigroups.
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Remark

The C ∗-algebras fulfilling the equivalent conditions of the theorem
are known as separable dual C ∗ algebras. This follows from the
fact that separable dual C ∗-algebras are characterised by the
property that their spectrum is discrete.

[Proof of the theorem]

(i) =⇒ (ii)
A∗ = ⊕1T (Hl) a countable l1-direct sumthe canonical dual to
A = ⊕0(K(Hl) a c0-direct sum of compact operators.
Reordering A∗ ⊂ (T (⊕2Hl), weak∗ closed and we obtain the
UKK∗ property of A∗ from the UKK∗ property of the trace
class operators (Lennard ’90).

(ii) =⇒ (iii)
by the above Proposition.

(iii) =⇒ (iv) =⇒ (v)
by restriction.
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(v) =⇒ (i)
(Argument due to Bekka, Kaniuth, Lau and Schlichting ’98,
based on an argument of Glimm and Kadison)
For ϕ ∈ S(A) corresponds πϕ by GNS-construction. Extreme

points of P(A) corresponds Â. If P(A) is endowed with the
weak∗ topology then the mapping q : ϕ→ πϕ is open. For
ϕ,ψ ∈ P(A) the two representations πϕ and πψ are equivalent
if ‖ϕ− ψ ‖ < 2. Hence, assuming (v), the (norm open) set
{ψ ∈ P(A) : ‖ϕ− ψ ‖ < 2} contains a weak∗ open
neighbourhood of ϕ ∈ P(A). Its image under q is open but
just reduces to the point πϕ. This shows that points in Â are
open.

(ii) =⇒ (vi) Lau and Mah ’88,

(vi) =⇒ (vii) Lim ’80.

(vii) =⇒ (i) holds true by Theorem.

From this theorem we have (viii) ⇐⇒ (i) too.
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