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The Jacobson radical of an algebra

Let A be a (complex, associative) algebra with

identity eA.

The Jacobson radical of A is denoted by J(A);

A is semisimple if J(A) = {0}.

An element a ∈ A is quasi-nilpotent if zeA− a
is invertible for each z ∈ C with z 6= 0; the set

of these is Q(A).

Fact Let A be a unital algebra. Then

J(A) = {a ∈ A : ba ∈ Q(A) (b ∈ A)} .

Thus J(A) ⊂ Q(A). 2

For non-unital A, we have J(A) = J(A]).
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Banach spaces

The dual and bidual of a Banach space E are

E′ and E′′, respectively.

Let S be a non-empty set. Then `1(S) is the

usual Banach space. The characteristic func-

tion of {s} for an element s ∈ S is δs, and so a

generic element of `1(S) is
∑
s∈S f(s)δs.

The linear space spanned by the functions δs is

CS; these are the elements of finite support.

Thus CS is a dense subspace of (`1(S), ‖ · ‖1).

The dual space of `1(S) is `∞(S) with the

usual duality.
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Semigroups

A semigroup is a non-empty set S with a
binary operation such that

r(st) = (rs)t (r, s, t ∈ S) .

Eg, (1) (N,+), (2) Sn, which is the free semi-
group on n generators, (3) any group, such as
F2, the free group on 2 generators.

An element p ∈ S is idempotent if p2 = p; the
set of these is E(S).

For s ∈ S, set Ls(t) = st, Rs(t) = ts for t ∈ S.

An element s ∈ S is cancellable if both Ls and
Rs are injective, and S is cancellative if each
s ∈ S is cancellable. Also weakly cancellative.

A subset I is a left ideal if Ls(I) ⊂ I for s ∈ S,
etc.

An abelian, cancellative semigroup is embedd-
able in a group, but this is not true for all
cancellable semigroups.
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Two semigroup algebras

Let S be a semigroup. Then (`1(S), ? , ‖ · ‖1)

is the semigroup algebra of S.

The space CS, the algebraist’s semigroup

algebra, is a dense subalgebra of our Banach

algebra `1(S).

Obvious question When are `1(S) and/or CS
semisimple?

For S abelian, `1(S) is semisimple if and only

if S is separating, in the sense that s = t

whenever s, t ∈ S and s2 = t2 = st. (Hewitt

and Zuckerman, 1956)

Notation: The radicals are J(S) and J0(S),

respectively; the quasi-nilpotents of `1(S) are

Q(S).
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Some answers

In the case where G is a group, `1(G) and

CG are semisimple [Rickart 1960]. Further,

Q(G) = {0} for each abelian group G.

Easy examples show that there are finite, abelian

semigroups S such that `1(S) = CS is not

semisimple. For example, set S = {o, s} where

o2 = os = so = s2 = o ,

so that S is a zero semigroup. Set f = δo−δs.
Then J(S) = Cf 6= {0}.
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Some open questions

I do not know if it is a general truth that the

semi-simplicity of one of the algebras CS and

`1(S) follows from the semi-simplicity of the

other.

It is not known if either or both are semi-

simple whenever S is a cancellative semigroup,

or even whenever S is a sub-semigroup of a

group. (This is true when S is also abelian or

ordered.)

For S = F2, we have J(S) = {0}, but Q(S)

is very large. For S = Sn, we have J(S) =

Q(S) = {0}.
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Stone–Čech compactifications

The Stone–Čech compactification of a set
S is denoted by βS; set S∗ = βS \ S, this is
the growth of S. The space βS is each of the
following:

• - characterized by a universal property: βS is
a compactification of S such that each bounded
function from S to a compact space K has an
extension to a continuous map from βS to K;

• - the space of ultrafilters on S;

• - the Stone space of the Boolean algebra
P(S), the power set of S;

• - the character space of the commutative C∗-
algebra `∞(S), so that `∞(S) = C(βS) (and
βS is compact).

Suppose that |S| = κ. Then |βS| = 22κ. Topo-
logically βS is a Stonean space: it is
extremely disconnected.
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Semigroup compactifications

Let S be a semigroup.

For each s ∈ S, the map Ls : S → βS has an
extension to a continuous map Ls : βS → βS.
For each u ∈ βS, define s2u = Ls(u).

Next, the map Ru : s 7→ s2u, S → βS , has an
extension to a continuous map Ru : βS → βS
for each u ∈ βS. Define

u2 v = Rv(u) (u, v ∈ βS) .

Then (βS,2) is a semigroup.

Often the binary operation on βN from the
semigroup (N,+) is denoted by (βN, + ). But
note that x+ y 6= y + x, in general.

Starting from a group G, we obtain a semi-
group (βG, 2 ). But it is never a group (for
infinite G).

It is easy to stumble across open questions
about (βN, + ).
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Compact, right topological semigroup

Definition A semigroup V with a topology τ

is a compact, right topological semigroup

if (V, τ) is a compact space and the map Rv is

continuous with respect to τ for each v ∈ V .

In general, the maps Lv are not continuous.

For example, V = (βS, 2 ) and V = (S∗,2)

for weakly cancellative S are compact, right

topological semigroups. Here Lv is continuous

on (βS, 2 ) if and only if v ∈ S.
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Our semigroups

Let S be a semigroup. Then we are inter-

ested in the semigroup algebras `1(βS, 2 ) and

`1(S∗, 2 ). Are they semisimple? Is `1(N∗,+)

semisimple?

[The set S∗ is an ideal in (βS, 2 ) iff S is weakly

cancellative. In this case,

`1(βS, 2 ) = `1(S) n `1(S∗, 2 )

as a semi-direct product. When `1(S) is semi-

simple, we have J(βS, 2 ) = J(S∗, 2 ).]
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An example

Example For m,n ∈ N, define

m ∨ n = max{m,n} ,

and set S = (N,∨). Then S is a countable,

weakly cancellative, abelian semigroup, and `1(S)

is semisimple because S is separating, and so

J(βS) = J(S∗). Then

u2 v = v (u, v ∈ S∗) ,

and so (S∗,2) is a right zero semigroup. Thus

J(βS,2) =

f ∈ `1(S∗) :
∑
u∈S∗

f(u) = 0

 ,

and so `1(S∗) is not semisimple. 2
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The structure theorem

The study of our semigroups is based on the
following structure theorem.

Theorem Let V be a compact, right topolog-
ical semigroup. (Eg, V is (βS, 2 ) or (S∗, 2 ).)

(i) There is a unique minimum ideal K(V ) in
V . The families of minimal left ideals and of
minimal right ideals of V both partition K(V ).

(ii) For each minimal right and left ideals R and
L in V , there exists an element p ∈ E(V )∩R∩L
such that R ∩ L = RL = pV p is a group; these
groups are maximal in K(V ), are pairwise iso-
morphic, and the family of these groups parti-
tions K(V ).

(iii) For each p, q ∈ K(V ), the subset pK(V )q is
a subgroup of V , and there exists r ∈ E(K(V ))
with rp = p and qr = q. 2

[Considerably more is known.]
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K(βN) is big

It is easy to see that K(βN) is equal to K(N∗).

Theorem (Hindman and Pym) The semigroup
K(N∗) contains many isomorphic copies of F2

as a subgroup. 2

Thus `1(K(N∗)) contains many isometric and
(algebra) isomorphic copies of `1(F2) as a closed
subalgebra, and hence there are many quasi-
nilpotents in `1(K(N∗)).

A semigroup R of the form A×B, where

(a, b)(c, d) = (a, d) (a, c ∈ A, b, d ∈ B)

is a rectangular semigroup. It is easy to see
that dim J(R) ≥ |A|. But it is a deep result of
Yevhen Zelenyuk that K(N∗) contains a rect-
angular semigroup A × B with |A| = |B| = 2c.
Thus there is a ‘very large’ sub-semigroup R

of K(N∗) with `1(R) far from semisimple.
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Second duals of Banach algebras

Let A be a Banach algebra. There are two nat-

ural products on A′′ of A; they are the Arens

products, and are denoted by 2 and 3, re-

spectively.

We give the definitions. For a ∈ A and λ ∈ A′,
define a · λ and λ · a in A′ by

〈b, a ·λ〉 = 〈ba, λ〉 , 〈b, λ · a〉 = 〈ab, λ〉 (b ∈ A) .

For each λ ∈ A′ and M ∈ A′′, define λ · M ∈ A′

and M · λ ∈ A′ by

〈a, λ ·M〉 = 〈M, a · λ〉 , 〈a, M · λ〉 = 〈M, λ · a〉 ,

for a ∈ A.

For M,N ∈ A′′, define

〈M2N, λ〉 = 〈M, N ·λ〉 , 〈M3N, λ〉 = 〈N, λ ·M〉 ,

for λ ∈ A′.
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Easier to remember

Take M = limα aα and N = limβ bβ in A′′ (in
the weak-∗ topology). Then

M2N = lim
α

lim
β
aαbβ , M3N = lim

β
lim
α
aαbβ .

Arens regularity

Theorem Let A be a Banach algebra. Then
(A′′,2) and (A′′, 3 ) are Banach algebras con-
taining A as a closed subalgebra. 2

In general, the two products 2 and 3 on A′′

are not the same.

Definition A Banach algebra A is Arens reg-

ular if 2 and 3 coincide on A′′, and strongly

Arens irregular if they agree only when one
term in the product is in A itself.

These are very contrasting properties.
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Second duals of semi-group algebras

Start with a semigroup S and the semigroup
algebra A = (`1(S), ? ).

Then A′ = `∞(S) = C(βS) as a Banach space,
and so A′′ = M(βS).

We can transfer the Arens products 2 and 3

to M(βS), and so we can define

µ 2 ν and µ � ν for µ, ν ∈M(βS) .

In particular, we define δu 2 δv for u, v ∈ βS,
and, of course, δu 2 δv = δu2 v.

It is very rare to have µ 2 ν = µ � ν.

Fact Let G be a group. Then the algebra
`1(βG,2) is semisimple if and only if `1(βG,3)
is semisimple. We do not know if this is al-
ways true when we replace G by a (cancella-
tive) semigroup.
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Semi-simplicity of M(βS)

We do have the following. A group G is amenable

if there is an invariant mean on G: this is

a translation-invariant linear functional λ on

`∞(G) with ‖λ‖ = 〈1, λ〉 = 1

Theorem (Granirer) Let S be an infinite, amenable

group or S = (N,+). Then

dim J(M(βS,2)) ≥ 2c .

Proof There are lots of invariant means, and

these can be used to build elements of the

radical. 2

Open question Is M(βF2,2) semisimple?
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Semi-simplicity of `1(βN,+)

We seek a condition for this.

Lemma Let S be a countable semigroup that

is a subsemigroup of a group G, and suppose

that (xn : n ∈ N) is a sequence in S∗ \ K(S∗).

Then there is an infinite subset A of S such

that, for each u ∈ A∗:

(i) u is cancellable;

(ii) u2xn is right cancellable for each n ∈ N;

(iii) for each m,n ∈ N, either xm ∈ Gxn or

((βG) 2u2xm) ∩ ((βG) 2u2xn) = ∅. 2
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A first theorem

We denote the semigroup operation in G∗ by

‘+’; for x ∈ βG and n ∈ N, we write n ∗ x for

x+ · · ·+ x, where there are n copies of x.

Theorem Let S be a subsemigroup of an abelian

group G. Take f ∈ J(S∗). Then

supp f ⊂ K(S∗) .

Proof Assume that supp f 6⊂ K(S∗), and set

X = supp f \K(S∗) ,

so that X is a countable, non-empty set.

By the lemma, there exists cancellable u ∈ βS
with u+x right cancellable for each x ∈ X, and

such that, for each x, y ∈ X, either x ∈ G + y

or (βG+ u+ x) ∩ (βG+ u+ y) = ∅.
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Proof - continued

By replacing each x ∈ X by u+x and f by δu ? f ,

we may suppose that x is right cancellable for

each x ∈ X and that, for each x, y ∈ X, either

x ∈ G+ y or (βG+ x) ∩ (βG+ y) = ∅.

We have not changed the value of ‖f‖ because

u is cancellable.

Suppose that xi1, . . . , xik, xj1, . . . , xjm ∈ X and

xi1 + · · ·+ xik ∈ G+ xj1 + · · ·+ xjm .

Then (βG+ xik) ∩ (βG+ xjm) 6= ∅, and so

xik ∈ G+ xjm. Since xik and xjm are right can-

cellable,

xi1 + · · ·+ xik−1
∈ G+ xj1 + · · ·+ xjm−1

.

Continuing, we see that that k = m and that

xir ∈ G+ xjr for all r ∈ {1, ..., k}.
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Proof - continued

Choose x ∈ X, and set Tn = G + n ∗ x for

n ∈ N. Set h = f | T1, so that h ∈ `1(S∗).

Since f(x) 6= 0, we have h(x) 6= 0.

By the above remark, h∗n = f∗n | Tn, and so

‖h∗n‖1 ≤ ‖f∗n‖1. Consequently h ∈ Q(S∗).

Now define ϕ ∈ `1(G) by

ϕ(y) = h(y + x) (y ∈ G) .

Then ‖ϕ∗n‖1 = ‖h∗n | Tn‖1 ≤ ‖h∗n‖1, and hence

ϕ ∈ Q(G). However Q(G) = {0} because G is

abelian.

Hence h(x) = 0, a contradiction. 2
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The main theorem

We set J = J(βN,+) and K = K(N∗).

Theorem Let f ∈ `1(βN,+). Then f ∈ J if

and only if supp f ⊂ K and δp ? f ? δq = 0 for

each p, q ∈ K.

Proof Suppose that f ∈ J. By the previous

theorem, supp f ⊂ K. Take p, q ∈ K, and set

G = p+K + q, a subgroup of K. Then

supp (δp ? f ? δq) ⊂ G ,

and so it is an element of J(G), which is {0}.

For the converse, it follows that g ? f is

nilpotent of degree at most 3 for each

g ∈ `1(βN,+)], and so f ∈ J. 2
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Consequence

Corollary The following are equivalent:

(a) `1(βN,+) is semisimple;

(b) `1(K(N∗)) is semisimple;

(c) `1(G∗) is semisimple for some/every
infinite, countable, abelian group G. 2

Is the condition of the theorem satisfied? Es-
sentially, it says:

Theorem The algebra `1(βN,+) is not semi-
simple if and only if there exist x, y ∈ K(N∗)
with x 6= y such that p+ x+ q = p+ y + q for
each p, q ∈ K(N∗). 2

Whether or not this holds is a famous open
question about (βN,+), raised at least 40 years
ago.

Corollary Assume that `1(N∗,+) is not semi-
simple. Then (M(βF2),2) is not semisimple. 2
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