The radical of $\ell^{1}(\beta \mathbb{N})$

H. G. Dales, Lancaster

(with Dona Strauss and Yevhen and Yuliya Zelenyuk)

Semigroup Forum, to appear

Harmonic Analysis, Granada

24 May 2013

The Jacobson radical of an algebra

Let A be a (complex, associative) algebra with identity e_{A}.

The Jacobson radical of A is denoted by $J(A)$; A is semisimple if $J(A)=\{0\}$.

An element $a \in A$ is quasi-nilpotent if $z e_{A}-a$ is invertible for each $z \in \mathbb{C}$ with $z \neq 0$; the set of these is $\mathcal{Q}(A)$.

Fact Let A be a unital algebra. Then

$$
J(A)=\{a \in A: b a \in \mathcal{Q}(A)(b \in A)\}
$$

Thus $J(A) \subset \mathcal{Q}(A)$.

For non-unital A, we have $J(A)=J\left(A^{\sharp}\right)$.

Banach spaces

The dual and bidual of a Banach space E are E^{\prime} and $E^{\prime \prime}$, respectively.

Let S be a non-empty set. Then $\ell^{1}(S)$ is the usual Banach space. The characteristic function of $\{s\}$ for an element $s \in S$ is δ_{s}, and so a generic element of $\ell^{1}(S)$ is $\sum_{s \in S} f(s) \delta_{s}$.

The linear space spanned by the functions δ_{s} is $\mathbb{C} S$; these are the elements of finite support. Thus $\mathbb{C} S$ is a dense subspace of $\left(\ell^{1}(S),\|\cdot\|_{1}\right)$.

The dual space of $\ell^{1}(S)$ is $\ell^{\infty}(S)$ with the usual duality.

Semigroups

A semigroup is a non-empty set S with a binary operation such that

$$
r(s t)=(r s) t \quad(r, s, t \in S)
$$

$\mathrm{Eg},(1)(\mathbb{N},+),(2) \mathbb{S}_{n}$, which is the free semigroup on n generators, (3) any group, such as \mathbb{F}_{2}, the free group on 2 generators.

An element $p \in S$ is idempotent if $p^{2}=p$; the set of these is $E(S)$.

For $s \in S$, set $L_{s}(t)=s t, R_{s}(t)=t s$ for $t \in S$.
An element $s \in S$ is cancellable if both L_{s} and R_{s} are injective, and S is cancellative if each $s \in S$ is cancellable. Also weakly cancellative.

A subset I is a left ideal if $L_{s}(I) \subset I$ for $s \in S$, etc.

An abelian, cancellative semigroup is embeddable in a group, but this is not true for all cancellable semigroups.

Two semigroup algebras

Let S be a semigroup. Then $\left(\ell^{1}(S), \star,\|\cdot\|_{1}\right)$ is the semigroup algebra of S.

The space $\mathbb{C} S$, the algebraist's semigroup algebra, is a dense subalgebra of our Banach algebra $\ell^{1}(S)$.

Obvious question When are $\ell^{1}(S)$ and/or $\mathbb{C} S$ semisimple?

For S abelian, $\ell^{1}(S)$ is semisimple if and only if S is separating, in the sense that $s=t$ whenever $s, t \in S$ and $s^{2}=t^{2}=s t$. (Hewitt and Zuckerman, 1956)

Notation: The radicals are $J(S)$ and $J_{0}(S)$, respectively; the quasi-nilpotents of $\ell^{1}(S)$ are $\mathcal{Q}(S)$.

Some answers

In the case where G is a group, $\ell^{1}(G)$ and $\mathbb{C} G$ are semisimple [Rickart 1960]. Further, $\mathcal{Q}(G)=\{0\}$ for each abelian group G.

Easy examples show that there are finite, abelian semigroups S such that $\ell^{1}(S)=\mathbb{C} S$ is not semisimple. For example, set $S=\{o, s\}$ where

$$
o^{2}=o s=s o=s^{2}=o,
$$

so that S is a zero semigroup. Set $f=\delta_{o}-\delta_{s}$. Then $J(S)=\mathbb{C} f \neq\{0\}$.

Some open questions

I do not know if it is a general truth that the semi-simplicity of one of the algebras $\mathbb{C} S$ and $\ell^{1}(S)$ follows from the semi-simplicity of the other.

It is not known if either or both are semisimple whenever S is a cancellative semigroup, or even whenever S is a sub-semigroup of a group. (This is true when S is also abelian or ordered.)

For $S=\mathbb{F}_{2}$, we have $J(S)=\{0\}$, but $\mathcal{Q}(S)$ is very large. For $S=\mathbb{S}_{n}$, we have $J(S)=$ $\mathcal{Q}(S)=\{0\}$.

Stone-Čech compactifications

The Stone-Čech compactification of a set S is denoted by βS; set $S^{*}=\beta S \backslash S$, this is the growth of S. The space βS is each of the following:

- - characterized by a universal property: βS is a compactification of S such that each bounded function from S to a compact space K has an extension to a continuous map from βS to K;
- - the space of ultrafilters on S;
- - the Stone space of the Boolean algebra $\mathcal{P}(S)$, the power set of S;
- - the character space of the commutative C^{*} algebra $\ell^{\infty}(S)$, so that $\ell^{\infty}(S)=C(\beta S)$ (and βS is compact).

Suppose that $|S|=\kappa$. Then $|\beta S|=2^{2^{\kappa}}$. Topologically βS is a Stonean space: it is extremely disconnected.

Semigroup compactifications

Let S be a semigroup.
For each $s \in S$, the map $L_{s}: S \rightarrow \beta S$ has an extension to a continuous map $L_{s}: \beta S \rightarrow \beta S$. For each $u \in \beta S$, define $s \square u=L_{s}(u)$.

Next, the map $R_{u}: s \mapsto s \square u, S \rightarrow \beta S$, has an extension to a continuous map $R_{u}: \beta S \rightarrow \beta S$ for each $u \in \beta S$. Define

$$
u \square v=R_{v}(u) \quad(u, v \in \beta S) .
$$

Then $(\beta S, \square)$ is a semigroup.
Often the binary operation on $\beta \mathbb{N}$ from the semigroup $(\mathbb{N},+)$ is denoted by $(\beta \mathbb{N},+)$. But note that $x+y \neq y+x$, in general.

Starting from a group G, we obtain a semigroup ($\beta G, \square$). But it is never a group (for infinite G).

It is easy to stumble across open questions about $(\beta \mathbb{N},+)$.

Compact, right topological semigroup

Definition A semigroup V with a topology τ is a compact, right topological semigroup if (V, τ) is a compact space and the map R_{v} is continuous with respect to τ for each $v \in V$.

In general, the maps L_{v} are not continuous.

For example, $V=(\beta S, \square)$ and $V=\left(S^{*}, \square\right)$ for weakly cancellative S are compact, right topological semigroups. Here L_{v} is continuous on $(\beta S, \square)$ if and only if $v \in S$.

Our semigroups

Let S be a semigroup. Then we are interested in the semigroup algebras $\ell^{1}(\beta S, \square)$ and $\ell^{1}\left(S^{*}, \square\right)$. Are they semisimple? Is $\ell^{1}\left(\mathbb{N}^{*},+\right)$ semisimple?
[The set S^{*} is an ideal in ($\beta S, \square$) iff S is weakly cancellative. In this case,

$$
\ell^{1}(\beta S, \square)=\ell^{1}(S) \ltimes \ell^{1}\left(S^{*}, \square\right)
$$

as a semi-direct product. When $\ell^{1}(S)$ is semisimple, we have $J(\beta S, \square)=J\left(S^{*}, \square\right)$.]

An example

Example For $m, n \in \mathbb{N}$, define

$$
m \vee n=\max \{m, n\}
$$

and set $S=(\mathbb{N}, \vee)$. Then S is a countable, weakly cancellative, abelian semigroup, and $\ell^{1}(S)$ is semisimple because S is separating, and so $J(\beta S)=J\left(S^{*}\right)$. Then

$$
u \square v=v \quad\left(u, v \in S^{*}\right),
$$

and so $\left(S^{*}, \square\right)$ is a right zero semigroup. Thus

$$
J(\beta S, \square)=\left\{f \in \ell^{1}\left(S^{*}\right): \sum_{u \in S^{*}} f(u)=0\right\}
$$

and so $\ell^{1}\left(S^{*}\right)$ is not semisimple.

The structure theorem

The study of our semigroups is based on the following structure theorem.

Theorem Let V be a compact, right topological semigroup. (Eg, V is $(\beta S, \square)$ or ($\left.S^{*}, \square\right)$)
(i) There is a unique minimum ideal $K(V)$ in V. The families of minimal left ideals and of minimal right ideals of V both partition $K(V)$.
(ii) For each minimal right and left ideals R and L in V, there exists an element $p \in E(V) \cap R \cap L$ such that $R \cap L=R L=p V p$ is a group; these groups are maximal in $K(V)$, are pairwise isomorphic, and the family of these groups partitions $K(V)$.
(iii) For each $p, q \in K(V)$, the subset $p K(V) q$ is a subgroup of V, and there exists $r \in E(K(V))$ with $r p=p$ and $q r=q$.
[Considerably more is known.]

$K(\beta \mathbb{N})$ is $\mathbf{b i g}$

It is easy to see that $K(\beta \mathbb{N})$ is equal to $K\left(\mathbb{N}^{*}\right)$.
Theorem (Hindman and Pym) The semigroup $K\left(\mathbb{N}^{*}\right)$ contains many isomorphic copies of \mathbb{F}_{2} as a subgroup.

Thus $\ell^{1}\left(K\left(\mathbb{N}^{*}\right)\right)$ contains many isometric and (algebra) isomorphic copies of $\ell^{1}\left(\mathbb{F}_{2}\right)$ as a closed subalgebra, and hence there are many quasinilpotents in $\ell^{1}\left(K\left(\mathbb{N}^{*}\right)\right)$.

A semigroup R of the form $A \times B$, where

$$
(a, b)(c, d)=(a, d) \quad(a, c \in A, b, d \in B)
$$

is a rectangular semigroup. It is easy to see that $\operatorname{dim} J(R) \geq|A|$. But it is a deep result of Yevhen Zelenyuk that $K\left(\mathbb{N}^{*}\right)$ contains a rectangular semigroup $A \times B$ with $|A|=|B|=2^{\text {c }}$. Thus there is a 'very large' sub-semigroup R of $K\left(\mathbb{N}^{*}\right)$ with $\ell^{1}(R)$ far from semisimple.

Second duals of Banach algebras

Let A be a Banach algebra. There are two natural products on $A^{\prime \prime}$ of A; they are the Arens products, and are denoted by \square and \diamond, respectively.

We give the definitions. For $a \in A$ and $\lambda \in A^{\prime}$, define $a \cdot \lambda$ and $\lambda \cdot a$ in A^{\prime} by

$$
\langle b, a \cdot \lambda\rangle=\langle b a, \lambda\rangle, \quad\langle b, \lambda \cdot a\rangle=\langle a b, \lambda\rangle \quad(b \in A) .
$$

For each $\lambda \in A^{\prime}$ and $\mathrm{M} \in A^{\prime \prime}$, define $\lambda \cdot \mathrm{M} \in A^{\prime}$ and $\mathrm{M} \cdot \lambda \in A^{\prime}$ by
$\langle a, \lambda \cdot \mathrm{M}\rangle=\langle\mathrm{M}, a \cdot \lambda\rangle, \quad\langle a, \mathrm{M} \cdot \lambda\rangle=\langle\mathrm{M}, \lambda \cdot a\rangle$, for $a \in A$.

For $\mathrm{M}, \mathrm{N} \in A^{\prime \prime}$, define $\langle\mathrm{M} \square \mathrm{N}, \lambda\rangle=\langle\mathrm{M}, \mathrm{N} \cdot \lambda\rangle, \quad\langle\mathrm{M} \diamond \mathrm{N}, \lambda\rangle=\langle\mathrm{N}, \lambda \cdot \mathrm{M}\rangle$, for $\lambda \in A^{\prime}$.

Easier to remember

Take $\mathrm{M}=\lim _{\alpha} a_{\alpha}$ and $\mathrm{N}=\lim _{\beta} b_{\beta}$ in $A^{\prime \prime}$ (in the weak-* topology). Then
$\mathrm{M} \square \mathrm{N}=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta}, \quad \mathrm{M} \diamond \mathrm{N}=\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta}$.

Arens regularity

Theorem Let A be a Banach algebra. Then ($A^{\prime \prime}, \square$) and ($A^{\prime \prime}, \diamond$) are Banach algebras containing A as a closed subalgebra.

In general, the two products \square and \diamond on $A^{\prime \prime}$ are not the same.

Definition A Banach algebra A is Arens regular if \square and \diamond coincide on $A^{\prime \prime}$, and strongly Arens irregular if they agree only when one term in the product is in A itself.

These are very contrasting properties.

Second duals of semi-group algebras

Start with a semigroup S and the semigroup algebra $A=\left(\ell^{1}(S), \star\right)$.

Then $A^{\prime}=\ell^{\infty}(S)=C(\beta S)$ as a Banach space, and so $A^{\prime \prime}=M(\beta S)$.

We can transfer the Arens products \square and \diamond to $M(\beta S)$, and so we can define $\mu \square \nu$ and $\mu \diamond \nu$ for $\mu, \nu \in M(\beta S)$.
In particular, we define $\delta_{u} \square \delta_{v}$ for $u, v \in \beta S$, and, of course, $\delta_{u} \square \delta_{v}=\delta_{u \square v}$.

It is very rare to have $\mu \square \nu=\mu \diamond \nu$.

Fact Let G be a group. Then the algebra $\ell^{1}(\beta G, \square)$ is semisimple if and only if $\ell^{1}(\beta G, \diamond)$ is semisimple. We do not know if this is always true when we replace G by a (cancellative) semigroup.

Semi-simplicity of $M(\beta S)$

We do have the following. A group G is amenable if there is an invariant mean on G : this is a translation-invariant linear functional λ on $\ell^{\infty}(G)$ with $\|\lambda\|=\langle 1, \lambda\rangle=1$

Theorem (Granirer) Let S be an infinite, amenable group or $S=(\mathbb{N},+)$. Then $\operatorname{dim} J(M(\beta S, \square)) \geq 2^{c}$.

Proof There are lots of invariant means, and these can be used to build elements of the radical.

Open question Is $M\left(\beta \mathbb{F}_{2}, \square\right)$ semisimple?

Semi-simplicity of $\ell^{1}(\beta \mathbb{N},+)$

We seek a condition for this.

Lemma Let S be a countable semigroup that is a subsemigroup of a group G, and suppose that ($x_{n}: n \in \mathbb{N}$) is a sequence in $S^{*} \backslash K\left(S^{*}\right)$. Then there is an infinite subset A of S such that, for each $u \in A^{*}$:
(i) u is cancellable;
(ii) $u \square x_{n}$ is right cancellable for each $n \in \mathbb{N}$;
(iii) for each $m, n \in \mathbb{N}$, either $x_{m} \in G x_{n}$ or $\left((\beta G) \square u \square x_{m}\right) \cap\left((\beta G) \square u \square x_{n}\right)=\emptyset$.

A first theorem

We denote the semigroup operation in G^{*} by '+'; for $x \in \beta G$ and $n \in \mathbb{N}$, we write $n * x$ for $x+\cdots+x$, where there are n copies of x.

Theorem Let S be a subsemigroup of an abelian group G. Take $f \in J\left(S^{*}\right)$. Then

$$
\text { supp } f \subset K\left(S^{*}\right)
$$

Proof Assume that supp $f \not \subset K\left(S^{*}\right)$, and set

$$
X=\operatorname{supp} f \backslash K\left(S^{*}\right),
$$

so that X is a countable, non-empty set.

By the lemma, there exists cancellable $u \in \beta S$ with $u+x$ right cancellable for each $x \in X$, and such that, for each $x, y \in X$, either $x \in G+y$ or $(\beta G+u+x) \cap(\beta G+u+y)=\emptyset$.

Proof - continued

By replacing each $x \in X$ by $u+x$ and f by $\delta_{u} \star f$, we may suppose that x is right cancellable for each $x \in X$ and that, for each $x, y \in X$, either $x \in G+y$ or $(\beta G+x) \cap(\beta G+y)=\emptyset$.

We have not changed the value of $\|f\|$ because u is cancellable.

Suppose that $x_{i_{1}}, \ldots, x_{i_{k}}, x_{j_{1}}, \ldots, x_{j_{m}} \in X$ and

$$
x_{i_{1}}+\cdots+x_{i_{k}} \in G+x_{j_{1}}+\cdots+x_{j_{m}} .
$$

Then $\left(\beta G+x_{i_{k}}\right) \cap\left(\beta G+x_{j_{m}}\right) \neq \emptyset$, and so $x_{i_{k}} \in G+x_{j_{m}}$. Since $x_{i_{k}}$ and $x_{j_{m}}$ are right cancellable,

$$
x_{i_{1}}+\cdots+x_{i_{k-1}} \in G+x_{j_{1}}+\cdots+x_{j_{m-1}} .
$$

Continuing, we see that that $k=m$ and that $x_{i_{r}} \in G+x_{j_{r}}$ for all $r \in\{1, \ldots, k\}$.

Proof - continued

Choose $x \in X$, and set $T_{n}=G+n * x$ for $n \in \mathbb{N}$. Set $h=f \mid T_{1}$, so that $h \in \ell^{1}\left(S^{*}\right)$. Since $f(x) \neq 0$, we have $h(x) \neq 0$.

By the above remark, $h^{* n}=f^{* n} \mid T_{n}$, and so $\left\|h^{* n}\right\|_{1} \leq\left\|f^{* n}\right\|_{1}$. Consequently $h \in \mathcal{Q}\left(S^{*}\right)$.

Now define $\varphi \in \ell^{1}(G)$ by

$$
\varphi(y)=h(y+x) \quad(y \in G)
$$

Then $\left\|\varphi^{* n}\right\|_{1}=\left\|h^{* n} \mid T_{n}\right\|_{1} \leq\left\|h^{* n}\right\|_{1}$, and hence $\varphi \in \mathcal{Q}(G)$. However $\mathcal{Q}(G)=\{0\}$ because G is abelian.

Hence $h(x)=0$, a contradiction.

The main theorem

We set $J=J(\beta \mathbb{N},+)$ and $K=K\left(\mathbb{N}^{*}\right)$.

Theorem Let $f \in \ell^{1}(\beta \mathbb{N},+)$. Then $f \in J$ if and only if supp $f \subset K$ and $\delta_{p} \star f \star \delta_{q}=0$ for each $p, q \in K$.

Proof Suppose that $f \in J$. By the previous theorem, supp $f \subset K$. Take $p, q \in K$, and set $G=p+K+q$, a subgroup of K. Then

$$
\operatorname{supp}\left(\delta_{p} \star f \star \delta_{q}\right) \subset G,
$$

and so it is an element of $J(G)$, which is $\{0\}$.

For the converse, it follows that $g \star f$ is nilpotent of degree at most 3 for each $g \in \ell^{1}(\beta \mathbb{N},+)^{\#}$, and so $f \in J$.

Consequence

Corollary The following are equivalent:
(a) $\ell^{1}(\beta \mathbb{N},+)$ is semisimple;
(b) $\ell^{1}\left(K\left(\mathbb{N}^{*}\right)\right)$ is semisimple;
(c) $\ell^{1}\left(G^{*}\right)$ is semisimple for some/every infinite, countable, abelian group G.

Is the condition of the theorem satisfied? Essentially, it says:

Theorem The algebra $\ell^{1}(\beta \mathbb{N},+)$ is not semisimple if and only if there exist $x, y \in K\left(\mathbb{N}^{*}\right)$ with $x \neq y$ such that $p+x+q=p+y+q$ for each $p, q \in K\left(\mathbb{N}^{*}\right)$.

Whether or not this holds is a famous open question about ($\beta \mathbb{N},+$), raised at least 40 years ago.

Corollary Assume that $\ell^{1}\left(\mathbb{N}^{*},+\right)$ is not semisimple. Then $\left(M\left(\beta \mathbb{F}_{2}\right), \square\right)$ is not semisimple.

