New results on semigroups of analytic functions

OSCAR BLASCO

Departamento Análisis Matemático Universidad Valencia

2013 AHA Granada, 23 May 2013 www.uv.es/oblasco

◆□ > ◆□ > ◆臣 > ◆臣 > ○

∃ 𝒫𝔅

Contents

注▶ ★注≯

A 10

∃ 𝒫𝔅

- ∢ ≣ ▶

3

3 New results on semigroups of analytic functions

< ∃⇒

3

References

The basic definitions New results on semigroups of analytic functions A theorem with proof

The papers and their authors

BCDMPS

Semigroups of composition operators and integral operators in spaces of analytic functions Ann. Acad. Scient. Fennicae Math. **38** (2013), 1-23.

BCDMS

Semigroups of composition operators in BMOA and the extension of a theorem of Sarason

Int. Eq. Oper. Theory 61 (2008), 45-62.

Authors:

- B=Oscar Blasco, M=Josep Martinez (Univ. Valencia)
- C= Manuel Contreras, D= Santiago Diaz-Madrigal (Univ. Sevilla)
- S= Aristomenis Siskakis (Univ. Thessaloniki, Grecia)
- P=Michael Papadimitrakis (Univ. Crete)

Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous homomorphism $\Phi : (\mathbb{R}^+, +) \to \{f \in H^{\infty}(\mathbb{D}) : \|f\|_{\infty} \leq 1\}$, that is

 $t\mapsto \Phi(t)=\varphi_t$

from the additive semigroup of nonnegative real numbers into the composition semigroup of all analytic functions which map $\mathbb D$ into $\mathbb D.$

Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous homomorphism $\Phi : (\mathbb{R}^+, +) \to \{f \in H^{\infty}(\mathbb{D}) : \|f\|_{\infty} \leq 1\}$, that is

 $t\mapsto \Phi(t)=\varphi_t$

from the additive semigroup of nonnegative real numbers into the composition semigroup of all analytic functions which map \mathbb{D} into \mathbb{D} . $\Phi = (\varphi_t)$ consists of $\varphi_t \in \mathscr{H}(\mathbb{D})$ with $\varphi_t(\mathbb{D}) \subset \mathbb{D}$ and satisfying

• φ_0 is the identity in \mathbb{D} ,

Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous homomorphism $\Phi : (\mathbb{R}^+, +) \to \{f \in H^{\infty}(\mathbb{D}) : \|f\|_{\infty} \leq 1\}$, that is

 $t\mapsto \Phi(t)=\varphi_t$

from the additive semigroup of nonnegative real numbers into the composition semigroup of all analytic functions which map \mathbb{D} into \mathbb{D} . $\Phi = (\varphi_t)$ consists of $\varphi_t \in \mathscr{H}(\mathbb{D})$ with $\varphi_t(\mathbb{D}) \subset \mathbb{D}$ and satisfying

•
$$\varphi_0$$
 is the identity in \mathbb{D} ,

$$\ \, {\mathfrak G}_t(z) \to \phi_0(z) = z, \ \, {\rm as} \ \, t \to 0, \ z \in {\mathbb D}.$$

Examples:

- $\phi_t(z) = e^{-t}z$ (Dilation semigroup)
- $\phi_t(z) = e^{it}z$ (Rotation semigroup)
- $\phi_t(z) = e^{-t}z + (1 e^{-t})$

Generators of analytic semigroups

(E. Berkson, H. Porta (1978)) The infinitesimal generator of (φ_t) is the function

$$G(z):= \lim_{t o 0^+} rac{arphi_t(z)-z}{t} = rac{\partial arphi_t}{\partial t}(z)|_{t=0}, \; z\in \mathbb{D}$$

Generators of analytic semigroups

(E. Berkson, H. Porta (1978)) The infinitesimal generator of (φ_t) is the function

$$G(z):=\lim_{t o 0^+}rac{arphi_t(z)-z}{t}=rac{\partialarphi_t}{\partial t}(z)ert_{t=0},\;z\in\mathbb{D}.$$

$$G(arphi_t(z))=rac{\partial arphi_t(z)}{\partial t}=G(z)rac{\partial arphi_t(z)}{\partial z},\,\,z\in\mathbb{D},\,\,t\geq0.$$

Generators of analytic semigroups

(E. Berkson, H. Porta (1978)) The infinitesimal generator of (φ_t) is the function

$$G(z):=\lim_{t o 0^+}rac{arphi_t(z)-z}{t}=rac{\partial arphi_t}{\partial t}(z)ert_{t=0}, \ z\in\mathbb{D}.$$

$$G(arphi_t(z))=rac{\partial arphi_t(z)}{\partial t}=G(z)rac{\partial arphi_t(z)}{\partial z},\,\,z\in\mathbb{D},\,\,t\geq0.$$

G has a unique representation

$$G(z) = (\overline{b}z - 1)(z - b)P(z), \ z \in \mathbb{D}$$

where $b \in \overline{\mathbb{D}}$ (called the Denjoy-Wolff point of the semigroup) and $P \in \mathscr{H}(\mathbb{D})$ with $\operatorname{Re} P(z) \geq 0$ for all $z \in \mathbb{D}$.

Generators of analytic semigroups

(E. Berkson, H. Porta (1978)) The infinitesimal generator of (φ_t) is the function

$$G(z):=\lim_{t o 0^+}rac{arphi_t(z)-z}{t}=rac{\partial arphi_t}{\partial t}(z)ert_{t=0}, \ z\in\mathbb{D}.$$

$$G(arphi_t(z))=rac{\partial arphi_t(z)}{\partial t}=G(z)rac{\partial arphi_t(z)}{\partial z},\,\,z\in\mathbb{D},\,\,t\geq0.$$

G has a unique representation

$$G(z) = (\overline{b}z - 1)(z - b)P(z), \ z \in \mathbb{D}$$

where $b \in \overline{\mathbb{D}}$ (called the Denjoy-Wolff point of the semigroup) and $P \in \mathscr{H}(\mathbb{D})$ with $\operatorname{Re} P(z) \geq 0$ for all $z \in \mathbb{D}$.

- G(z) = -z for the dilation semigroup (b = 0, P(z) = 1)
- G(z) = iz for the rotation semigroup (b = 0, P(z) = -i)

•
$$G(z) = -(z-1)$$
 for $\phi_t(z) = e^{-t}z + 1 - e^{-t}$ $(b = 1, P(z) = \frac{1}{1-z})$

Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup (C_t) consisting of composition operators on $\mathscr{H}(\mathbb{D})$ via composition

$$C_t(f) := f \circ \varphi_t, \qquad f \in \mathscr{H}(\mathbb{D}).$$

< ∃ >

э

Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup (C_t) consisting of composition operators on $\mathscr{H}(\mathbb{D})$ via composition

$$C_t(f) := f \circ \varphi_t, \qquad f \in \mathscr{H}(\mathbb{D}).$$

Given a Banach space $X \subset \mathscr{H}(\mathbb{D})$ and a semigroup (φ_t) , we say that (φ_t) generates a semigroup of operators on X if (C_t) is a C_0 -semigroup of bounded operators in X, i.e.

Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup (C_t) consisting of composition operators on $\mathscr{H}(\mathbb{D})$ via composition

$$C_t(f) := f \circ \varphi_t, \qquad f \in \mathscr{H}(\mathbb{D}).$$

Given a Banach space $X \subset \mathscr{H}(\mathbb{D})$ and a semigroup (φ_t) , we say that (φ_t) generates a semigroup of operators on X if (C_t) is a C_0 -semigroup of bounded operators in X, i.e.

• $C_t(f) \in X$ for all $t \ge 0$ and for every $f \in X$

•
$$\lim_{t\to 0^+} \|C_t(f) - f\|_X = 0.$$

Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup (C_t) consisting of composition operators on $\mathscr{H}(\mathbb{D})$ via composition

$$C_t(f) := f \circ \varphi_t, \qquad f \in \mathscr{H}(\mathbb{D}).$$

Given a Banach space $X \subset \mathscr{H}(\mathbb{D})$ and a semigroup (φ_t) , we say that (φ_t) generates a semigroup of operators on X if (C_t) is a C_0 -semigroup of bounded operators in X, i.e.

•
$$C_t(f) \in X$$
 for all $t \ge 0$ and for every $f \in X$

•
$$\lim_{t\to 0^+} \|C_t(f) - f\|_X = 0.$$

Given a semigroup (φ_t) and a Banach space X contained in $\mathscr{H}(\mathbb{D})$ we denote by $[\varphi_t, X]$ the maximal closed linear subspace of X such that (φ_t) generates a semigroups of operators on it.

- 4 E b

Previous results on semigroups of analytic functions

Theorem

Every semigroup of analytic functions generates a semigroup of operators on the Hardy spaces H^p (1 ≤ p < ∞), the Bergman spaces A^p (1 ≤ p < ∞) and the Dirichlet space, i.e. [φ_t, X] = X in these cases.

Previous results on semigroups of analytic functions

Theorem

- Every semigroup of analytic functions generates a semigroup of operators on the Hardy spaces H^p (1 ≤ p < ∞), the Bergman spaces A^p (1 ≤ p < ∞) and the Dirichlet space, i.e. [φ_t, X] = X in these cases.
- No non-trivial semigroup generates a semigroup of operators in the space H[∞] of bounded analytic functions, i.e. [φ_t, H[∞]] = H[∞] implies Φ = 0.

Previous results on semigroups of analytic functions

Theorem

- Every semigroup of analytic functions generates a semigroup of operators on the Hardy spaces H^p (1 ≤ p < ∞), the Bergman spaces A^p (1 ≤ p < ∞) and the Dirichlet space, i.e. [φ_t, X] = X in these cases.
- No non-trivial semigroup generates a semigroup of operators in the space H[∞] of bounded analytic functions, i.e. [φ_t, H[∞]] = H[∞] implies Φ = 0.
- There are plenty of semigroups (but not all) which generate semigroups of operators in the disk algebra.

B b 4 B b

The case X = BMOA

Definition

An analytic function f is said to belong to BMOA if

$$||f||_*^2 = \sup_{I} \frac{1}{|I|} \int_{R(I)} |f'(z)|^2 (1 - |z|^2) dA(z) < \infty$$

where the sup is taken over all arcs $I \subset \partial \mathbb{D}$, R(I) is the Carleson rectangle determined by I, |I| denotes the normalized length of I and dA(z) the normalized Lebesgue measure on $\partial \mathbb{D}$.

The case X = BMOA

Definition

An analytic function f is said to belong to BMOA if

$$||f||_*^2 = \sup_{I} \frac{1}{|I|} \int_{R(I)} |f'(z)|^2 (1 - |z|^2) dA(z) < \infty$$

where the sup is taken over all arcs $I \subset \partial \mathbb{D}$, R(I) is the Carleson rectangle determined by I, |I| denotes the normalized length of I and dA(z) the normalized Lebesgue measure on $\partial \mathbb{D}$. VMOA is the subspace of functions satisfying

$$\lim_{|I|\to 0} \frac{1}{|I|} \int_{R(I)} |f'(z)|^2 (1-|z|^2) dA(z) = 0$$

It is known that VMOA is the closure of the polynomials in BMOA and that $(VMOA)^{**} = BMOA$.

The problem for BMOA

Here it is our starting motivation:

Theorem A. (Sarason) Suppose $f \in BMOA$, then the following are equivalent:

• $f \in VMOA$.

2
$$\lim_{t\to 0^+} \|f(e^{it}\cdot) - f\|_{\star} = 0.$$

③ lím_{r→1}
$$||f(r \cdot) - f||_{\star} = 0.$$

< ∃ >

Here it is our starting motivation:

Theorem A. (Sarason) Suppose $f \in BMOA$, then the following are equivalent:

• $f \in VMOA$.

2
$$\lim_{t\to 0^+} \|f(e^{it}\cdot) - f\|_{\star} = 0$$

③ lím_{r→1}
$$||f(r \cdot) - f||_{\star} = 0.$$

Note that $\lim_{t\to 0^+} \|f(e^{it}\cdot) - f\|_{\star} = 0$ means $f \in [e^{it}z, BMO]$.

Image: Second second

Here it is our starting motivation:

Theorem A. (Sarason) Suppose $f \in BMOA$, then the following are equivalent:

• $f \in VMOA$.

2
$$\lim_{t\to 0^+} \|f(e^{it}\cdot) - f\|_{\star} = 0$$

3
$$\lim_{r\to 1} \|f(r\cdot) - f\|_{\star} = 0.$$

Note that $\lim_{t\to 0^+} ||f(e^{it}\cdot) - f||_* = 0$ means $f \in [e^{it}z, BMO]$. Note that $\lim_{r\to 1} ||f(r\cdot) - f||_* = 0$ can be written $\lim_{t\to 0^+} ||f(e^{-t}\cdot) - f||_* = 0$

4 E N

Here it is our starting motivation:

Theorem A. (Sarason) Suppose $f \in BMOA$, then the following are equivalent:

• $f \in VMOA$.

2
$$\lim_{t\to 0^+} \|f(e^{it}\cdot) - f\|_{\star} = 0$$

③ lím_{*r*→1}
$$||f(r \cdot) - f||_{\star} = 0.$$

Note that $\lim_{t\to 0^+} ||f(e^{it}\cdot) - f||_* = 0$ means $f \in [e^{it}z, BMO]$. Note that $\lim_{r\to 1} ||f(r\cdot) - f||_* = 0$ can be written $\lim_{t\to 0^+} ||f(e^{-t}\cdot) - f||_* = 0$ *Problems:*

1.- Describe (φ_t) such that $VMOA = [\varphi_t, BMOA]$.

4 E N

Here it is our starting motivation:

Theorem A. (Sarason) Suppose $f \in BMOA$, then the following are equivalent:

• $f \in VMOA$.

2
$$\lim_{t\to 0^+} \|f(e^{it}\cdot) - f\|_* = 0.$$

③ lím_{r→1}
$$||f(r \cdot) - f||_{\star} = 0.$$

Note that $\lim_{t\to 0^+} ||f(e^{it}\cdot) - f||_* = 0$ means $f \in [e^{it}z, BMO]$. Note that $\lim_{r\to 1} ||f(r\cdot) - f||_* = 0$ can be written $\lim_{t\to 0^+} ||f(e^{-t}\cdot) - f||_* = 0$ *Problems:*

1.- Describe (φ_t) such that $VMOA = [\varphi_t, BMOA]$.

2.- Given (φ_t) calculate $[\varphi_t, BMOA]$.

- (E) k

The case X = Bloch

Definition

An analytic function f is said to belong to Bloch if

$$\|f\|_{Bloch} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) < \infty,$$

- ∢ ≣ ▶

э

The case X = Bloch

Definition

An analytic function f is said to belong to Bloch if

$$\|f\|_{Bloch} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) < \infty,$$

bloch is the subspace of functions such that

$$\lim_{|z| \to 1} |f'(z)|(1-|z|^2) = 0$$

< ∃ >

The case X = Bloch

Definition

An analytic function f is said to belong to Bloch if

$$\|f\|_{Bloch} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) < \infty,$$

bloch is the subspace of functions such that

$$\lim_{|z| \to 1} |f'(z)| (1 - |z|^2) = 0$$

It is known that *bloch* is the closure of polynomials in the Bloch space and $(bloch)^{**} = Bloch$

We also start with the well known result **Theorem B.** (Anderson-Clunie-Pommerenke) Suppose $f \in Bloch$. Then

$$f \in bloch \iff \lim_{r \to 1} \|f(r \cdot) - f\|_{Bloch} = 0.$$

< ∃ >

э

We also start with the well known result **Theorem B.** (Anderson-Clunie-Pommerenke) Suppose $f \in Bloch$. Then

$$f \in bloch \iff \lim_{r \to 1} \|f(r \cdot) - f\|_{Bloch} = 0.$$

Problems:

3.- Does it hold that $bloch = [e^{it}z, Bloch]$?

< ∃ >

We also start with the well known result **Theorem B.** (Anderson-Clunie-Pommerenke) Suppose $f \in Bloch$. Then

$$f \in bloch \iff \lim_{r \to 1} \|f(r \cdot) - f\|_{Bloch} = 0.$$

Problems:

- **3.-** Does it hold that $bloch = [e^{it}z, Bloch]$?
- **4.-** Describe (φ_t) such that $bloch = [\varphi_t, Bloch]$.

∢ ⊒ ⊳

We also start with the well known result

Theorem B. (Anderson-Clunie-Pommerenke) Suppose $f \in Bloch$. Then

$$f \in bloch \iff \lim_{r \to 1} \|f(r \cdot) - f\|_{Bloch} = 0.$$

Problems:

- **3.-** Does it hold that $bloch = [e^{it}z, Bloch]$?
- **4.-** Describe (φ_t) such that $bloch = [\varphi_t, Bloch]$.
- **5.-** Given (φ_t) calculate $[\varphi_t, Bloch]$.

4 E b

A basic calculation

In general

 $VMOA \subsetneq [\phi_t, BMOA] \subsetneq BMOA.$

·돌▶ · ★ 돌▶ · ·

3

A basic calculation

In general

 $VMOA \subsetneq [\varphi_t, BMOA] \subsetneq BMOA.$

Let $\varphi_t(z) = e^{-t}z + 1 - e^{-t}$. Then $f(z) = \log(\frac{1}{1-z}) \in [\varphi_t, BMOA] \setminus VMOA.$

<2.3.5 Ξ

A basic calculation

In general

$$VMOA \subsetneq [\varphi_t, BMOA] \subsetneq BMOA.$$

Let $\varphi_t(z) = e^{-t}z + 1 - e^{-t}$. Then $f(z) = \log(\frac{1}{1-z}) \in [\varphi_t, BMOA] \setminus VMOA$. Indeed

$$f(\varphi_t(z)) = \log(\frac{1}{1-\varphi_t(z)}) = tf(z)$$

and therefore

$$\lim_{t\to 0} \|f\circ \varphi_t - f\|_* = 0.$$

프 🖌 🛪 프 🛌 👘

3

Results on *BMOA*

Theorem

Every semigroup (φ_t) generates a semigroup of operators on VMOA, i.e. VMOA = [φ_t , VMOA].

프 🖌 🔺 프 🛌

Э

Results on *BMOA*

Theorem

Every semigroup (φ_t) generates a semigroup of operators on VMOA, i.e. VMOA = [φ_t , VMOA].

Theorem

Let G be the infinitesimal generator of (ϕ_t) . Then,

$$[\varphi_t, BMOA] = \overline{\{f \in BMOA : Gf' \in BMOA\}}.$$

(신문) 문

More results on BMOA

Theorem

Let (ϕ_t) be a semigroup with infinitesimal generator G. Assume that for some $0 < \alpha < 1$,

$$\frac{1 - |z|)^{\alpha}}{G(z)} = O(1) \ \text{as } |z| \to 1.$$
(2)

Then $VMOA = [\varphi_t, BMOA]$.

< ∃ >

э

More results on BMOA

Theorem

Let (ϕ_t) be a semigroup with infinitesimal generator G. Assume that for some $0 < \alpha < 1$,

$$\frac{(1-|z|)^{\alpha}}{G(z)} = O(1) \text{ as } |z| \to 1.$$
(2)

Then $VMOA = [\phi_t, BMOA]$.

Corollary

Suppose $(\varphi_t(z))$ is a semigroup whose generator G satisfies the condition (2). Then for a function $f \in BMOA$ the following are equivalent • $f \in VMOA$.

2
$$\lim_{t\to 0^+} ||f \circ \varphi_t - f||_{\star} = 0.$$

Results on Bloch

Theorem

Any semigroup of analytic functions (φ_t) generates a C_0 -semigroup in bloch, i.e. $[\varphi_t, bloch] = bloch$.

프 🖌 🔺 프 🛌

3

Results on Bloch

Theorem

Any semigroup of analytic functions (φ_t) generates a C_0 -semigroup in bloch, i.e. $[\varphi_t, bloch] = bloch$.

Theorem

There are not non-trivial semigroups of analytic functions (φ_t) generating a C_0 -semigroup in Bloch, i.e. if $[\varphi_t, Bloch] = Bloch$ then $\varphi_t(z) = 0$.

< ∃ >

Results on Bloch

Theorem

Any semigroup of analytic functions (φ_t) generates a C_0 -semigroup in bloch, i.e. $[\varphi_t, bloch] = bloch$.

Theorem

There are not non-trivial semigroups of analytic functions (φ_t) generating a C_0 -semigroup in Bloch, i.e. if $[\varphi_t, Bloch] = Bloch$ then $\varphi_t(z) = 0$.

Theorem

Let G be the infinitesimal generator of (ϕ_t) . Then,

$$[\varphi_t, Bloch] = \overline{\{f \in Bloch : Gf' \in Bloch\}}.$$

-∢ ≣ ▶

Main results on Bloch and BMOA

Suppose now that X is either VMOA or bloch so that the second dual X^{**} is BMOA or Bloch respectively. Let (φ_t) be a semigroup on \mathbb{D} and let (C_t) be the induced semigroup of composition operators on X^{**} and denote $S_t = C_t|_X$.

Main results on Bloch and BMOA

Suppose now that X is either VMOA or bloch so that the second dual X^{**} is BMOA or Bloch respectively. Let (φ_t) be a semigroup on \mathbb{D} and let (C_t) be the induced semigroup of composition operators on X^{**} and denote $S_t = C_t|_X$.

Theorem

Let (φ_t) be a semigroup and X be one of the spaces VMOA or bloch. Denote by Γ the generator of the induced composition semigroup (S_t) on X and let $\lambda \in \rho(\Gamma)$. Then $(1) [\varphi_t, BMOA] = VMOA$ if and only if $\Re(\lambda, \Gamma) = (\lambda I - \Gamma)^{-1}$ is weakly compact on VMOA.

(2) $[\varphi_t, Bloch] = bloch$ if and only if $\mathscr{R}(\lambda, \Gamma)$ is weakly compact on bloch.

- ∢ ⊒ ▶

A theorem and its proof

Theorem

Let G be the infinitesimal generator of (ϕ_t) . Then,

 ${f \in BMOA : Gf' \in BMOA} \subset [\varphi_t, BMOA].$

Proof:

Let $f \in BMOA$ such that $m := Gf' \in BMOA$. First of all, one shows that

$$(f\circ arphi_t)'(z)-f'(z)=\int_0^t (m\circ arphi_s)'(z)ds; ext{ for } t\geq 0, \ z\in \mathbb{D}$$

4 E b

A theorem and its proof

Theorem

Let G be the infinitesimal generator of (ϕ_t) . Then,

 $\{f \in BMOA : Gf' \in BMOA\} \subset [\varphi_t, BMOA].$

Proof:

Let $f \in BMOA$ such that $m := Gf' \in BMOA$. First of all, one shows that

$$(f\circ arphi_t)'(z)-f'(z)=\int_0^t (m\circ arphi_s)'(z)ds; ext{ for } t\geq 0, \ z\in \mathbb{D}.$$

Next let I be an interval in $\partial \mathbb{D}$ and R(I) the corresponding Carleson rectangle.

4 E b

For $0 \le t \le 1$ we have

$$\begin{split} &\int_{R(I)} \left| (f \circ \varphi_t)'(z) - f'(z) \right|^2 (1 - |z|^2) dA(z) \\ &= \int_{R(I)} \left| \int_0^t (m \circ \varphi_s)'(z) ds \right|^2 (1 - |z|^2) dA(z) \\ &\leq \int_{R(I)} t \left(\int_0^1 \left| (m \circ \varphi_s)'(z) \right|^2 ds \right) (1 - |z|^2) dA(z) \end{split}$$

where we have applied Cauchy-Schwarz in the inside integral.

- ★ 臣 ▶ - - 臣

Hence

$$\begin{split} \|f \circ \varphi_{t} - f\|_{\star} &= \sup_{I \subseteq \partial \mathbb{D}} \left(\frac{1}{|I|} \int_{R(I)} \left| (f \circ \varphi_{t})'(z) - f'(z) \right|^{2} (1 - |z|^{2}) dA(z) \right)^{\frac{1}{2}} \\ &\leq \sup_{I \subseteq \partial \mathbb{D}} \left(\frac{1}{|I|} \int_{R(I)} t \left(\int_{0}^{1} \left| (m \circ \varphi_{s})'(z) \right|^{2} ds \right) (1 - |z|^{2}) dA(z) \right)^{\frac{1}{2}} \\ &\leq \sup_{I \subseteq \partial \mathbb{D}} \left(t \int_{0}^{1} \left(\frac{1}{|I|} \int_{R(I)} \left| (m \circ \varphi_{s})'(z) \right|^{2} (1 - |z|^{2}) dA(z) \right) ds \right)^{\frac{1}{2}} \\ &\leq \left(t \int_{0}^{1} \|m \circ \varphi_{s}\|_{\star}^{2} ds \right)^{\frac{1}{2}} \\ &\leq \sqrt{t} \sup_{s \in [0,1]} \|m \circ \varphi_{s}\|_{\star} \\ &\leq \sqrt{t} C \|m\|_{\star} \sup_{s \in [0,1]} (1 - \log(1 - \varphi_{s}(0)) \leq C' \sqrt{t}, \end{split}$$

where we have used $||m \circ \psi||_* \leq C ||m||_* \log(\frac{e}{1-\psi(0)})$ for any $\psi : \mathbb{D} \to \mathbb{D}$ analytic.

Therefore $f \in [\varphi_t, BMOA]$.

< ∃ >

э