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Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous
homomorphism Φ : (R+,+)→{f ∈ H∞(D) : ‖f ‖∞ ≤ 1}, that is

t 7→ Φ(t) = ϕt

from the additive semigroup of nonnegative real numbers into the
composition semigroup of all analytic functions which map D into D.

Φ = (ϕt) consists of ϕt ∈H (D) with ϕt(D)⊂ D and satisfying

1 ϕ0 is the identity in D,
2 ϕt+s = ϕt ◦ϕs , for all t,s ≥ 0,

3 ϕt(z)→ ϕ0(z) = z , as t→ 0, z ∈ D.

Examples:

φt(z) = e−tz (Dilation semigroup)

φt(z) = e itz (Rotation semigroup)

φt(z) = e−tz + (1− e−t)
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Generators of analytic semigroups

(E. Berkson, H. Porta (1978))
The infinitesimal generator of (ϕt) is the function

G (z) := ĺım
t→0+

ϕt(z)− z

t
=

∂ϕt

∂ t
(z)|t=0, z ∈ D.

G (ϕt(z)) =
∂ϕt(z)

∂ t
= G (z)

∂ϕt(z)

∂ z
, z ∈ D, t ≥ 0. (1)

G has a unique representation

G (z) = (bz−1)(z−b)P(z), z ∈ D

where b ∈ D ( called the Denjoy-Wolff point of the semigroup) and
P ∈H (D) with ReP(z)≥ 0 for all z ∈ D.

G (z) =−z for the dilation semigroup (b = 0, P(z) = 1)

G (z) = iz for the rotation semigroup (b = 0, P(z) =−i)

G (z) =−(z−1) for φt(z) = e−tz + 1− e−t (b = 1, P(z) = 1
1−z )
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Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup (Ct)
consisting of composition operators on H (D) via composition

Ct(f ) := f ◦ϕt , f ∈H (D).

Given a Banach space X ⊂H (D) and a semigroup (ϕt), we say that
(ϕt) generates a semigroup of operators on X if (Ct) is a C0-semigroup
of bounded operators in X , i.e.

Ct(f ) ∈ X for all t ≥ 0 and for every f ∈ X

ĺımt→0+ ‖Ct(f )− f ‖X = 0.

Given a semigroup (ϕt) and a Banach space X contained in H (D) we
denote by [ϕt ,X ] the maximal closed linear subspace of X such that (ϕt)
generates a semigroups of operators on it.
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Previous results on semigroups of analytic functions

Theorem

1 Every semigroup of analytic functions generates a semigroup of
operators on the Hardy spaces Hp (1≤ p < ∞), the Bergman spaces
Ap (1≤ p < ∞) and the Dirichlet space, i.e. [ϕt ,X ] = X in these
cases.

2 No non-trivial semigroup generates a semigroup of operators in the
space H∞ of bounded analytic functions, i.e. [ϕt ,H

∞] = H∞ implies
Φ = 0.

3 There are plenty of semigroups (but not all) which generate
semigroups of operators in the disk algebra.
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The case X = BMOA

Definition

An analytic function f is said to belong to BMOA if

‖f ‖2
∗ = sup

I

1

|I |

∫
R(I )
|f ′(z)|2(1−|z |2)dA(z) < ∞

where the sup is taken over all arcs I ⊂ ∂D, R(I ) is the Carleson
rectangle determined by I , |I | denotes the normalized length of I and
dA(z) the normalized Lebesgue measure on ∂D.

VMOA is the subspace of functions satisfying

ĺım
|I |→0

1

|I |

∫
R(I )
|f ′(z)|2(1−|z |2)dA(z) = 0

It is known that VMOA is the closure of the polynomials in BMOA and
that (VMOA)∗∗ = BMOA.
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The problem for BMOA

Here it is our starting motivation:
Theorem A. (Sarason) Suppose f ∈ BMOA, then the following are
equivalent:

1 f ∈ VMOA.

2 ĺımt→0+ ‖f (e it ·)− f ‖? = 0.

3 ĺımr→1 ‖f (r ·)− f ‖? = 0.

Note that ĺımt→0+ ‖f (e it ·)− f ‖? = 0 means f ∈ [e itz ,BMO].
Note that ĺımr→1 ‖f (r ·)− f ‖? = 0 can be written
ĺımt→0+ ‖f (e−t ·)− f ‖? = 0
Problems:
1.- Describe (ϕt) such that VMOA = [ϕt ,BMOA].
2.- Given (ϕt) calculate [ϕt ,BMOA].
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Note that ĺımt→0+ ‖f (e it ·)− f ‖? = 0 means f ∈ [e itz ,BMO].
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The case X = Bloch

Definition

An analytic function f is said to belong to Bloch if

‖f ‖Bloch = |f (0)|+ sup
z∈D
|f ′(z)|(1−|z |2) < ∞,

bloch is the subspace of functions such that

ĺım
|z|→1

|f ′(z)|(1−|z |2) = 0

It is known that bloch is the closure of polynomials in the Bloch space
and (bloch)∗∗ = Bloch
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The problem for Bloch

We also start with the well known result
Theorem B. (Anderson-Clunie-Pommerenke) Suppose f ∈ Bloch. Then

f ∈ bloch⇐⇒ ĺım
r→1
‖f (r ·)− f ‖Bloch = 0.

Problems:
3.- Does it hold that bloch = [e itz ,Bloch]?
4.- Describe (ϕt) such that bloch = [ϕt ,Bloch].
5.- Given (ϕt) calculate [ϕt ,Bloch].
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A basic calculation

In general
VMOA ( [ϕt ,BMOA] ( BMOA.

Let ϕt(z) = e−tz + 1− e−t . Then
f (z) = log( 1

1−z ) ∈ [ϕt ,BMOA]\VMOA. Indeed

f (ϕt(z)) = log(
1

1−ϕt(z)
) = tf (z)

and therefore
ĺım
t→0
‖f ◦ϕt − f ‖∗ = 0.
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Results on BMOA

Theorem

Every semigroup (ϕt) generates a semigroup of operators on VMOA, i.e.
VMOA = [ϕt ,VMOA].

Theorem

Let G be the infinitesimal generator of (ϕt). Then,

[ϕt ,BMOA] = {f ∈ BMOA : Gf ′ ∈ BMOA}.
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More results on BMOA

Theorem

Let (ϕt) be a semigroup with infinitesimal generator G . Assume that for
some 0 < α < 1,

(1−|z |)α

G (z)
= O (1) as |z | → 1. (2)

Then VMOA = [ϕt ,BMOA].

Corollary

Suppose (ϕt(z)) is a semigroup whose generator G satisfies the condition
(2). Then for a function f ∈ BMOA the following are equivalent

1 f ∈ VMOA.

2 ĺımt→0+ ||f ◦ϕt − f ‖? = 0.
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Results on Bloch

Theorem

Any semigroup of analytic functions (ϕt) generates a C0-semigroup in
bloch, i.e. [ϕt ,bloch] = bloch.

Theorem

There are not non-trivial semigroups of analytic functions (ϕt) generating
a C0-semigroup in Bloch, i.e. if [ϕt ,Bloch] = Bloch then ϕt(z) = 0.

Theorem

Let G be the infinitesimal generator of (ϕt). Then,

[ϕt ,Bloch] = {f ∈ Bloch : Gf ′ ∈ Bloch}.
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Main results on Bloch and BMOA

Suppose now that X is either VMOA or bloch so that the second dual
X ∗∗ is BMOA or Bloch respectively. Let (ϕt) be a semigroup on D and
let (Ct) be the induced semigroup of composition operators on X ∗∗ and
denote St = Ct |X .

Theorem

Let (ϕt) be a semigroup and X be one of the spaces VMOA or bloch.
Denote by Γ the generator of the induced composition semigroup (St) on
X and let λ ∈ ρ(Γ). Then
(1) [ϕt ,BMOA] = VMOA if and only if R(λ ,Γ) = (λ I −Γ)−1 is weakly
compact on VMOA.

(2) [ϕt ,Bloch] = bloch if and only if R(λ ,Γ) is weakly compact on bloch.
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A theorem and its proof

Theorem

Let G be the infinitesimal generator of (ϕt). Then,

{f ∈ BMOA : Gf ′ ∈ BMOA} ⊂ [ϕt ,BMOA].

Proof:
Let f ∈ BMOA such that m := Gf ′ ∈ BMOA. First of all, one shows that

(f ◦ϕt)
′(z)− f ′(z) =

∫ t

0
(m ◦ϕs)′(z)ds; for t ≥ 0, z ∈ D.

Next let I be an interval in ∂D and R(I ) the corresponding Carleson
rectangle.
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For 0≤ t ≤ 1 we have∫
R(I )

∣∣(f ◦ϕt)
′(z)− f ′(z)

∣∣2 (1−|z |2)dA(z)

=
∫
R(I )

∣∣∣∣∫ t

0
(m ◦ϕs)′(z)ds

∣∣∣∣2 (1−|z |2)dA(z)

≤
∫
R(I )

t

(∫ 1

0

∣∣(m ◦ϕs)′(z)
∣∣2 ds

)
(1−|z |2)dA(z)

where we have applied Cauchy-Schwarz in the inside integral.
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Hence

‖f ◦ϕt − f ‖? = sup
I⊆∂D

(
1

|I |

∫
R(I )

∣∣(f ◦ϕt)
′(z)− f ′(z)

∣∣2 (1−|z |2)dA(z)

) 1
2

≤ sup
I⊆∂D

(
1

|I |

∫
R(I )

t

(∫ 1

0

∣∣(m ◦ϕs)′(z)
∣∣2 ds

)
(1−|z |2)dA(z)

) 1
2

≤ sup
I⊆∂D

(
t
∫ 1

0

(
1

|I |

∫
R(I )

∣∣(m ◦ϕs)′(z)
∣∣2 (1−|z |2)dA(z)

)
ds

) 1
2

≤
(

t
∫ 1

0
‖m ◦ϕs‖2

? ds

) 1
2

≤
√

t sup
s∈[0,1]

‖m ◦ϕs‖?

≤
√

tC‖m‖? sup
s∈[0,1]

(1− log(1−ϕs(0))≤ C ′
√

t,

where we have used ‖m ◦ψ‖∗ ≤ C‖m‖∗ log( e
1−ψ(0) ) for any ψ : D→ D

analytic.
Therefore f ∈ [ϕt ,BMOA].
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