International Conference on Abstract Harmonic Analysis (AHA2013)

On the L^{p} – Fourier transform norm of some locally compact groups.

Ali Baklouti

Faculty of Sciences of Sfax Department of Mathematics Sfax, Tunisia

Granada, May 22, 2013

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm

∂ ▶ ৰ ই ▶ ৰ ই ▶ ই প ৭৫ Granada, May 22, 2013 1 / 28

• For \mathbb{R}^n with a standard inner product $\langle \cdot, \cdot \rangle$, we identify $(\mathbb{R}^n)^*$ with \mathbb{R}^n by $\mathbb{R}^n \ni x \mapsto l_x \in (\mathbb{R}^n)^*$ so that $l_x(y) = \langle y, x \rangle$, $y \in \mathbb{R}^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

- For \mathbb{R}^n with a standard inner product $\langle \cdot, \cdot \rangle$, we identify $(\mathbb{R}^n)^*$ with \mathbb{R}^n by $\mathbb{R}^n \ni x \mapsto l_x \in (\mathbb{R}^n)^*$ so that $l_x(y) = \langle y, x \rangle$, $y \in \mathbb{R}^n$.
- Let dx be the Lebesgue measure on \mathbb{R}^n such that the unit cube has mass 1.

- For \mathbb{R}^n with a standard inner product $\langle \cdot, \cdot \rangle$, we identify $(\mathbb{R}^n)^*$ with \mathbb{R}^n by $\mathbb{R}^n \ni x \mapsto l_x \in (\mathbb{R}^n)^*$ so that $l_x(y) = \langle y, x \rangle$, $y \in \mathbb{R}^n$.
- Let dx be the Lebesgue measure on \mathbb{R}^n such that the unit cube has mass 1.
- The Fourier transform : Let f be in $L^1(\mathbb{R}^n)$,

$$\widehat{f}(\xi) = (2\pi)^{-rac{n}{2}} \int_{\mathbb{R}^n} f(y) e^{-i\langle \xi, y \rangle} dy, \ \xi \in \mathbb{R}^n.$$

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ●

- For ℝⁿ with a standard inner product ⟨·, ·⟩, we identify (ℝⁿ)^{*} with ℝⁿ by ℝⁿ ∋ x → l_x ∈ (ℝⁿ)^{*} so that l_x(y) = ⟨y, x⟩, y ∈ ℝⁿ.
- Let dx be the Lebesgue measure on \mathbb{R}^n such that the unit cube has mass 1.
- The Fourier transform : Let f be in $L^1(\mathbb{R}^n)$,

$$\widehat{f}(\xi) = (2\pi)^{-rac{n}{2}} \int_{\mathbb{R}^n} f(y) e^{-i\langle \xi, y \rangle} dy, \ \xi \in \mathbb{R}^n.$$

Then we have the equality (the classical Plancherel formula)

$$\int_{\mathbb{R}^n} |\widehat{f}(y)|^2 dy = \int_{\mathbb{R}^n} |f(x)|^2 dx,$$

for $f \in (L^1 \cap L^2)(\mathbb{R}^n)$.

Ali Baklouti (F. S. Sfax)

Granada, May 22, 2013

• Let 1 , <math>q the conjugate of $p(\frac{1}{p} + \frac{1}{q} = 1)$ and $f \in (L^1 \cap L^p)(\mathbb{R}^n)$. Then we have

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

• Let 1 , <math>q the conjugate of $p(\frac{1}{p} + \frac{1}{q} = 1)$ and $f \in (L^1 \cap L^p)(\mathbb{R}^n)$. Then we have

$$\|\widehat{f}\|_q = \left(\int_{\mathbb{R}^n} |\widehat{f}(y)|^q dy\right)^{\frac{1}{q}} \le (A_p)^n \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}},$$

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 3 / 28

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

• Let 1 , <math>q the conjugate of $p(\frac{1}{p} + \frac{1}{q} = 1)$ and $f \in (L^1 \cap L^p)(\mathbb{R}^n)$. Then we have

$$\|\widehat{f}\|_q = \left(\int_{\mathbb{R}^n} |\widehat{f}(y)|^q dy\right)^{\frac{1}{q}} \le (A_p)^n \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}},$$

where

$$A_{p}=\sqrt{rac{p^{rac{1}{p}}}{q^{rac{1}{q}}}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

• Let 1 , <math>q the conjugate of $p(\frac{1}{p} + \frac{1}{q} = 1)$ and $f \in (L^1 \cap L^p)(\mathbb{R}^n)$. Then we have

$$\|\widehat{f}\|_q = \left(\int_{\mathbb{R}^n} |\widehat{f}(y)|^q dy\right)^{\frac{1}{q}} \le (A_p)^n \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}},$$

where

$$A_p = \sqrt{rac{p^{rac{1}{p}}}{q^{rac{1}{q}}}}.$$

• Next, let $f(x) := e^{-||x||^2/2}$. Since $\widehat{f}(x) = f(x)$, we get

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• Let $1 , q the conjugate of <math>p(\frac{1}{p} + \frac{1}{q} = 1)$ and $f \in (L^1 \cap L^p)(\mathbb{R}^n)$. Then we have

$$\|\widehat{f}\|_q = \left(\int_{\mathbb{R}^n} |\widehat{f}(y)|^q dy\right)^{\frac{1}{q}} \le (A_p)^n \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}},$$

where

$$A_p = \sqrt{\frac{p^{\frac{1}{p}}}{q^{\frac{1}{q}}}}.$$

• Next, let $f(x) := e^{-\|x\|^2/2}$. Since $\widehat{f}(x) = f(x)$, we get

$$\|\widehat{f}\|_q = \frac{A_p^n}{\|f\|_p}.$$

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm

Granada, May 22, 2013

• Let G be a separable locally compact unimodular group of type I, and \widehat{G} the unitary dual of G endowed with the Mackey Borel structure.

ヨト・イヨト

- Let G be a separable locally compact unimodular group of type I, and \widehat{G} the unitary dual of G endowed with the Mackey Borel structure.
- Fixing a Haar measure dg of G, we denote by L^p(G) = L^p(G, dg) the space of L^p-functions on G for 1 ≤ p.

- Let G be a separable locally compact unimodular group of type I, and \widehat{G} the unitary dual of G endowed with the Mackey Borel structure.
- Fixing a Haar measure dg of G, we denote by L^p(G) = L^p(G, dg) the space of L^p-functions on G for 1 ≤ p.

• Define for $\pi \in \widehat{G}$ and $f \in L^1(G)$

$$\widehat{f}(\pi) := \pi(f) = \int_G \pi(g) f(g) \, dg.$$

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013

- Let G be a separable locally compact unimodular group of type I, and \widehat{G} the unitary dual of G endowed with the Mackey Borel structure.
- Fixing a Haar measure dg of G, we denote by L^p(G) = L^p(G, dg) the space of L^p-functions on G for 1 ≤ p.
- Define for $\pi \in \widehat{G}$ and $f \in L^1(G)$

$$\widehat{f}(\pi) := \pi(f) = \int_{\mathcal{G}} \pi(g) f(g) \, dg.$$

By the abstract Plancherel Theorem, there exists a unique Borel measure μ on \hat{G} such that

$$\int_{\mathcal{G}} |f(g)|^2 \, dg = \int_{\widehat{\mathcal{G}}} \mathrm{Tr} \left(\pi(f)^* \pi(f)
ight) d\mu(\pi), \quad orall f \in (L^1 \cap L^2)(\mathcal{G}).$$

Ali Baklouti (F. S. Sfax)

We regard the Fourier transform ℱ as a mapping of L¹(G) to a space of µ-measurable field of bounded operators on G defined by

$$L^1(G)
i f \mapsto \mathscr{F}f : \mathscr{F}f(\pi) = \pi(f), \quad \pi \in \widehat{G}.$$

We regard the Fourier transform ℱ as a mapping of L¹(G) to a space of µ-measurable field of bounded operators on G defined by

$$L^1({\sf G})
i f\mapsto \mathscr{F}f:\mathscr{F}f(\pi)=\pi(f), \quad \pi\in \widehat{{\sf G}}.$$

• Let $r \ge 1$, and for a μ -measurable field F on \widehat{G} we define

$$\|F\|_r := \left(\int_{\widehat{G}} \|F(\pi)\|_{\mathcal{C}_r}^r d\mu(\pi)\right)^{\frac{1}{r}},$$

where

$$\|F(\pi)\|_{C_r} = (\operatorname{Tr} (F(\pi)^* F(\pi))^{\frac{r}{2}})^{\frac{1}{r}}.$$

Ali Baklouti (F. S. Sfax)

Estimate of the Fourier transform norm

Granada, May 22, 2013

医下子 医下

■ We regard the Fourier transform *F* as a mapping of L¹(G) to a space of µ-measurable field of bounded operators on G defined by

$$L^1(G)
i f\mapsto \mathscr{F}f:\mathscr{F}f(\pi)=\pi(f), \quad \pi\in \widehat{G}.$$

• Let $r \ge 1$, and for a μ -measurable field F on \widehat{G} we define

$$\|F\|_r := \left(\int_{\widehat{G}} \|F(\pi)\|_{\mathcal{C}_r}^r d\mu(\pi)\right)^{\frac{1}{r}},$$

where

$$\|F(\pi)\|_{C_r} = (\operatorname{Tr} (F(\pi)^* F(\pi))^{\frac{r}{2}})^{\frac{1}{r}}.$$

We denote by L^r(G) the Banach space defined by measurable fields F such that ||F||_r < ∞ with norm || · ||_r.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm

イロト 不得 トイヨト イヨト 二日

Kunze(1958) : The Hausdorff-Young Theorem for non-abelian groups says :

글 > - < 글 >

- 3

- Kunze(1958) : The Hausdorff-Young Theorem for non-abelian groups says :
- Let 1 and <math>q = p/(p-1). Then we have the inequality

 $\|\mathscr{F}f\|_q \leq \|f\|_p, \quad f \in (L^1 \cap L^p)(G)$

and the mapping $f \mapsto \mathscr{F}f$ extends to a continuous operator $\mathscr{F}^p : L^p(G) \to L^q(\widehat{G}).$

・ロット 4 回 > ・ 目 > ・ 日 > ・ クタマ

- Kunze(1958) : The Hausdorff-Young Theorem for non-abelian groups says :
- Let 1 and <math>q = p/(p-1). Then we have the inequality

 $\|\mathscr{F}f\|_q \leq \|f\|_p, \quad f \in (L^1 \cap L^p)(G)$

and the mapping $f \mapsto \mathscr{F}f$ extends to a continuous operator $\mathscr{F}^p : L^p(G) \to L^q(\widehat{G}).$

• We are concerned with the norm of the *L^p*-Fourier transform :

$$\|\mathscr{F}^{p}(G)\| := \sup_{\|f\|_{p} \leq 1} \|\mathscr{F}^{p}f\|_{q}$$

Ali Baklouti (F. S. Sfax)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- Kunze(1958) : The Hausdorff-Young Theorem for non-abelian groups says :
- Let 1 and <math>q = p/(p-1). Then we have the inequality

 $\|\mathscr{F}f\|_q \leq \|f\|_p, \quad f \in (L^1 \cap L^p)(G)$

and the mapping $f \mapsto \mathscr{F}f$ extends to a continuous operator $\mathscr{F}^p : L^p(G) \to L^q(\widehat{G}).$

• We are concerned with the norm of the L^p-Fourier transform :

$$\|\mathscr{F}^{p}(G)\| := \sup_{\|f\|_{p} \leq 1} \|\mathscr{F}^{p}f\|_{q}$$

< 1.

Ali Baklouti (F. S. Sfax)

・ロット (雪) (き) (き) (き)

Estimate of the Fourier transform norm The L^p – Fourier transform

Plan of the Talk

I plan to discuss the L^p – Fourier transform norm for :

Plan of the Talk

- I plan to discuss the L^p Fourier transform norm for :
- 1. Nilpotent connected Lie groups.

イロト 不得 とうせい かほとう ほ

Plan of the Talk

- I plan to discuss the L^p Fourier transform norm for :
- 1. Nilpotent connected Lie groups.
- 2. A restrictive class of exponential solvable Lie groups.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 3

Plan of the Talk

I plan to discuss the L^p – Fourier transform norm for :

- 1. Nilpotent connected Lie groups.
- 2. A restrictive class of exponential solvable Lie groups.

3. Arbitrary compact extensions of \mathbb{R}^n (and some of their universal coverings).

伺 と く ヨ と く ヨ と

The L^p – Fourier transform

Historical facts

First general results

Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^{p}(\mathbb{R} \times G)\| < 1$ for all 1 .

イロト 不得 とうせい かほとう ほ

The L^p – Fourier transform

Historical facts

First general results

Russo, 1974 : If G is a unimodular locally compact group, then ||𝒴𝑘(ℝ × G)|| < 1 for all 1 < p < 2.
Beckner, 1975 : ||𝒴𝑘(ℝⁿ)|| = Aⁿ_p.

- 4 同 2 4 日 2 4 日 2 - 1 日

The L^p – Fourier transform

Historical facts

First general results

- Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^p(\mathbb{R} \times G)\| < 1$ for all 1 .
- Beckner, 1975 : $\|\mathscr{F}^{p}(\mathbb{R}^{n})\| = A_{p}^{n}$.
- Fournier, 1977 : ||𝒴^p(G)|| = 1 if and only if G has an open compact subgroup.

- 4 同 2 4 日 2 4 日 2 - 1 日

The L^p – Fourier transform

Historical facts

First general results

- Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^{p}(\mathbb{R} \times G)\| < 1$ for all 1 .
- Beckner, 1975 : $\|\mathscr{F}^{p}(\mathbb{R}^{n})\| = A_{p}^{n}$.
- Fournier, 1977 : ||𝒴^p(G)|| = 1 if and only if G has an open compact subgroup.
- When G is compact, $||\mathscr{F}^{p}(G)|| = 1$ since f = 1 is a maximal function.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ●

The *L^p* – Fourier transform

Historical facts

First general results

- Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^{p}(\mathbb{R} \times G)\| < 1$ for all 1 .
- Beckner, 1975 : $\|\mathscr{F}^p(\mathbb{R}^n)\| = A_p^n$.
- Fournier, 1977 : ||𝒴^p(G)|| = 1 if and only if G has an open compact subgroup.
- When G is compact, $||\mathscr{F}^{p}(G)|| = 1$ since f = 1 is a maximal function.
- Russo, 1977 : Let G be a connected simply connected nilpotent Lie group. Then $\|\mathscr{F}^{p}(G)\| \leq \|\mathscr{F}^{p}(Z(G))\| = A_{p}^{\dim Z(G)}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The L^p – Fourier transform

Historical facts

First general results

- Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^{p}(\mathbb{R} \times G)\| < 1$ for all 1 .
- Beckner, 1975 : $\|\mathscr{F}^p(\mathbb{R}^n)\| = A_p^n$.
- Fournier, 1977 : ||𝒴^p(G)|| = 1 if and only if G has an open compact subgroup.
- When G is compact, $||\mathscr{F}^{p}(G)|| = 1$ since f = 1 is a maximal function.
- Russo, 1977 : Let *G* be a connected simply connected nilpotent Lie group. Then $||\mathscr{F}^{p}(G)|| \leq ||\mathscr{F}^{p}(Z(G))|| = A_{p}^{\dim Z(G)}$.
- J. Inoue, 1992 : In this context, let *m* be the dimension of generic coadjoint orbits of g*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The *L^p* – Fourier transform

Historical facts

First general results

- Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^{p}(\mathbb{R} \times G)\| < 1$ for all 1 .
- Beckner, 1975 : $\|\mathscr{F}^p(\mathbb{R}^n)\| = A_p^n$.
- Fournier, 1977 : ||𝒴^p(G)|| = 1 if and only if G has an open compact subgroup.
- When G is compact, $||\mathscr{F}^{p}(G)|| = 1$ since f = 1 is a maximal function.
- Russo, 1977 : Let *G* be a connected simply connected nilpotent Lie group. Then $||\mathscr{F}^{p}(G)|| \leq ||\mathscr{F}^{p}(Z(G))|| = A_{p}^{\dim Z(G)}$.
- J. Inoue, 1992 : In this context, let *m* be the dimension of generic coadjoint orbits of g^{*}.

Then for
$$1 ,$$

The *L^p* – Fourier transform

Historical facts

First general results

- Russo, 1974 : If G is a unimodular locally compact group, then $\|\mathscr{F}^{p}(\mathbb{R} \times G)\| < 1$ for all 1 .
- Beckner, 1975 : $\|\mathscr{F}^p(\mathbb{R}^n)\| = A_p^n$.
- Fournier, 1977 : ||𝒴^p(G)|| = 1 if and only if G has an open compact subgroup.
- When G is compact, $||\mathscr{F}^{p}(G)|| = 1$ since f = 1 is a maximal function.
- Russo, 1977 : Let *G* be a connected simply connected nilpotent Lie group. Then $||\mathscr{F}^{p}(G)|| \leq ||\mathscr{F}^{p}(Z(G))|| = A_{p}^{\dim Z(G)}$.
- J. Inoue, 1992 : In this context, let *m* be the dimension of generic coadjoint orbits of g^{*}.

Suppose that there exists an open dense subset \mathscr{U} of \mathfrak{g}^* , such that the ideal generated by $\bigcup_{\ell\in\mathscr{U}}\mathfrak{g}(\ell)$ is abelian.

Then for 1 ,

$$(\star) \quad \|\mathscr{F}^{p}(G)\| \leq A_{p}^{\frac{2\dim G-m}{2}} \cdot \mathbb{E}_{p} \cdot \mathbb{E}_{p}$$

Ali Baklouti (F. S. Sfax)

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Theorem 1 : (A. Bak, J. Ludwig and K. Smaoui, 2003)
 The estimate (*) holds for any connected simply connected nilpotent
 Lie group.

3 🖌 🖌 3 🕨

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

- Theorem 1 : (A. Bak, J. Ludwig and K. Smaoui, 2003)
 The estimate (*) holds for any connected simply connected nilpotent Lie group.
- Let G = exp(g) be a n-dimensional real nilpotent Lie group of Lie algebra g.

- * 同 * * ヨ * * ヨ * - ヨ

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

- Theorem 1 : (A. Bak, J. Ludwig and K. Smaoui, 2003)
 The estimate (*) holds for any connected simply connected nilpotent Lie group.
- Let G = exp(g) be a n-dimensional real nilpotent Lie group of Lie algebra g.
- Let {X₁,...,X_n} be a strong Malcev basis of g, for any j = 1,...,n, the space g_j = ℝ − span{X₁,...,X_j} is an ideal of g.

イロト 不得 とくほ とくほ とうほう
The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

- Theorem 1 : (A. Bak, J. Ludwig and K. Smaoui, 2003)
 The estimate (*) holds for any connected simply connected nilpotent Lie group.
- Let G = exp(g) be a n-dimensional real nilpotent Lie group of Lie algebra g.
- Let {X₁,...,X_n} be a strong Malcev basis of g, for any j = 1,...,n, the space g_j = ℝ − span{X₁,...,X_j} is an ideal of g.
- The composed map $\mathbb{R}^n o \mathfrak{g} o G$,

$$(x_1,...,x_n)\mapsto \sum_{j=1}^n x_jX_j\mapsto \exp(\sum_{j=1}^n x_jX_j)$$

is a diffeomorphism and maps Lebesgue measure on \mathbb{R}^n to a Haar measure on G.

Ali Baklouti (F. S. Sfax)

Estimate of the Fourier transform norm

Granada, May 22, 2013

9 / 28

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

For $\ell \in \mathfrak{g}^*$ let $G \cdot \ell = Ad^*(G)\ell$ denote the coadjoint orbit of ℓ .

글 🖌 🖌 글 🕨

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

- For $\ell \in \mathfrak{g}^*$ let $G \cdot \ell = Ad^*(G)\ell$ denote the coadjoint orbit of ℓ .
- An index $j \in \{1, ..., n\}$ is a jump index for ℓ if

 $\mathfrak{g}(\ell) + \mathfrak{g}_j \neq \mathfrak{g}(\ell) + \mathfrak{g}_{j-1}.$

イロト 不得 トイヨト イヨト 二日

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

- For $\ell \in \mathfrak{g}^*$ let $G \cdot \ell = Ad^*(G)\ell$ denote the coadjoint orbit of ℓ .
- An index $j \in \{1, ..., n\}$ is a jump index for ℓ if

$$\mathfrak{g}(\ell) + \mathfrak{g}_j \neq \mathfrak{g}(\ell) + \mathfrak{g}_{j-1}.$$

Let

 $e(\ell) = \{j : j \text{ is a jump index for } \ell\}.$

This set contains exactly dim $(G \cdot \ell)$ indices, which is necessarily an even number.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 10 / 28

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

There are two disjoint sets of indices S, T with S ∪ T = {1,..., n}, and a G-invariant Zariski open set U such that e(ℓ) = S for all ℓ ∈ U.

イロト 不得 とうせい かほとう ほ

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

There are two disjoint sets of indices S, T with S ∪ T = {1,..., n}, and a G-invariant Zariski open set 𝔄 such that e(ℓ) = S for all ℓ ∈ 𝔄.

Let

$$\mathscr{V}_{\mathcal{T}} = \mathbb{R} - \operatorname{span}\{X_i^*; i \in \mathcal{T}\}$$

and

$$\mathscr{V}_{S} = \mathbb{R} - \operatorname{span}\{X_{i}^{*}; i \in S\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

11 / 28

Then $\mathfrak{g}^* = \mathscr{V}_T \oplus \mathscr{V}_S$, \mathscr{V}_T meets \mathscr{U} and $\mathscr{W} = \mathscr{U} \cap \mathscr{V}_T$ is a cross-section for coadjoint orbits through points in \mathscr{U} .

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

There are two disjoint sets of indices S, T with S ∪ T = {1,..., n}, and a G-invariant Zariski open set 𝔄 such that e(ℓ) = S for all ℓ ∈ 𝔄.

Let

$$\mathscr{V}_{\mathcal{T}} = \mathbb{R} - \operatorname{span}\{X_i^*; i \in \mathcal{T}\}$$

and

$$\mathscr{V}_{\mathcal{S}} = \mathbb{R} - \operatorname{span}\{X_i^*; i \in \mathcal{S}\}.$$

Then $\mathfrak{g}^* = \mathscr{V}_T \oplus \mathscr{V}_S$, \mathscr{V}_T meets \mathscr{U} and $\mathscr{W} = \mathscr{U} \cap \mathscr{V}_T$ is a cross-section for coadjoint orbits through points in \mathscr{U} .

So, every G-orbit in 𝔐 related to a representation π meets 𝔐 in a single unique element. Define the Pfaffian Pf(ℓ) of the skew-symmetric matrix M_S(ℓ) = (ℓ([X_i, X_j]))_{i,j∈S}.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

11 / 28

The *L^p* – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

If $d\ell$ is the Lebesgue measure on \mathcal{W} , then $d\mu = |Pf(\ell)|d\ell$ is the Plancherel measure for \hat{G} . The Plancherel formula reads :

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

• If $d\ell$ is the Lebesgue measure on \mathcal{W} , then $d\mu = |Pf(\ell)|d\ell$ is the Plancherel measure for \hat{G} . The Plancherel formula reads :

$$\|f\|_2^2 = \int_G |f(g)|^2 dg = \int_{\mathscr{W}} \|\pi_\ell(f)\|_{C_2}^2 d\mu(\ell), f \in (L^1 \cap L^2)(G).$$

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

If $d\ell$ is the Lebesgue measure on \mathcal{W} , then $d\mu = |Pf(\ell)|d\ell$ is the Plancherel measure for \hat{G} . The Plancherel formula reads :

$$\|f\|_2^2 = \int_G |f(g)|^2 dg = \int_{\mathscr{W}} \|\pi_\ell(f)\|_{C_2}^2 d\mu(\ell), f \in (L^1 \cap L^2)(G).$$

• We get therefore the following description :

$$\|\mathscr{F}^{p}(f)\|_{q}=\Big(\int_{\mathscr{W}}\|\pi_{\ell}(f)\|_{C_{q}}^{q}d\mu(\ell)\Big)^{\frac{1}{q}}.$$

Ali Baklouti (F. S. Sfax)

Granada, May 22, 2013

12 / 28

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

• If $d\ell$ is the Lebesgue measure on \mathcal{W} , then $d\mu = |Pf(\ell)|d\ell$ is the Plancherel measure for \hat{G} . The Plancherel formula reads :

$$\|f\|_2^2 = \int_G |f(g)|^2 dg = \int_{\mathscr{W}} \|\pi_\ell(f)\|_{C_2}^2 d\mu(\ell), f \in (L^1 \cap L^2)(G).$$

• We get therefore the following description :

$$\|\mathscr{F}^{p}(f)\|_{q}=\Big(\int_{\mathscr{W}}\|\pi_{\ell}(f)\|_{C_{q}}^{q}d\mu(\ell)\Big)^{\frac{1}{q}}.$$

■ The problem now is how to get a sharp estimate (to a certain extent) of $\|\pi_{\ell}(f)\|_{C_q}$.

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

■ Fournier-Russo, 1977 : The Hausdorff-Young inequality for integral operators. Let X be a σ -finite measure space, k a measurable function on $X \times X$ and K an operator on $L^2(X)$ defined for $\phi \in L^2(X)$ by :

$$K\phi(x) = \int_X k(x,y)\phi(y)dy.$$

医下 人 医下

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

■ Fournier-Russo, 1977 : The Hausdorff-Young inequality for integral operators. Let X be a σ -finite measure space, k a measurable function on $X \times X$ and K an operator on $L^2(X)$ defined for $\phi \in L^2(X)$ by :

$$K\phi(x) = \int_X k(x,y)\phi(y)dy.$$

Define

$$||k||_{p,q} = \left[\int_X \left\{\int_X ||k(x,y)||_{C_q}^p dx\right\}^{\frac{q}{p}}\right]^{\frac{1}{q}}$$

Ali Baklouti (F. S. Sfax)

Granada, May 22, 2013

13 / 28

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

■ Fournier-Russo, 1977 : The Hausdorff-Young inequality for integral operators. Let X be a σ -finite measure space, k a measurable function on $X \times X$ and K an operator on $L^2(X)$ defined for $\phi \in L^2(X)$ by :

$$K\phi(x) = \int_X k(x,y)\phi(y)dy.$$

Define

$$||k||_{p,q} = \left[\int_X \left\{\int_X ||k(x,y)||_{C_q}^p dx\right\}^{\frac{q}{p}}\right]^{\frac{1}{q}}$$

• Then if 1 , we have

$$\|K\|_{C_q} \leq \|k\|_{p,q}^{\frac{1}{2}} \|k^*\|_{p,q}^{\frac{1}{2}}$$

where $k^*(x, y) = \overline{k(y, x)}$.

Ali Baklouti (F. S. Sfax)

Granada, May 22, 2013

13 / 28

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 14 / 28

3

글 > - < 글 >

< 同 ▶

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

This result is the most general so far in the case of connected and simply connected nilpotent Lie groups.

글 > - < 글 >

The L^p – Fourier transform

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

- This result is the most general so far in the case of connected and simply connected nilpotent Lie groups.
- (Klein-Russo, 1978) considered the case where q is an even integer $\left(p = \frac{2k}{2k-1}\right)$. In this situation, they showed :

イロト イポト イヨト イヨト 二日

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

- This result is the most general so far in the case of connected and simply connected nilpotent Lie groups.
- (Klein-Russo, 1978) considered the case where q is an even integer $\left(p = \frac{2k}{2k-1}\right)$. In this situation, they showed :
 - 1. The sharper estimate $||\mathscr{F}^{p}(G)|| \leq A_{p}^{\dim G}$ is obtained for general connected simply connected nilpotent Lie groups.

イロト 不得 とうせい かほとう ほ

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

- This result is the most general so far in the case of connected and simply connected nilpotent Lie groups.
- (Klein-Russo, 1978) considered the case where q is an even integer $\left(p = \frac{2k}{2k-1}\right)$. In this situation, they showed :
 - 1. The sharper estimate $||\mathscr{F}^{p}(G)|| \leq A_{p}^{\dim G}$ is obtained for general connected simply connected nilpotent Lie groups.
 - 2. If H_{2n+1} is the (2n + 1)-dimensional Heisenberg group, then accurately $\|\mathscr{F}^{p}(H_{2n+1})\| = A_{p}^{2n+1}$.

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

- This result is the most general so far in the case of connected and simply connected nilpotent Lie groups.
- (Klein-Russo, 1978) considered the case where q is an even integer $\left(p = \frac{2k}{2k-1}\right)$. In this situation, they showed :

1. The sharper estimate $||\mathscr{F}^{p}(G)|| \leq A_{p}^{\dim G}$ is obtained for general connected simply connected nilpotent Lie groups.

- 2. If H_{2n+1} is the (2n + 1)-dimensional Heisenberg group, then accurately $\|\mathscr{F}^{p}(H_{2n+1})\| = A_{p}^{2n+1}$.
- 3. In this case $(G = H_{2n+1})$, there are no extremal functions.

The frame of solvable Lie groups

1. On connected simply connected nilpotent Lie groups

Remarks.

- This result is the most general so far in the case of connected and simply connected nilpotent Lie groups.
- (Klein-Russo, 1978) considered the case where q is an even integer $\left(p = \frac{2k}{2k-1}\right)$. In this situation, they showed :
 - 1. The sharper estimate $||\mathscr{F}^{p}(G)|| \leq A_{p}^{\dim G}$ is obtained for general connected simply connected nilpotent Lie groups.
 - 2. If H_{2n+1} is the (2n+1)-dimensional Heisenberg group, then accurately $\|\mathscr{F}^{p}(H_{2n+1})\| = A_{p}^{2n+1}$.
 - 3. In this case $(G = H_{2n+1})$, there are no extremal functions.
- The problem of finding the exact norm for general cases is still open.

The L^p - Fourier transform

The frame of solvable Lie groups

Removing the assumption of simply connectedness

Let G be a connected nilpotent Lie group with Lie algebra g, and G be its universal covering group.

∃ ► < ∃ ►</p>

The L^p – Fourier transform

The frame of solvable Lie groups

Removing the assumption of simply connectedness

- Let G be a connected nilpotent Lie group with Lie algebra \mathfrak{g} , and \tilde{G} be its universal covering group.
- Then we have $G = \tilde{G}/\Gamma$, where Γ is a discrete central subgroup of G.

イロト 不得 とくほ とくほ とうほう

The frame of solvable Lie groups

Removing the assumption of simply connectedness

- Let G be a connected nilpotent Lie group with Lie algebra g, and G be its universal covering group.
- Then we have $G = \tilde{G}/\Gamma$, where Γ is a discrete central subgroup of G.
- We denote by exp : $\mathfrak{g} \to \tilde{G}$ the exponential mapping, and let $\Lambda \subset \mathfrak{g}$, such that exp $\Lambda = \Gamma$. Then Λ is a discrete additive subgroup of the center of \mathfrak{g} .

The frame of solvable Lie groups

Removing the assumption of simply connectedness

- Let G be a connected nilpotent Lie group with Lie algebra \mathfrak{g} , and \tilde{G} be its universal covering group.
- Then we have $G = \tilde{G}/\Gamma$, where Γ is a discrete central subgroup of G.
- We denote by $\exp : \mathfrak{g} \to \tilde{G}$ the exponential mapping, and let $\Lambda \subset \mathfrak{g}$, such that $\exp \Lambda = \Gamma$. Then Λ is a discrete additive subgroup of the center of \mathfrak{g} .
- Let h := ℝ-span(Λ), H̃ := exp h ⊂ G̃ and H := H̃/Γ ⊂ G, which is the compact maximal subgroup of G.

The L^p – Fourier transform

The frame of solvable Lie groups

Removing the assumption of simply connectedness

We have the following :

Theorem 2 : (A. Bak and J. Inoue, 2011) Let G be a connected nilpotent Lie group, \tilde{G} its universal covering group and H the maximal compact subgroup of G. If m designates the maximal dimension of generic coadjoint orbits of \tilde{G} , then for $1 , <math>\|\mathscr{F}^{p}(G)\| \leq A_{p}^{\dim(G/H) - \frac{m}{2}}$.

The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

• Let G be an exponential solvable Lie group, which means that exp : $\mathfrak{g} \to G$ is a C^{∞} - diffeomorphism.

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- Let G be an exponential solvable Lie group, which means that exp : $\mathfrak{g} \to G$ is a C^{∞} diffeomorphism.
- Let Δ_G designate the modular function of G.

・ 同 ト ・ 国 ト ・ 国 ト … 国

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- Let G be an exponential solvable Lie group, which means that exp : $\mathfrak{g} \to G$ is a C^{∞} diffeomorphism.
- Let Δ_G designate the modular function of G.
- There exist :

・同・ ・ヨ・ ・ヨ・ ・ヨ

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- Let G be an exponential solvable Lie group, which means that exp : $\mathfrak{g} \to G$ is a C^{∞} diffeomorphism.
- Let Δ_G designate the modular function of G.
- There exist :
 - 1. A field of non-zero positive self-adjoint operators $(K_{\pi})_{\pi \in \widehat{G}}$ which are semi-invariant with weight Δ_{G}^{-1} , i.e :

$$\pi(g)K_{\pi}\pi(g)^{-1} = \Delta_G^{-1}(g)K_{\pi}$$

for any $g \in G$.

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- Let G be an exponential solvable Lie group, which means that exp : $\mathfrak{g} \to G$ is a C^{∞} diffeomorphism.
- Let Δ_G designate the modular function of G.
- There exist :
 - 1. A field of non-zero positive self-adjoint operators $(K_{\pi})_{\pi \in \widehat{G}}$ which are semi-invariant with weight Δ_{G}^{-1} , i.e :

$$\pi(g)K_{\pi}\pi(g)^{-1}=\Delta_{G}^{-1}(g)K_{\pi}$$

for any $g \in G$. 2. A measure μ on \widehat{G} such that for μ -almost all $\pi \in \widehat{G}$, the operator $\pi(f)K_{\pi}^{-\frac{1}{2}}$ extends to a Hilbert-Schmidt operator on the space of π for any $f \in (L^1 \cap L^2)(G)$.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm

17 / 28

The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

In this case, the Plancherel formula reads :

$$\|f\|_{2}^{2} = \int_{\widehat{G}} \operatorname{Tr} [K_{\pi}^{-\frac{1}{2}} \pi (f^{*} \star f) K_{\pi}^{-\frac{1}{2}}] d\mu(\pi).$$

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

The L^p - Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

In this case, the Plancherel formula reads :

$$\|f\|_2^2 = \int_{\widehat{G}} \operatorname{Tr} [K_{\pi}^{-\frac{1}{2}} \pi (f^* \star f) K_{\pi}^{-\frac{1}{2}}] d\mu(\pi).$$

Define the L^p - Fourier transform as $\mathscr{F}^p(f)(\pi) = \pi(f) K_{\pi}^{-\frac{1}{q}}$.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 18 / 28

The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

In this case, the Plancherel formula reads :

$$\|f\|_2^2 = \int_{\widehat{G}} \operatorname{Tr} [K_{\pi}^{-\frac{1}{2}} \pi (f^* \star f) K_{\pi}^{-\frac{1}{2}}] d\mu(\pi).$$

• Define the L^p – Fourier transform as $\mathscr{F}^p(f)(\pi) = \pi(f) K_{\pi}^{-\frac{1}{q}}$.

• The Hausdorff-Young Theorem extends in this case.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 18 / 28

イロト 不得 とうせい かほとう ほ

The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

In this case, the Plancherel formula reads :

$$\|f\|_2^2 = \int_{\widehat{G}} \operatorname{Tr} [K_{\pi}^{-\frac{1}{2}} \pi (f^* \star f) K_{\pi}^{-\frac{1}{2}}] d\mu(\pi).$$

• Define the L^p – Fourier transform as $\mathscr{F}^p(f)(\pi) = \pi(f) K_{\pi}^{-\frac{1}{q}}$.

- The Hausdorff-Young Theorem extends in this case.
- Let \mathfrak{n} be the nilradical of \mathfrak{g} and $\ell \in \mathfrak{g}^*$.

イロト 不得 とうせい かほとう ほ

The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

In this case, the Plancherel formula reads :

$$\|f\|_2^2 = \int_{\widehat{G}} \operatorname{Tr} [K_{\pi}^{-\frac{1}{2}} \pi (f^* \star f) K_{\pi}^{-\frac{1}{2}}] d\mu(\pi).$$

- Define the L^p Fourier transform as $\mathscr{F}^p(f)(\pi) = \pi(f) K_{\pi}^{-\frac{1}{q}}$.
- The Hausdorff-Young Theorem extends in this case.
- Let \mathfrak{n} be the nilradical of \mathfrak{g} and $\ell \in \mathfrak{g}^*$.
- Define $\mathfrak{g}(\ell_{|\mathfrak{n}}) = \{X \in \mathfrak{g} : \ell([X,\mathfrak{n}]) = \{0\}\}$ and $\mathfrak{m}(\ell) = \mathfrak{g}(\ell_{|\mathfrak{n}}) + \mathfrak{n}$.

Ali Baklouti (F. S. Sfax)
The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

In this case, the Plancherel formula reads :

$$\|f\|_2^2 = \int_{\widehat{G}} \operatorname{Tr} [K_{\pi}^{-\frac{1}{2}} \pi (f^* \star f) K_{\pi}^{-\frac{1}{2}}] d\mu(\pi).$$

- Define the L^p Fourier transform as $\mathscr{F}^p(f)(\pi) = \pi(f) K_{\pi}^{-\frac{1}{q}}$.
- The Hausdorff-Young Theorem extends in this case.
- Let \mathfrak{n} be the nilradical of \mathfrak{g} and $\ell \in \mathfrak{g}^*$.
- Define $\mathfrak{g}(\ell_{|\mathfrak{n}}) = \{X \in \mathfrak{g} : \ell([X,\mathfrak{n}]) = \{0\}\}$ and $\mathfrak{m}(\ell) = \mathfrak{g}(\ell_{|\mathfrak{n}}) + \mathfrak{n}$.

• Let
$$\mathfrak{m}^{\infty}(\ell) = \bigcap_{k \geq 0} \mathscr{C}^k(\mathfrak{m}(\ell))$$

Ali Baklouti (F. S. Sfax)

The L^p - Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

■ The Lie group G is called strong *-regular if g* contains a Zariski open subset of linear forms ℓ fulfilling ℓ(m[∞](ℓ)) = {0}.

イロト イポト イヨト イヨト 三日

Estimate of the Fourier transform norm The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

The Lie group G is called strong ★-regular if g* contains a Zariski open subset of linear forms ℓ fulfilling ℓ(m[∞](ℓ)) = {0}. This class contains :

- ・ 同 ト ・ ヨ ト - - ヨ

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- The Lie group G is called strong ★-regular if g* contains a Zariski open subset of linear forms ℓ fulfilling ℓ(m[∞](ℓ)) = {0}. This class contains :
- All connected simply connected nilpotent Lie groups.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 19 / 28

イロト イポト イヨト イヨト 三日

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- The Lie group G is called strong ★-regular if g* contains a Zariski open subset of linear forms ℓ fulfilling ℓ(m[∞](ℓ)) = {0}. This class contains :
- All connected simply connected nilpotent Lie groups.
- The group of the transformations of the real line "ax+b" studied by Eymard and Terp, 1979.

Estimate of the Fourier transform norm The L^p – Fourier transform

The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- The Lie group G is called strong ★-regular if g* contains a Zariski open subset of linear forms ℓ fulfilling ℓ(m[∞](ℓ)) = {0}. This class contains :
- All connected simply connected nilpotent Lie groups.
- The group of the transformations of the real line "ax+b" studied by Eymard and Terp, 1979.
- All exponential Lie groups of dimension ≤ 4, except the so-called Leptin-Boidol Lie group, whose Lie algebra admits a basis {A, X, Y, Z} for which [A, X] = −X, [A, Y] = Y and [X, Y] = Z.

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

 The upshot in this setting is as follows : Theorem 3 : (A. Bak, J. Ludwig, L. Scuto and K. Smaoui, 2007) Let G be an arbitrary exponential solvable Lie group meeting the strong *-regularity condition. Then :

Estimate of the Fourier transform norm The L^p – Fourier transform The frame of solvable Lie groups

2. Case of exponential solvable Lie groups

- The upshot in this setting is as follows : Theorem 3 : (A. Bak, J. Ludwig, L. Scuto and K. Smaoui, 2007) Let G be an arbitrary exponential solvable Lie group meeting the strong *-regularity condition. Then :
 - 1. Let $1 . For all <math>f \in (L^1 \cap L^p)(G)$ and all μ -almost all $\pi \in \widehat{G}$, the operator $\pi^p(f) := \pi(f) K_{\pi}^{-\frac{1}{q}}$ is bounded and extends to a C_q -class operator.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Case of exponential solvable Lie groups

- The upshot in this setting is as follows : Theorem 3 : (A. Bak, J. Ludwig, L. Scuto and K. Smaoui, 2007) Let G be an arbitrary exponential solvable Lie group meeting the strong *-regularity condition. Then :
 - 1. Let $1 . For all <math>f \in (L^1 \cap L^p)(G)$ and all μ -almost all $\pi \in \widehat{G}$, the operator $\pi^p(f) := \pi(f) K_{\pi}^{-\frac{1}{q}}$ is bounded and extends to a C_q -class operator.
 - 2. We have the following inequality :

$$\left(\int_{\widehat{G}}\|\pi^p(f)\|_{C_q}^q d\mu(\pi)\right)^{\frac{1}{q}} \leq A_p^{\frac{2\dim G-m}{2}}\|f\|_p,$$

where m denotes the maximal dimension of coadjoint orbits.

20 / 28

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

• Let G be a compact Lie group with the normalized Haar measure dg, and $f \in (L^1 \cap L^2)(G)$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

- Let G be a compact Lie group with the normalized Haar measure dg, and $f \in (L^1 \cap L^2)(G)$.
- For an irreducible unitary representation $\pi \in \widehat{G}$ with degree d_{π} realized on $\mathbb{C}^{d_{\pi}}$, we have

$$\sum_{\pi\in\widehat{G}}d_{\pi}\|\pi(f)\|_{HS}^2=\int_{G}|f(g)|^2\,dg.$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

- Let G be a compact Lie group with the normalized Haar measure dg, and $f \in (L^1 \cap L^2)(G)$.
- For an irreducible unitary representation $\pi \in \widehat{G}$ with degree d_{π} realized on $\mathbb{C}^{d_{\pi}}$, we have

$$\sum_{\pi\in\widehat{G}}d_{\pi}\|\pi(f)\|_{HS}^2=\int_{G}|f(g)|^2\,dg.$$

• The Hausdorff-Young inequality for *G* reads :

$$\left(\sum_{\pi\in \widehat{G}} d_{\pi} \|\pi(f)\|_{\mathcal{C}_q}^q
ight)^{rac{1}{q}} \leq \left(\int_{\mathcal{G}} |f(g)|^p \ dg
ight)^{rac{1}{p}}$$

3. On compact extensions of \mathbb{R}^n

• Let $M(n) = \mathbb{R}^n \rtimes SO(n)$ be the Euclidean motion group. We denote each element of M(n) by (a, k), where $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, and $k \in SO(n)$, which acts on \mathbb{R}^n as a rotation.

3. On compact extensions of \mathbb{R}^n

- Let $M(n) = \mathbb{R}^n \rtimes SO(n)$ be the Euclidean motion group. We denote each element of M(n) by (a, k), where $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, and $k \in SO(n)$, which acts on \mathbb{R}^n as a rotation.
- We describe the multiplication by

 $(a,k)(a',k') = (a+k\cdot a',kk') \quad a,a' \in \mathbb{R}^n, \quad k,k' \in SO(n).$

3. On compact extensions of \mathbb{R}^n

- Let $M(n) = \mathbb{R}^n \rtimes SO(n)$ be the Euclidean motion group. We denote each element of M(n) by (a, k), where $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, and $k \in SO(n)$, which acts on \mathbb{R}^n as a rotation.
- We describe the multiplication by

 $(a,k)(a',k') = (a+k\cdot a',kk') \quad a,a' \in \mathbb{R}^n, \quad k,k' \in SO(n).$

We take a Haar measure on M(n) by dadµ_n(k), where da := da₁ · · · da_n is the Lebesgue measure as above and dµ_n(k) is the normalized Haar measure on SO(n).

3. On compact extensions of \mathbb{R}^n

- Let $M(n) = \mathbb{R}^n \rtimes SO(n)$ be the Euclidean motion group. We denote each element of M(n) by (a, k), where $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, and $k \in SO(n)$, which acts on \mathbb{R}^n as a rotation.
- We describe the multiplication by

 $(a,k)(a',k') = (a+k\cdot a',kk') \quad a,a' \in \mathbb{R}^n, \quad k,k' \in SO(n).$

- We take a Haar measure on M(n) by dadµ_n(k), where da := da₁ ··· da_n is the Lebesgue measure as above and dµ_n(k) is the normalized Haar measure on SO(n).
- Let $\chi \in \widehat{\mathbb{R}^n}$ defined by $\chi(x) := e^{i \langle x, e_n \rangle}$, where $e_n := (0, \dots, 0, 1)$, $x \in \mathbb{R}^n$.

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

• Let now M(n) act naturally on $\widehat{\mathbb{R}^n}$ as : for $(a,k) \in M(n)$ and $b \in \mathbb{R}^n$,

$$(a,k)\cdot\chi(b):=\chi(k^{-1}\cdot b)=e^{i\langle k^{-1}\cdot b,e_n
angle}=e^{i\langle b,k\cdot e_n
angle}$$

and the stabilizer $M(n)_{\chi}$ of χ is described by $M(n)_{\chi} = \mathbb{R}^n \rtimes K'$, where

$$\mathcal{K}':=\left\{egin{pmatrix}k'&0\0&1\end{pmatrix};\ k'\in SO(n-1)
ight\}\simeq SO(n-1).$$

Ali Baklouti (F. S. Sfax)

Granada, May 22, 2013

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

23 / 28

The L^p - Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

Let σ ∈ K' be an irreducible unitary representation of K' of degree d_σ in C^{d_σ} with the standard inner product ⟨·, ·⟩.

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

- Let σ ∈ K' be an irreducible unitary representation of K' of degree d_σ in C^{d_σ} with the standard inner product ⟨·, ·⟩.
- Let ℋ := ℋ(SO(n), σ) be the completion of C^{d_σ}-valued functions φ on SO(n) such that :

1.
$$\phi(kk') = \sigma(k')^{-1}\phi(k), \ k \in SO(n) \text{ and } k' \in K',$$

2. $\int_{SO(n)} \|\phi(k)\|^2 d\mu_n(k) < \infty$, with respect to the inner product

$$(\phi,\phi')_{\sigma}:=d_{\sigma}\int_{SO(n)}\langle\phi(k),\phi'(k)
angle\;d\mu_n(k),\quad\phi,\phi'\in\mathscr{H}.$$

24 / 28

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

- Let σ ∈ K' be an irreducible unitary representation of K' of degree d_σ in C^{d_σ} with the standard inner product ⟨·, ·⟩.
- Let *H* := *H*(SO(n), σ) be the completion of C^{d_σ}-valued functions φ on SO(n) such that :

1.
$$\phi(kk') = \sigma(k')^{-1}\phi(k), \ k \in SO(n) \text{ and } k' \in K',$$

2. $\int_{SO(n)} \|\phi(k)\|^2 d\mu_n(k) < \infty$, with respect to the inner product

$$(\phi,\phi')_{\sigma}:=d_{\sigma}\int_{SO(n)}\langle\phi(k),\phi'(k)
angle \ d\mu_n(k), \quad \phi,\phi'\in\mathscr{H}.$$

For $\sigma \in \widehat{K'}$ and r > 0, define a representation $\pi_{r,\sigma}$ of M(n) on \mathscr{H} by

$$\pi_{r,\sigma}(a,k)\phi(h):=e^{ir\langle a,\ h\cdot e_n\rangle}\phi(k^{-1}h).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

Then $(\pi_{r,\sigma}, \mathscr{H})$ is an irreducible unitary representation of M(n) and we have the Plancherel formula for $f \in (L^1 \cap L^2)(M(n))$ by :

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

Then (π_{r,σ}, ℋ) is an irreducible unitary representation of M(n) and we have the Plancherel formula for f ∈ (L¹ ∩ L²)(M(n)) by :

$$\int_{M(n)} |f(a,k)|^2 \, dad\mu_n(k) = \int_0^\infty \sum_{\sigma \in \widehat{K'}} d_\sigma \|\pi_{r,\sigma}(f)\|_{HS}^2 \, (2\pi)^{-n} c_n r^{n-1} \, dr,$$

where dr is the Lebesgue measure on \mathbb{R} , and $c_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$, the volume of the unit sphere S^{n-1} .

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

Then (π_{r,σ}, ℋ) is an irreducible unitary representation of M(n) and we have the Plancherel formula for f ∈ (L¹ ∩ L²)(M(n)) by :

$$\int_{\mathcal{M}(n)} |f(a,k)|^2 \, dad\mu_n(k) = \int_0^\infty \sum_{\sigma \in \widehat{\mathcal{K}'}} d_\sigma \|\pi_{r,\sigma}(f)\|_{HS}^2 \, (2\pi)^{-n} c_n r^{n-1} \, dr,$$

where dr is the Lebesgue measure on \mathbb{R} , and $c_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$, the volume of the unit sphere S^{n-1} .

• Thus for $f \in (L^1 \cap L^p)(M(n))$, we can describe

$$\|\mathscr{F}^{p}f\|_{q} = \left(\int_{0}^{\infty}\sum_{\sigma\in\widehat{K'}}d_{\sigma}\|\pi_{r,\sigma}(f)\|_{C_{q}}^{q}(2\pi)^{-n}c_{n}r^{n-1}dr\right)^{\frac{1}{q}}.$$

Ali Baklouti (F. S. Sfax)

25 / 28

The L^p - Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

• We prove the following :

イロト 不得 とうせい かほとう ほ

Estimate of the Fourier transform norm The L^p – Fourier transform The L^p – Fourier transform norm on compact extensions 3. On compact extensions of \mathbb{R}^n

• We prove the following :

Theorem 4 : (A. Bak and J. Inoue, 2012) For 1 , $1. <math>\|\mathscr{F}^{p}(M(n))\| = A_{p}^{n}$.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 26 / 28

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

3. On compact extensions of \mathbb{R}^n

• We prove the following :

Theorem 4 : (A. Bak and J. Inoue, 2012) For 1 , $1. <math>\|\mathscr{F}^{p}(M(n))\| = A_{p}^{n}$.

2. $f(a, k) := e^{-||a||^2/2}$ is a maximal function.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Estimate of the Fourier transform norm The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

• We prove the following :

Theorem 4 : (A. Bak and J. Inoue, 2012) For 1 , $1. <math>\|\mathscr{F}^{p}(M(n))\| = A_{p}^{n}$.

2. $f(a, k) := e^{-||a||^2/2}$ is a maximal function.

■ These computations can be generalized to encompass all compact extensions of ℝⁿ. We have :

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

3. On compact extensions of \mathbb{R}^n

• We prove the following :

Theorem 4 : (A. Bak and J. Inoue, 2012) For 1 , $1. <math>\|\mathscr{F}^{p}(M(n))\| = A_{p}^{n}$.

2. $f(a, k) := e^{-\|a\|^2/2}$ is a maximal function.

■ These computations can be generalized to encompass all compact extensions of ℝⁿ. We have :

Theorem 4': Let G be the semi-direct product $K \ltimes \mathbb{R}^n$, where K designates a compact subgroup of $Aut(\mathbb{R}^n)$. Then for $1 , <math>\|\mathscr{F}^p(G)\| = A_p^n$.

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

The universal covering group M(n) = ℝⁿ ⋊ Spin(n), where Spin(n) designates the universal covering groups of the orthogonal groups. Here, the action of Spin(n) on ℝⁿ is merely the pullback of the action of SO(n) on ℝⁿ.

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

- The universal covering group M(n) = ℝⁿ ⋊ Spin(n), where Spin(n) designates the universal covering groups of the orthogonal groups. Here, the action of Spin(n) on ℝⁿ is merely the pullback of the action of SO(n) on ℝⁿ.
- For n ≥ 3, Spin(n) contains a central two elements group Z₂ such that Spin(n)/Z₂ = SO(n).

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

- The universal covering group M(n) = ℝⁿ ⋊ Spin(n), where Spin(n) designates the universal covering groups of the orthogonal groups. Here, the action of Spin(n) on ℝⁿ is merely the pullback of the action of SO(n) on ℝⁿ.
- For n ≥ 3, Spin(n) contains a central two elements group Z₂ such that Spin(n)/Z₂ = SO(n).
- Spin(2) = \mathbb{R} .

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

- The universal covering group M(n) = ℝⁿ ⋊ Spin(n), where Spin(n) designates the universal covering groups of the orthogonal groups. Here, the action of Spin(n) on ℝⁿ is merely the pullback of the action of SO(n) on ℝⁿ.
- For n ≥ 3, Spin(n) contains a central two elements group Z₂ such that Spin(n)/Z₂ = SO(n).
- Spin(2) = \mathbb{R} .
- So, M(2) = ℝ² ⋊ Spin(2) = ℝ² ⋊ ℝ is a solvable non-exponential Lie group with a trivial center.

・ロ ・ ・ ヨ ・ ・ ヨ ・ ・ ・ 日 ・ う へ つ ・

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

- The universal covering group M(n) = ℝⁿ ⋊ Spin(n), where Spin(n) designates the universal covering groups of the orthogonal groups. Here, the action of Spin(n) on ℝⁿ is merely the pullback of the action of SO(n) on ℝⁿ.
- For n ≥ 3, Spin(n) contains a central two elements group Z₂ such that Spin(n)/Z₂ = SO(n).
- Spin(2) = \mathbb{R} .
- So, M(2) = ℝ² ⋊ Spin(2) = ℝ² ⋊ ℝ is a solvable non-exponential Lie group with a trivial center.
- \blacksquare Here, $\mathbb R$ acts on $\mathbb R^2$ by

 $\theta \cdot (x, y) = (x \cos(2\pi\theta) + y \sin(2\pi\theta), -x \sin(2\pi\theta) + y \cos(2\pi\theta)),$

 $x, y, \theta \in \mathbb{R}.$

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

• A long computation shows that $\|\mathscr{F}^{p}(\widetilde{M(2)})\| \leq A_{p}^{2}$.

Ali Baklouti (F. S. Sfax) Estimate of the Fourier transform norm Granada, May 22, 2013 28 / 28

A glimpse on Spin extensions

A long computation shows that ||𝔅^p(M(2))|| ≤ A²_p.
 We get therefore :

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

- A long computation shows that $\|\mathscr{F}^p(M(2))\| \le A_p^2$.
- We get therefore :

Theorem 5 : Let G be the semi-direct product $Spin(n) \ltimes \mathbb{R}^n$. Then for $1 , <math>\|\mathscr{F}^p(G)\| \le A_p^n$. We have equality whenever $n \ge 3$.
Estimate of the Fourier transform norm

The L^p – Fourier transform

The L^p – Fourier transform norm on compact extensions

A glimpse on Spin extensions

- A long computation shows that $||\mathscr{F}^p(M(2))|| \le A_p^2$.
- We get therefore :

Theorem 5 : Let G be the semi-direct product $Spin(n) \ltimes \mathbb{R}^n$. Then for $1 , <math>\|\mathscr{F}^p(G)\| \le A_p^n$. We have equality whenever $n \ge 3$.

A last remark : I can not compute so far the exact norm when n = 2.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●