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Abstract 

 

A theory of problem solving in complex dynamic environments is proposed in which 

problem spaces are generated using the statistical properties of the environment. Latent Problem 

Solving Analysis (LPSA) uses log files that record the state of the environment and the actions of 

problem solvers to create a metric multidimensional space that allows computing similarity 

measures between any problem solving episodes. These similarity measures are shown to 

correlate well with human similarity judgments in two complex problems-solving tasks, a 

dynamic microworld simulation in which participants must extinguish forest fires and a more 

realistic task where instructors rate landings performed by airline pilots in a high-fidelity 

simulator.  We propose that the problem space generated by LPSA reproduces accurately the 

knowledge acquired by problem solvers in these situations. 

 

Keywords: Problem Solving, Knowledge representation, Complex systems, Computer 

simulation, Human factors, Latent Semantic Analysis 
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Latent Problem-Solving Analysis: A computational theory of representation in 

experienced problem solving 

 

Introduction 

There seems to be a lack of clarity on the representational assumptions that theorists 

make in problem solving. For example Gordon (2003) states that “one of the hallmarks of 

artificial intelligence planning systems is the general absence of representational commitments” 

(p. 23). Newell and Simon’s (1972) theory was not centered on knowledge representation, but on 

processes of information transformation (called methods). A method is a collection of 

information processes that combine a series of means to attain an end. They acknowledged that 

representation was not a main objective: “the theory to be presented in this book has much more 

to say about methods and executive operations than about creating new representations or 

shifting from one representation to another” (Newell & Simon, 1972, p. 90). This paper focuses 

on representation in experienced problem solving.  

Although the representational assumptions of the classic problem space view are not 

clear, it seems that most authors would agree in that the problem space can be represented by 

finite directed graphs (e.g., Newell & Simon, 1972; Richman, Gobet, Staszewski, & Simon, 

1996)1. Examples of structures used that fit in the general description of directed graphs are list 

structures and attribute-value associations. However, most theories of problem solving do not 

define explicitly the particular representational format used, or do not propose mechanisms to 

generate the representations from the information that the problem solver has available.  

The theory we present, Latent Problem Solving Analysis (LPSA) was designed to 

compensate for this lack of representational clarity, and to be applied to complex problem-
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solving tasks that change in real time, where the deliberate, time-consuming operations that the 

classical, rule-based approach to problem solving proposes are not always optimal. LPSA is 

based on Latent Semantic Analysis {LSA, \Landauer, 1997 #25. In LSA, the assumption is that 

people can learn the meaning of words by just experiencing them in different contexts. LSA 

defines a context as a passage of text, for example a paragraph or document. LSA is trained on a 

corpus (that is, a collection of documents). In LSA, each different word (type) is represented as a 

function of all the other word occurrences (tokens) in all the passages in the corpus. LSA creates 

a multidimensional space of 100-500 dimensions reducing the dimensionality of a matrix of 

contexts by types. Each type is then represented as a point in this space. LPSA proposes that this 

mechanism may be more general in cognition than simply word meaning, and that several other 

cognitive skills can be represented in a similar way.  

LPSA’s main assumption is that some problem spaces can be better described as metric 

multidimensional spaces and these spaces can be derived by the application of a self-organizing 

procedure to a huge set of raw trial log files. In that sense, the theory does not rely on verbal 

protocols, similarity judgments, expert knowledge elicitation techniques, or analytical 

descriptions of the task such as manuals to build the space. Instead, LPSA uses representative 

samples of people’s interactions with their tasks.  

One of the basics ideas of our proposal is that we should use the same information in 

quantity and quality that is available in the environment for the cognitive system. This type of 

approach proposes that the structure of the environment determines the design of a cognitive 

system that evolves in it. It was pioneered by Brunswik {, 1956 #78} and Gibson (1979), revived 

by Anderson (1991), and developed by the contributors in the book edited by Oaksford and 

Chater (1998) among others. The basic idea is that modelers should be concerned with the 
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purposes of the cognitive system, because they can help reducing the degrees of freedom in the 

modeling process. Chater and Oaksford (1999) pointed out that cognitive science has been 

strongly dominated by mechanistic explanations (how the mind does things), but recently 

purposive explanations (why the mind does things) are gaining importance. With the advent of 

these why questions, modelers are increasingly looking at the environment for answers. The 

statistical properties of the environment are an object of study by themselves, because the 

cognitive system has to be adapted to them and this adds a good amount of cues about its 

functioning.  

Step 2 in Anderson’s rational analysis requires developing a formal model of the 

environment. In this aspect, cognitive science has not produced consistent integrative theories, 

but local theories that tend to be valid for a particular task or experiment only, and several 

theoreticians have raised criticisms against this practice (e.g., Burns & Vollmeyer, 2000; Newell, 

1980). Many authors (e.g., Brunswik, 1956; Juslin, Olsson, & Winman, 1996; Simon, 1981; 

Vicente, 1999) have proposed that the environment is at least as important as the individual’s 

cognitive system to explain behavior, but formal analyses about the structure of the environment 

and how it generates cognitive representations have lagged behind. In his parable of the ant and 

the beach, Simon’s (1981) wondered why the path that an ant describes when walking is so 

complex, and how this complexity can be ascribed to the ant. However, he continued, it could be 

the case that the complexity is in the beach itself. In other words, the cognitive system’s 

complexity can be a reflection of the structure of the environment. A formal description of the 

constraints of this environment can be very well the best approximation to the cognitive 

representation that the mind uses. LPSA is a computational representation of the beach obtained 

by analyzing the paths of thousands of ants. 
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In this paper, we propose that the similarity between events (states/actions) can be 

computed using contextual usage. We call this context-based similarity. Imagine that every task 

leaves a log file of the activities performed from the beginning to the end. This is a context in 

LPSA, or a path of one ant in Simon’s beach. We can compute context-based similarity for any 

task in which we can define events and contexts. To define a context, we should consider how 

the events in a task are related. Since events depend on each other, the appropriate working 

definition of context should contemplate all possible dependencies. Most problem solving 

situations will contain long-term dependencies. For example, the opening move in chess will be 

related to all the other moves, even the last one (checkmate). Thus, a natural way of defining 

context would be to use the whole game in chess, or whole trials in other activities and 

experimental tasks. A trial ensures that even the long-term dependencies are captured, since there 

are no dependencies that cross the limit of a trial. To define events, we can concentrate on 

system states or participant actions. They tend to be complementary, so the decision to use one or 

another may be determined by the information available in the task. These are equivalent to 

words (types) in LSA. 

LPSA uses the contextual information not only at the within-trial level, but at the corpus 

level. A corpus here is a collection of solutions to a wide set of problems. Each solution is a 

context, equivalent to a passage of text in LSA. LPSA starts with first-order co-occurrence 

relations between events and contexts, that is, it uses all the contexts in which a particular event 

has appeared. A dimension reduction step helps eliminating noise and improves the 

discriminability of each stimulus once placed in the multidimensional space. It is the global 

pattern of contexts what determines the constraints that are used to represent the environment, 

not only the local context. For example, imagine a universe in which 100 actions can appear in 
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any of 100 contexts. Imagine that action A1 appears in contexts (C45, C10, C90), Action A2 

appears in contexts (C45, C10, C15) and action A3 is present in context (C1, C2, C3). Then, 

actions A1 and A2 are more similar to each other than to A3, because they appear in more shared 

contexts. 

The linear reduction to a multidimensional metric space can be considered the lowest 

complexity "minimum common denominator" of representational models. Metric spaces have 

been used as representing spaces in several areas of cognitive science, for example perception 

(e.g., Shepard, 1987), object recognition (e.g., Edelman, 1998, 1999) and semantics (e.g., 

Landauer & Dumais, 1997). However, to our knowledge no theory has proposed that 

representation in problem solving can be understood using the same formalism. A metric space 

of this type groups events (actions or states) according their function, which is what really 

matters in a problem-solving task. 

We propose that this mechanism, the “lowest common denominator”, could be context-

based similarity as implemented in LPSA. LPSA assumptions (e.g., linear relationship between 

components, non-structured representations due to the metric features of the space, etc.) may not 

be optimal for some tasks, but even an oversimplified representation such as a LPSA space can 

explain a good amount of phenomena of interest in complex, dynamic tasks. We think LPSA is a 

step in the direction of creating a model of representation in problem solving that is robust under 

a rich variety of circumstances. If a common formalism can account for very different tasks, and 

if it can be empirically validated without changing its basic assumptions, that would be a good 

source of evidence for the psychological plausibility of a theory. 

The range of tasks that we used differs markedly from the kind of tasks that other theories 

of problem solving have tried in the past (see also Ehret, Gray, & Kirschenbaum, 2000; Gray, 
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2002; Quesada, Kintsch, & Gomez, submitted). We have chosen these tasks because we believe 

they are representative of a subset of environments that are important for real-life situations, but 

have been neglected in the literature.  Many real-world decision making and problem solving 

situations are (1) dynamic, because early actions determine the environment in which subsequent 

decisions must be made, and features of the task environment may change independently of the 

solver’s actions; (2) time-dependent, because decisions must be made at the correct moment in 

relation to environmental demands; and (3) complex, in the sense that most variables are not 

related to each other in a one-to-one manner. In these situations, the problem requires not one 

decision, but a long series, and these decisions are, in return, completely dependent on one 

another. For a task that is changing continuously, the same action can be definitive at moment t1 

and useless at moment t2 (Brehmer, 1992; Edwards, 1962; Frensch & Funke, 1995a, 1995b). 

However, traditional, experimental problem solving research has focused largely on tasks such as 

anagrams, concept identification, puzzles, etc. that are not representative of the features 

described above.  For some time now,  researchers work on a set of computer-based, 

experimental tasks that are dynamic, time-dependent, and complex, called microworlds, and the 

area of thinking and reasoning that deals with them is called Complex Problem Solving ( CPS, 

e.g.,  Frensch & Funke, 1995a). CPS has been plagued with methodological problems, and 

performance has been analyzed at a very shallow level (process measures were mostly 

discarded). The interest of this research paradigm, a hybrid between field studies and 

experimental ones, is tied to the success of methodological advances and theoretical progress. 

However, “despite 10 years of research in the area, there is neither a clearly formulated specific 

theory nor is there an agreement on how to proceed with respect to the research philosophy” 

(Funke, 1992, p. 23). The need for a theory that integrates explanations for these CPS tasks 
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together with current knowledge representation approaches is patent. But any theory that tries to 

explain representation should be independent of the idiosyncrasies of the tasks, even when those 

are really complex. For that reason, we test the theory against human judgments in several 

different tasks. In this paper we report results from two very different complex, dynamic tasks: 

The microworld Firechief (Omodei & Wearing, 1993, 1995) and a high-fidelity flying simulator. 

In the Firechief experiment described here, participants saw replay videos of pairs of trials, and 

had to assign a value between 0 and 100 to capture how similar they considered the pair, and 

these values were correlate with LPSA measures. In the flying simulator situation, two 

instructors evaluated pilots’ landings, one of them sitting in the copilot seat, and the other one 

watching plots of relevant variables in real time. The nearest neighbors in the LPSA space of any 

new landing were used to generate landing ratings. The ratings that the model emitted agreed 

with both humans as much as the two human graders agreed with each other. LPSA has also 

been tested by comparing predicted and actual future states of the thermodynamic system 

DURESS (Quesada, Kintsch, & Gomez, 2003; Quesada et al., submitted). In that situation, 

LPSA was able to explain the effects of amount of experience, amount of structure in the 

environment, and prediction of future states of the environment. We think this variety of tasks 

strengthen the argument in favor of LPSA. In every case, the tasks that people represent and 

compare fulfill the three criteria for CPS. The Firechief and flying Simulator tasks are similar in 

several aspects: (1) In both cases people have to make decision within the space of seconds, and 

the decisions are interdependent. A decision too late will not do any good, for example, sending 

firefighters to a burn-out area, or deciding to cancel the landing maneuver when the aircraft is 

too close to the ground. Any benefit derived from a decision decreases with the length of time it 

takes to make it. (2) Workload is not under the control of the problem solver. (3) There are 
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exogenous events that make the system unpredictable; there might be a new fire starting any 

time, or an unexpected obstacle in the runway appearing suddenly. This multi-task testing 

approach has been used before. For example Joslyn and Hunt (1998) assumed that there is a 

common factor (skill) for rapid, dynamic decision making tasks, and tested the hypothesis using 

tasks as varied as air traffic control and public safety dispatching (911). 

Also, the two studies reported here are complementary. In one, we use a controlled 

laboratory situation where the amount of practice is known, and equal for each participant, but 

reduced. In the other, we use a realistic simulation where the amount of practice per participant is 

unknown, probably different for different people, but very large since all participants were 

professionals. In Firechief, the LPSA model has more experience than any individual participant; 

in the flying simulator case, it is reasonable to assume that any professional has more experience 

than the 400 landings that we used to train the model. 

A caution note about expertise is needed here. The results presented in this paper do not 

depend on the expertise level of our participants. Most of our participants would not fit in the 

definition of expert. In other words, this is not a paper about the acquisition of expertise. It is, 

however, a paper of how people represent tasks after they have experience with them. This is 

why we talk about “experienced” problem solving, not “expert” problem solving. For an LPSA 

explanation of expertise effects, see Quesada, Kintsch and Gomez (submitted). 

The structure of the paper is as follows. We introduce the theory and relate it to previous 

proposals. Then, we present the two experiments and associated simulations to provide evidence 

for the theory. We conclude with a general discussion on the problems that LPSA solves and the 

questions that it raises. 
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LPSA: Representing Similarity Using Context 

LPSA is inspired by Latent Semantic Analysis (LSA, Landauer & Dumais, 1997), a 

theory of representation that explains how meanings of words can be learned from the exposure 

to large amounts of experience. LPSA assumes that the mechanisms proposed by LSA to learn 

the meaning of words by its contextual usage might be more general than initially thought, and 

applicable to other types of cognition. 

The best way to understand LPSA is to deal with LSA first. There are several papers in 

the literature that introduce LSA (e.g., Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 

1998), and the interested reader should consult these references for a better understanding of the 

technique. Recently Landauer (2002) has proposed a new formal way of understanding LSA. 

LSA is presented as a linear system of equations that is solved by Single Value Decomposition 

(SVD). From the theoretical point of view, the meaning of a passage is simply the sum of the 

meaning of its words, and this can be represented by the expression: 

meaning of word1 + meaning of word2 + … + meaning of wordn = meaning of passage. 

The equation above represents one passage. If we have a corpus of text that contains, say, 

10,000 passages, it can be represented by 10,000 linear equations like the one above, where the 

words would be variables that we want to solve. Since the passages will contain common words, 

there must necessarily be equations that constrain the value of the same variable. We can 

imagine the same situation for a corpus of 10,000 contexts, where each context is a set of stimuli. 

We can infer the “meaning” of the stimuli by the information that we have about the contexts in 

which they appear. For example, if we define “context” as a problem-solving episode (trial), and 

stimuli as every state that the system has traversed, we can derive the functional value of each 

state in a similar way that we derive the meaning of words: by solving the huge system of 
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simultaneous linear equations. This is the approach that we have taken in LPSA. To quote 

Landauer (2002): 

“(…) every passage of language that a learner observes to be an equation of this kind. 

Then a lifetime of language observation constitutes a very large system of simultaneous linear 

equations. This set of equations is certain to be highly ‘ill-conditioned’ in mathematical 

terminology, meaning that there will be too few equations to specify the value of many of the 

variables and some of the subsets of equations will imply different values for the same variable. 

As a model of natural language semantics, these deficiencies do not seem out of place; word and 

passage meanings are often vague or multiple. Mathematically, such complexities can be dealt 

with by abandoning the requirement of finding absolute values, settling for relations among the 

variables, and representing them in a richer manner than as real values on a number line 

(scalars). “ (p. 49-50). 

Instead of words, LPSA uses a different kind of type. Types are defined as all unique 

actions or states in a sample of human-system interaction known as the corpus. Each occurrence 

of a type is called a token. Instead of documents or passages of text, LPSA uses trials as context 

to define a matrix of types by trials, that is then decomposed using SVD and recomposed after 

dropping a significant number of dimensions. 

The basic assumption is that the meaning of trials is a linear function of the meaning of 

the tokens contained in it and the influence of additional factors that can be encapsulated into the 

construct of a context. This basic equation is written as (after Landauer, 2002): 

 

m(trial) = f{m(sa1), m(sa2),….. m(san), context} 
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Where m is the meaning of a trial, expressed as a function of the meaning of tokens 

(states or actions).  

LPSA adopts several simplifying assumptions to be able to generate a computable 

representation. LPSA assumes that the function is linear. Any context information that is not 

defined by the tokens themselves is represented by ck. To simplify, the effect of c is considered 

to be negligible. A passage is a set of actions or states of any length, and a trial is a passage of 

length determined by the duration of the trial. Any passage representation can be calculated as 

the addition of the representations for each of the states or actions that form it.   

The resulting system of equations for k trials would be: 

m(trial1) = m(sa11) + m(sa21) +….. + m(san1) + c1

m(trial2) = m(sa12+ m(sa22) +….. + m(san2) + c2

m(trialk) = m(sa1k) + m(sa2k) +….. + m(sank) + ck

The number of dimensions used is a free parameter that normally ranges between 100 and 

500; this number is in agreement with the dimensionality observed in most natural languages. 

The resulting space can be considered a formal equivalent to the representation that people create 

when they interact with the task for an equivalent period of time. Since the corpus may contain 

performance from many different individuals, the resulting space is an abstraction over subjects; 

that is, it does not represent a particular person, but more of an ‘average’ participant on a task. 

The singular value decomposition (SVD) is the technique of choice to approximate a 

solution for such a big system of linear equations. The linearity is an assumption of the method: 

non-linear systems would be much more difficult (even impossible) to solve2. The following two 

sections will concentrate on how LPSA spaces are created and tested against human data. They 
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represent two very different domains (one laboratory task, and one naturalistic task) so the 

formalism is tested under very different conditions. 

Predicting Similarity Judgments 

In this section we use the microworld Firechief. The reasons for selecting this task are 

many. (1) It is dynamic, in the sense that the task changes with time (the fire advances) and as a 

consequence of the participant interventions. (2)  There are factors that are not under the 

participant’s control, for example changes in the direction of the wind. (3) There is time pressure 

in the decision-making process. (4) The task can be repeated systematically, and it is short 

enough to enable participants to complete 20-25 trials in two experimental sessions, and (5) there 

exists an available corpus of experience on Firechief. We describe the experimental task, 

comment the materials used to create a representative corpus, the corpus creation procedure, an 

experiment to gather human similarity judgments and the results of LPSA modeling those 

similarity judgments. 

Corpus compilation and Space creation 

Apparatus 

In Firechief (Omodei & Wearing, 1993, 1995), participants are confronted with a 

simulation of a forest through which a fire is spreading. Their task is to extinguish the fire as 

soon as possible. In order to do so, they can use helicopters and trucks (each one with particular 

characteristics), which can be controlled by mouse movements and key presses. The different 

cells (see Fig. 1) have different ratings of flammability and value: houses are more valuable than 

tree cells, for example. The participant’s mission is to save as much forest as possible, to 

preserve the most valuable cells, and to prevent the trucks from being burned. Helicopters move 

faster and drop more water than trucks, but the latter can make control fires. Trucks are unable to 
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extinguish certain fires, and they will be destroyed if they are sent to them. The fire is more 

intense and spreads faster depending on the wind direction. Wind direction and strength are 

indicated in the top-right corner of the interface. Participants can see a window with their overall 

performance score at the end of a trial, which is calculated by adding every safe cell and 

subtracting the value of the burnt trucks. At the same time, it is possible to experimentally 

control features of the system, and to prepare experimental situations for testing a wide variety of 

hypotheses. 

There are three commands that can be used to control the movement and functions of the 

appliances: (1) drop water (2) start a control fire (trucks only), and (3) move an appliance. 

Commands are given using a ‘drag-and-drop’ philosophy. At the end of each trial, the program 

saves the command sequence that the participant issued in that trial. These logs files were used to 

train LPSA. An example of those log files (only the fist 8 actions; a normal trial contains an 

average of 103 actions) is provided in Table 1. To create an LPSA space, data from experiments 

1 and 2 described in Quesada et al. (2000) were used as the corpus, plus data from the 

experiment described in Cañas et al. (2003). The experiments were designed to test hypotheses 

about cognitive flexibility when facing new, changing conditions after training under constant 

conditions in the dynamic task Firechief. Thus, the experiments consisted of a long period of 

constant environmental conditions followed by a short period of variable conditions. The 

conditions manipulated were wind direction and fire extinguishing efficiency of the appliances. 

All trials were equal in terrain, number & type of units, pace, initial fire location and all other 

variables that determine a Firechief scenario. Since here we are interested in a sample of 

representative behavior when interacting with the system, the actual hypothesis and design of the 

former experiments are not relevant.  
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Corpus preprocessing 

By putting together all the experience of all the participants in the experiments used in 

Quesada et al. and Cañas et al., we created a text corpus of 34413 log files. It is important to note 

that LPSA uses experience from more than one participant, being representative of one ‘average’ 

human. This is needed because it is very rare to find datasets where a single participant has been 

studied for long periods of time in the task. However, using these data when available, LPSA can 

be employed to model individual behavior. 

Actions were coded by joining the information contained in one line of the log files. For 

example, the first line in Table 1 would be transformed into: 

Move_44_100.00_4_Copter_11_4_12_9_Forest 

using underscores to join all the variables into a single token. This token, that could be an 

action or a state of the system depending on what is the preferred option in the logging, is the 

basic unit of analysis in LPSA. It corresponds to the selection of ‘words’ in classical LSA. 

It is important to note that this procedure does not necessarily require the experimenter to 

select part of the information. However this is sometimes useful. Since LPSA must be trained on 

a set of variables that should resemble closely the information that participants use to perform in 

the task, the experimenter’s intuition can be used to aid in the removal of information that 

participants most probably do not use. In this case we dropped the information on (1) appliance 

number and (2) departure coordinates from the logs. This decision is based on findings in spatial 

attention when applied to multiple moving targets (e.g., Pylyshyn, 1994, 2001; Scholl, Pylyshyn, 

& Feldman, 2001). In these experiments, participants had to keep track of up to four items 

(targets) that moved randomly in a field of eight or more identical items (distractors). After all 

the items stopped moving, participants point out which ones were the targets. The assumption 
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was that observers who had tracked the targets correctly also had kept track of their individual 

identities. Thus they should be able not only to identify the objects as members of the target set, 

but also to recall other identifying information initially associated with them such as names, 

colors or place of origin. This experimental situation very much resembles the one that our 

participants experienced in the human judgments experiment. Pylyshyn found that people can 

track the items, but not recall their identities; in our case, people should not be able to say 

whether one truck is truck 1, originally starting in cell (11, 9), or truck 2 which started in cell (4, 

11). These variables were removed from the log files that LPSA used as input. For example, the 

first line in Table 1 would translate into Move_Copter_12_9_Forest. Thus, instead of 360199 

actions in 3441 trials, the reduced corpus had 3627 different actions in 3441 trials.  

After performing singular value decomposition on the actions by trials matrix, we kept 

319 dimensions. Altering the number of dimensions in the range that LSA normally uses (100 – 

1500) did not change the results significantly, so we will report the results for 319 dimensions 

only. Before we present the evidence for the theory, we want to illustrate in a graphical way what 

kinds of situations are considered similar by LPSA, and how these are visually and conceptually 

similar to the bare eye. Three example situations are shown in Fig. 2. They correspond to the first 

8 actions of three trials that have been selected so that according to LPSA, two are very similar 

to each other, and the third one is dissimilar to both. The graphs show that this pattern is also 

evident to human intuition. Every trial starts with a fire in the center of the screen, and the wind 

is blowing to the east, where the houses are. The vectors indicate the appliance moves, the 

squares are protective fires (control fires) and the circles are ‘drop water’ commands. Examples 

1 and 2 protect similar areas, near the houses, even though they do not share but one out of eight 

actions. The similarities for 1 and 3, and 2 and 3 are low because example 3 protects a far-away 
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corner (upper-left), where the fire will not go with the current wind direction. The LPSA cosines 

for those pairs are 0.72, 0.05, and 0.07 respectively, capturing human intuition. 

Correlations between LPSA and Human Judgments  

If LPSA captures similarity between complex problem-solving performances in a 

meaningful way, then human similarity judgments on a sample of representative trials could be 

used as a validation. The problem is that, contrary to what happens when one uses LSA to model 

text comprehension, it is not easy to find experienced humans in the task at hand. Most normally 

educated adults are expert readers, but not everybody is an expert in controlling the particular 

dynamic system called Firechief. To test our assertions about LPSA, we recruited a group of 

participants and exposed them to the same amount of practice as the participants used to create 

the corpus, so they could learn the constraints of the task. After that, they were asked to make 

similarity judgments on a set of representative Firechief trials, and their judgments were 

compared to the LPSA cosines for those trials. 

Method 

Participants: 14 University of Colorado undergraduates participated in this study as part 

of a class requirement. 

Procedure: After 24 practice trials, these participants were used to assess the external 

validity of LPSA similarities. We used an interface that offered Firechief trial videos and 

participants had to watch seven pairs of trials (at a pace eight times faster than normal) and 

express similarity judgments about these pairs. They were asked to express numerically (1-100) 

how similar each pair of trials was. The appendix presents the instructions. 

Participants watched a randomly ordered series of trials, in a different order for each 

participant. The trials were paired and selected sampled uniformly from the distribution of 



Latent Problem Solving Analysis 20 

cosines (pairs A, B, C, D, E, F, with cosines 0.75, 0.90, 0.53, 0.60, 0.12 and 0.06 respectively4).. 

That is, the cosines selected are evenly distributed in the continuum of similarity (0-1) that LPSA 

offers. This stimulus set is small. We asked participants to watch only six pairs of trials due to 

two main reasons: (1) so they could replay several times every pair if they wanted to fine-tune 

their judgment. Our pilot studies showed that people tend to assign initial numbers in a first pass, 

and fine-tune the similarities afterwards by replaying the pairs that are important for their 

decision. (2) The time necessary to perform this task increases exponentially with the number of 

items to classify. During the replay, participants have to pay attention and find commonalities 

and differences. The task is very demanding and tiring, and most people spent more than half an 

hour to finish it. We found six pairs to be a practical maximum that could be asked without 

deteriorating judgment performance. 

Apparatus: Participants controlled a computer program in which they could click a button 

to watch any video replay of any trial. Buttons were distributed in pairs and near each pair there 

was a text box where they were asked to fill a similarity value from 0 to 100. The buttons 

changed their ordering randomly with each participant, to control for order of presentation 

effects. When a button was clicked, a full screen video was played at a speed eight times faster 

than the standard one. The faster pace of presentation helped participants to review a particular 

trial several times if needed, without using up too much time. The pace was still appropriate to 

understand the intentions of the author of the trial, and no participant expressed any difficulty 

with the speed of the replays. They were allowed to replay trials as many times as they wished, 

and change the similarity judgments to reflect new insights. The instructions were present on the 

screen at all times.  
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Results  

People’s judgment ability. To calculate inter-judge agreement, the Intra Class (ICC) 

Correlation coefficient was selected (for a recent review, see McGraw & Wong, 1996; for a 

classic reference, see Shorut & Fleiss, 1979). To measure the relation of variables representing 

different measurement classes, the most commonly interclass correlation coefficient is the 

Pearson r. However, when the variables of interest are from a common class (i.e., share their 

metric and their variance), intraclass correlation coefficients are a better alternative (McGraw & 

Wong, 1996). That is the case in judge-agreement situations such as the one that occupies us. We 

can write our ICC coefficient as ICC(A, 14) = .9091, highly significant, F(5,65) = 11.00, 

p<.0013. The high value indicates that the average of the human ratings has very high internal 

consistency.  

Model prediction of human similarity judgments. LPSA cosines predicted human 

similarity judgments very well indeed. To see how well LPSA cosines mimicked human 

judgments we averaged the human ratings and correlated4 this (reliable) composite measure with 

the LPSA cosines for the six items. This correlation is extremely high (r = .949, df = 4, p<.001). 

This value indicates a very good agreement between LPSA and the average human rating. Fig. 3 

shows the relationship between observed and predicted average judgments. Although the overall 

fit is very good, there is an important difference: participants tend to be reluctant to rate items as 

"very dissimilar" or "low similarity", as the intercept of 35.39 shows. That is, where LPSA 

would predict a similarity of zero, a human participant is expected to say 35.39. This is, per se,

an interesting result.  
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Discussion 

As far as we know, no other model of representation during complex problem solving has 

been validated against human judgments of similarity after watching replays of trials. The results 

presented are encouraging in the sense that they mimic human intuitions with a very simple 

formalism. LPSA can explain a good amount of variance without proposing elaborated 

constructs such as mental models or structured representations of causal dependencies in the 

system observed.  

However, the task that we used is a laboratory one and the results may be affected by the 

idiosyncrasies of the experimental situation. For example, giving a number between 0 and 100 to 

express similarity may not be seen as natural as performing some other daily-life task that 

implies similarity judgments, for example grading performance. Having real professionals 

instead of psychology undergraduates as participants will also help to clarify if LPSA is accuracy 

capturing human judgments is kept when the amount of experience and complexity of the system 

is higher. In the second study, we will use a more realistic task with human raters evaluating 

100% naturalistic situations: plane landings. 

Predicting Landing Performance Judgments 

We would like to use LPSA applied to a real world task to emphasize the generalizability 

and power of the theory. A second objective is to present a new technique of knowledge 

elicitation that we employed, called rater-model triangulation, designed to work in complex 

environments. We use two raters to select the relevant variables to model: one has complete-

information about every aspect of the system (complete-information rater) and the other has to 

choose a small set of variables to do the task (reduced-information rater). We use in our model 
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the variables selected by the reduced-information rater, and try to optimize our model so it 

correlates maximally with both raters. 

There is currently no methodology to automatically assess landing technique in a 

commercial aircraft or a flying simulator. Instructors are a significant cost for training and 

evaluation of pilots, and the use of instructors also incorporates a subjective component that may 

vary from pilot to pilot. An automatic method of evaluating landing performance would be very 

advantageous, but the complexity of the landing task has discouraged researchers and modelers.  

Selecting the set of variables that should be used to train the model is not a trivial task. Is 

the visual information to be considered? In which way? Which variables are relevant? Our 

approach was to develop a methodology based on two key ideas: (1) Rater-model triangulation: 

while an rater was able to monitor almost every single variable relevant (cockpit rater), another 

one was limited to watching a real-time plot of a very limited set of variables chosen by him 

(reduced-information rater). If the judgments of these two rater are highly correlated, the 

variables selected by the reduced-information rater have sufficient explanatory power to perform 

the evaluation. (2) Modeling of the landing evaluation task using LPSA with the variables 

selected by the reduced-information rater. The resulting system was able to evaluate landing 

performance automatically. 

This second section of the paper describes an experiment conducted to implement these 

ideas. The purpose of this experiment was twofold: First, we would like to expand the area of 

application of LPSA, and connect the results to previous theories knowledge representation. 

Second, we would like to introduce a system that can assess landing technique.  The applied 

value of the system is in replacing or complementing the instructor needed to evaluate landings, 

plus increasing the objectivity of the judgments. 
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We work under the assumption that a rater in this situation uses her past knowledge to 

emit landing ratings by comparing the current situation to the past ones, and generates an 

expanded representation of the environment by composing the past situations that are most 

similar to the current one. As pointed by Landauer (unpublished), most people use conscious 

logic only to narrow realms where they also possess large volumes of hidden intuitive 

knowledge. Experts are supposed to be attuned to the constraints of their environments (e.g., 

Ericsson & Lehmann, 1996; Vicente & Wang, 1998) in a way that presumes automaticity and 

not necessarily conscious processing. Our proposal does not deny that people also employ some 

other more analytical method. However, we want to explore how well a memory-based model 

could do in the absence of analytic, logical processes. 

The landing task 

The variability in the requirements of the landing task is immense with landing 

conditions such as wind, gust, and visibility. However, our data collection experiment was 

designed to be very simple with the idea of minimizing the variability due to uncontrolled 

factors. 

The manufacturer of the aircraft normally provides charts with the preferred value of a 

variable (e.g., Glideslope) given some possible values of other variables (e.g., the air speed). In 

other cases, it is the Government who provides the charts. That way, practically all known 

situations are covered and the pilots normally look up the recommended values or they just know 

them by heart after flying the same aircraft several times. 

The landing is usually divided into approach, flare, touchdown and after-landing roll. A 

graphical, simplified description of these four concepts is shown in Fig. 4. 
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To evaluate the landing technique, we selected a set of five criteria consulting several 

landing technique instructors and simulator specialists. The list included: (1) Flare initiation 

height: The flare has to be initiated at a particular height; this height is not rigid as lower flares 

can be compensated by a higher pitch rate for example. (2) Thrust Reduction: The reduction 

should be progressive, and does not last too long. It has to be started in a particular moment in 

time. (3) Pitch rate. The pitch was evaluated using five discrete levels, from too high to too low.   

(4) Overall landing score. This is a general rating that expressed how good the landing was, from 

one to five. In a sense, it is not a summary of the former measures, as it adds new information. 

Some landings can have, for example, an incorrect Flare initiation height, but end up getting a 

five out of five, because it was compensated with other means. The possible ways in which these 

different grades can be observed and their interaction enables a complex set of data to model.  

The problem of variable selection and complexity reduction  

In some circumstances, the modeler has to be very knowledgeable about the task to be 

able to create a successful model (for example, chess modelers tend to be good chess players). 

Although this point may seem redundant and obvious, it is very important, since it is not always 

the case that the modeler can invest the long time required to master the task to model. The 

alternative approach to task modeling is to ask the experts what information they use, and what 

procedures they have developed to perform the task. In this line, expert knowledge elicitation 

techniques have been developed to try to ‘extract’ the knowledge from human experts and 

‘insert’ it into the system. Thus, many expert systems are rule-based systems. The approach that 

we have taken here is different. A basic idea is that people are able to confront complex tasks 

because they have managed to reduce the dimensionality of the respective problem spaces of 
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their jobs. There is a need to translate this dimensionality reduction to the system that is going to 

perform in their same environment.  

Two reductions in the dimensionality of the task are performed to represent the 

variability in the environment in an efficient way: (1) Selection of variables suggested by the 

rater-model triangulation methodology, and (2) the one performed by LPSA’s SVD when the 

lower-dimensional space is created. They are explained in the following two sections. 

The rater-model triangulation  

In this section, we present a possible solution to the problem of variable selection. It uses 

a configuration of two raters, who perform the task in two very different conditions. 

The question is: How do we know which variables a model should pay attention to? It is 

hard to imagine that the information-processing system keeps track of every dimension that 

could possibly be registered. For example, a high-fidelity flying simulator can log up to 10000 

variables, each with a precision (sampling ratio) of 1/100 seconds. Since it is recorded in the log 

files, we can assume that this amount of information is available to the pilot and copilot in the 

commercial aircraft simulated. Of course, in a particular temporal moment t, the human 

components of the system (pilots and ATCs), are aware of a very small proportion of these 

variables, and the focus of attention is changing from t1 to t2… to tn. It is computationally 

unfeasible for a cognitive system (either human or artificial) to work in such a high dimensional 

space.  

As a step towards solving this problem, we present the rater-model triangulation method. 

It is very simple and susceptible of being applied on a variety of areas. The basic idea is that if 

we cannot model an domain because of its complexity we can use two raters with different 

access to the information available to discriminate the importance of each variable in the task 



Latent Problem Solving Analysis 27 

they perform. A first approach, quite used in modeling work, is the effort to model directly the 

expert behavior using as many as possible of the variables he can access in his normal, daily 

performance. Let us call this person ‘the complete-information rater’. However, when the task is 

complex, trying to model the whole situation often proves itself to be an excessively difficult 

task. Some theories do propose ways of selecting the relevant parts to model. This selection is a 

priori, that is, the assertion ‘The person is using variable X but not Y’ is part of the theory.  What 

we propose is to use a second person to do the variable selection in a non-theory-driven way. The 

second rater will have limited access to the variables in the system (for example, he can only plot 

a limited number). For that reason, this second rater is called ‘the reduced-information rater’, and 

is forced to select a small set of variables. The model will be created to reproduce the behavior of 

this rater, and this is often a key step since the modeling task can change from being intractable 

to being tractable. Note that the theory does not have a priori assumptions about what are the 

task’s most important variables: the rater does.  

A schema of the rater-model triangulation method is presented in Fig 5.  

Construction of the reduced-dimensional space 

The second way of reducing the complexity of the problem is performing dimension 

reduction. The dimension-reduction step and its properties to explain learning and generalization 

are important in several cognitive theories (e.g., Edelman & Intrator, 1997; Rumelhart, 

Smolensky, McClelland, & Hinton, 1986). The algorithm used in LPSA is the Singular Value 

Decomposition (SVD) of the frequency matrix of states by landings, and the reduction in the 

number of singular values. As a result, we obtain a representation of both states and landings in 

the same space. Any new landing that is not in the space can be represented as a linear 

combination of the vector of its states. We can predict the ratings of any new landing by 
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averaging the ratings of the k known nearest neighbors of the vector representing the landing in 

this space. To construct the space we used the variables that the reduced-information rater was 

using, as suggested by the triangulation technique.  

Method 

10 pilots performed 40 landings each. We manipulated wind direction and intensity at 6 

levels, using incomplete counterbalanced design to control for order effects. The levels selected 

were 30, 20, 10, 0, and -10 (tail wind) knots.  

The two raters used a set of criteria to rate the landings, described in ‘the landing task’ 

section. Both raters rated all landings. The reduced-information rater was allowed to select and 

plot as many variables as he wanted, with the limitation that they should fit in his 20” computer 

screen. He plotted only the following five variables: Vertical acceleration, Radio altitude, Pitch 

rate, Rate of descent, Pitch angle. There was still some space left, which implies that the rater 

considered that he did not need to plot any more variables. It turned out that rate of descent and 

pitch angle were barely used, as they were never referred to when the expert explained his 

ratings to the experimenters. Thus, rate of descent and pitch angle were omitted from the 

analysis. The rater in the copilot seat (complete-information rater) used a huge array of 

information, since he was exposed to the same environment as the pilot, being able to see the 

runway approach and feel the movements of the aircraft when the wheels touched the ground, for 

example. The basic idea was to calculate the agreement between the two human graders. If the 

agreement was very low, the judgments are too subjective, and a possible automated method of 

assessing landing technique is hard to validate. Then, the same agreement would be calculated 

for each human expert and LPSA. 
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To do the model selection part where we tried to find the right parameter set, the criterion 

used was the average correlation between the model and the human ratings of both human 

graders. 

Corpus creation 

The states in each landing were stripped off of all the variables except for the reduced 

information that the rater was actually using: flare initiation height, thrust reduction and pitch 

rate. Since the average duration of a landing when the starting point is 500 feet was about 15 

seconds, and the sampling ratio was 10 samples a second, the average number of states per 

landing was 150.  

The flare initiation height, expressed as feet, was transformed (rounded) to be multiples 

of ten (e.g., 112 feet would be 110, 89 would be 90, etc) and the vertical acceleration and thrust 

reduction were rounded to the nearest integer (e.g., a vertical acceleration of -9.8 would be -10, 

and a thrust value of 3.2 would be 3). This rounding is necessary because LPSA assumes that a 

landing is a sequence of states, and the continuous flow of these values has to be discretized. 

Since decimal values are not relevant, and humans would consider that, for example, an altitude 

of 45 feet is the same as 46 or 47 feet for most purposes, we applied the rounding in our model.  

The original sampling ratio was 10 times a second. That made a total number of 75571 

unique states in 400 landings. Although LSA has been applied to text corpora with the same 

number of types, and even several orders of magnitude more, the limited number of landings 

imposes a severe restriction. Most known learning mechanisms, including LSA, need several 

repetitions of the units to learn them. That is, LPSA learns better when a good proportion of the 

states can be found in more than one context. The transformations and rounding that we 

performed were serving the purpose of decreasing the number of different states in the corpus, 
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and rendered a total of 569 unique states. When the states are described using continuous 

variables, and these variables are sampled at a fast rate, a non-rounded corpus would have as 

many unique states as the total number of states (that is, each state would appear in the corpus 

only once, leaving little room for learning). The variables were joined with underscores to make 

them a single token, and use space as token separator. This way, a state in the system was 

represented as a token as follows: “flare initiation height_thrust Reduction_pitch rate”. This 

token is the equivalent to a word in standard LSA. The matrix of states by landings was created, 

and an SVD was performed on it. After the decomposition, the biggest N (where N is a free 

parameter) dimensions were kept. The parameter manipulation is explained in the results section 

(model selection). A web interface to the 400 landings graphs (mimicking the reduced-

information rater’s display), experimental conditions and ratings used in this paper can be visited 

at http://lsa.colorado.edu/ ~quesadaj/adriVisor.cgi. The complete corpus is also available upon 

request. 

Apparatus 

The Netherlands’ National Aerospace Laboratory (NLR) National Simulation Facility 

(NSF) simulator was used. A Boeing 747 cockpit was installed consisting of a side-by-side full 

glass airliner cockpit with a layout, equipped with six programmable CRTs. The facility featured 

a four-degrees-of-freedom platform.  

Participants 

10 commercial pilots were recruited to land the simulator, and 10 other commercial pilots 

and instructors were hired to act as the ‘complete-information rater’. The ideal situation would 

be to have a unique ‘complete-information rater’ rating all the landings, as we had for the 

‘reduced-information rater’. However, this arrangement was not possible, so from now on we 

http://lsa.colorado.edu/ ~quesadaj/adriVisor.cgi
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will refer to the ‘complete-information rater’ as one single person even though this role was 

played by 10 different instructors. Of those 10 instructors, most of them had experience as B747 

instructors, and some had publications on the topic. Since it was very difficult to find such a 

large number of instructors, two NLR professional pilots (highly experienced on the simulator) 

doubled as instructors in two of the evaluations.  

Design 

We paired randomly instructors and pilots who were going to perform the landings. The 

reduced-information rater was situated in a control room, with no direct information about the 

landing taking place in the simulator other than the plots of the variables he selected beforehand. 

Since wind conditions influence the landing procedure, the ideal experimental design 

would be to select a representative sample of all the possible wind directions during landing. We 

selected a very restrictive set of wind conditions, and manipulated wind direction and intensity at 

5 levels, using incomplete counterbalanced design to control for order effects. The wind levels 

selected were 30, 20, 10, 0, and -10 (tail wind) knots. That is, all conditions had head wind, but 

one. The wind condition was announced before the trial started. As a side note, we were 

interested in how performance changes with "mental set" (repetition trials vs. change trials), so 

pilots experienced different randomized sequences that contained both repeated and shift trials, 

(e.g., 30, 30, 20, 20, 10, 10, 0, 0, -10, -10).  That gave us a total of 5 different sequences, so each 

sequence was experienced by two pilots. This way, pilots experienced five different wind 

conditions twice for each block in an alternate pattern of two repetitions.  

Each pilot performed 4 blocks of 10 trials. The 4 blocks contained the exact same 

sequence of wind conditions. Overall, each pilot experienced each wind condition 8 times. 
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For each landing, data recording started when the aircraft reached 500ft, and stopped 

when the three wheels were touching the ground. They performed 10 landings in an hour, plus a 

little rest between sections of about 15 minutes. They walked out of the simulator and were 

engaged in some unrelated activities during their rest.  

Results 

Significance tests   

The polychoric correlation was selected because of its suitability for analyzing judgment 

data on ordinal scale. To test the hypothesis of the correlation being significantly different from 

zero, we used resampling methods, concretely a randomization test. That is, we used a Monte 

Carlo approach to estimate the probability of our results (correlations) being obtained due to a 

bias in the computation. For example, imagine that both the rater and the model say simply 

‘correct’ all the time. The bias is ‘say always correct’. The correlation human-model would be 1. 

As well, if we randomly rearrange the values of the model or the rater, so that they do not line up 

with each other (for example, the model rating for landing 1 would be matched to the rater 

judgment for landing 67, and so on), the correlation would still be one. In this extreme case of 

bias, having a high correlation between the model and the rater does not mean any merit for the 

model, since any random rearrangement of the data would obtain the same correlation. The 

randomization tests performed were conducted resampling 500 times.  

Model selection  

We created several corpora modifying the number of dimensions (100, 150, 200, 250, 

300, 350, and maximum dimensionality, 400) and the number of nearest neighbors used to 

estimate the landing ratings (from 1 to 10). Another manipulation was the inclusion or exclusion 

of a time tag, and the type of weighting scheme used (log entropy vs. none). This way, the 
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possible combinations of levels were (7 x 10 x 2 x 2) = 240. For each of these combinations of 

levels, we used leave-one-out to calculate the ratings for the landing excluded. The estimated 

ratings for each of the 400 landings were then correlated with the real ratings. The combination 

of levels that best correlated with both humans was selected, and that was: Corpus with 200 

dimensions, 5 Nearest Neighbors, no weighting, no time tagging). 

Model fitness 

The first thing to observe is that the average agreement between human raters was not 

very high (polychoric correlation .48, see boxed bars in Fig 6). To our knowledge, there are no 

studies that report statistics on specifically landing technique raters, so we will use general 

expertise for comparison. Shanteau (2001, p. 237, table 13.2), presents data on consensus 

(agreement) between experts in different domains. The landing technique raters reported in this 

study had an inter-rater reliability better than Clinical Psychologists (.40), Stockbrokers (<.32), 

polygraphers (.32). Their agreement is in line with Livestock Judges (.50), Pathologists (.55), 

and Grain Inspectors (.60). However, it is lower than the ones reported for Weather forecasters 

(.95), and, Auditors (.76). Since we do not have any objective measure (no objective landing 

score exists) to justify that our raters are actually reliable, we should not appeal to their expertise 

level to validate the model. As a matter of fact, we do not need them to be highly-reliable experts 

at doing this task. Our argument for LPSA stands as strong as before if we consider this a sample 

of human behavior in a complex situation (landing evaluation), without starting a discussion 

about their degree of expertise. 

The average correlation between the model, and the reduced-information rater was about 

the same as the correlation between the two humans (.48 vs. .46, boxed bars in Fig. 6). Note that 

the ceiling for the model is the correlation between two humans doing the task; a model that 
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correlates with one human better than two humans correlate with each other is under suspicion. It 

seems that the judgment on thrust reduction is particularly difficult for the two raters to agree 

(human-human correlation of only .27).  

One of the LPSA assumptions is that experienced humans perform dimension reduction 

to represent their environments. The equivalent model (5 nearest neighbors, no weighting, no 

time stamping) without performing dimension reduction (that is, using 400 dimensions, which is 

the shortest dimension of the matrix) correlates with humans (on average for all criteria) only 

.26, which can be interpreted as evidence for dimension reduction in the representation.  

All of the agreements between human judges were highly significant: Flare initiation 

height (.52, p = .0027), thrust reduction (0.27, p .002), pitch rate (.46, p= .002) and overall 

landing performance (.61, p = .002).  

The equivalent model without dimensionality reduction (400 dimensions, 5 neighbors, no 

weighting, no timestamp) produced .37, .08, .57, .50 correlations for the above used criteria 

respectively. 

In our design, we tried to mimic the reduced-information rater (the one that had access to 

only a few selected variables) since the model used the variables this rater utilized.  However, 

having a good correlation with the complete-information rater (located in the copilot seat) is 

desirable too, so in the process of finding the right parameters, the models were selected for their 

correlation with both humans. Fig. 6 presents the correlations obtained for the complete-

information rater. Note that the only criterion where the model correlates with any of the raters 

more than they correlate to each other is thrust reduction. Thrust reduction seems to be a very 

difficult feature to judge, since the agreement between humans is the lowest (.27) and also it is 
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the one in which the reduced-information rater obtains the lowest test-retest reliability (0.538, 

see test-retest measures). 

All the polychoric correlations between the reduced-information rater and the model were 

significant (p = .002). So were the correlations between complete-information rater and model.   

Test –retest measures 

One common method to assess how reliable human raters are is the test-retest correlation. 

It simply consists in having the same rater grade twice the same item in two different temporal 

moments, preferably distant in time. It is well known that humans have imperfect test-retest 

reliability. In our study, we asked the reduced-information rater to reevaluate a random sample of 

100 plots displayed in the same way he experienced during the experiment. The plot contained 

wind information, but all other information that could identify the landing (pilot name, landing 

number, ratings etc.) was removed from the graph. The reassessment took place about one 8 

months after the end of the experiment. The reliabilities were .64, .53, .84, and .72 for flare, 

thrust, pitch and overall score respectively. 

To our knowledge, there are no studies that report statistics on specifically landing 

technique raters, so we will use other domains of expertise to figure out how our reduced-

information rater stands. The average test-retest reliability (0.69) is better than some other 

studies of reliability of expert judgments reviewed in Shanteau (2001, p. 237, table 13.3), 

concretely better than for Clinical Psychologists (.41), Stockbrokers (<.40), Grain Inspectors 

(.62) and Pathologists (.50).  His test-retest reliability is however lower than the one reported in 

the same work for Weather forecasters (.98), Livestock Judges (.96), Auditors (.90) and 

polygraphers (.91). It is worth noticing that a computational model such as LPSA has a test-retest 

reliability of 1, and that could be viewed by the trainees as a good feature. 
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Application of the model in a non-structured corpus 

A cognitive system (human or machine) exposed to expert-level amounts of experience in 

a non-structured environment will show a very poor performance, similar to those of novices. 

Product theories of expertise (e.g., Vicente & Wang, 1998) propose that the amount of 

environment structure is the main explanatory factor for the expertise advantage, and LPSA 

should be able to reflect this fact. To test this hypothesis we ran exactly the same simulations on 

an artificial corpus with 400 landings where the states for each landing were randomly sampled 

from the original corpus. This random corpus contained landings where all the variables changed 

randomly for the (average) 15 seconds that a landing lasts. In the hypothetical case of having a 

human exposed to a domain similar to such a non-structured environment, the amount of 

learning obtained by the human after the long-term experience would be very little. This poor 

learning would be reflected by a poor ability to predict future states, and the landing rating case, 

a poor rating skill, and the LPSA model reflects that in Fig. 7. 

Discussion 

The evaluation of landing technique is a complex task. It takes several years to learn the 

basics to be able to land a plane, and even longer to be able to evaluate the quality of a landing in 

a consistent way and give advice on how to improve it. LPSA requires a lot of experience before 

it can do this retrieval-based rating, as do humans. An important criticism can be raised in that 

we are not giving the model the same amount of practice as the rater has. We have presented data 

that have been generated using only 400 landings in a very limited set of environmental 

conditions (6 different wind strengths, no changes in direction) on only one runway. Ideally, the 

system would be trained with the particular circumstances of relevance (several runways, wind 

conditions, aircraft types, etc.). We do not want to argue that the current data and results 
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presented are a complete model of landing technique evaluation, or that it can substitute 

instructors in their task. It must be demonstrated that the model as it is developed here can render 

similar performance in a wider set of conditions. However, there are reasons to believe that, in 

practice, the system will scale up well. LPSA has been applied to corpora far larger than the one 

used here. For example, in Quesada, Kintsch and Gomez (2003) the corpus used contained the 

equivalent of three years of daily practice. When the same ideas on knowledge representation are 

applied to semantics and text comprehension, the corpus used represents the exposure to printed 

text that an average human may have by the time she reaches college level, and this is several 

years of practice.   

Another concern that could be pointed out is the nature of the dataset. In the expert 

systems literature, the systems are often trained with cases that lie in the borders of categories – 

cases that are difficult to classify. It is assumed that the generalization to easy cases would be 

straightforward. In our experiment, all the landings could be considered easy, because that is 

what the model would be doing most of the time in standard training and evaluation conditions. 

If we could gather a bigger corpus of landing performance, we think that a key factor is to keep it 

representative of the natural distribution of landings, that is, easy landings should be sampled 

more often than difficult ones, as they are more often experienced by the pilot and instructor we 

model.  

The rater-model triangulation, although not an integral part of LPSA, is an additional 

theoretical contribution. It is a simple methodology that can be applied in a variety of expertise 

domains, helping modelers to generate computational theories with a minimum of a-priori, ill-

motivated assumptions (other than the ones that the reduced-information rater has in his domain 

of expertise). We believe that this methodological step could help the development of models of 
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really complex tasks. Most real-world tasks are so complex that the experimenter simply cannot 

invest the long time required to master the task to model. Using the triangulation technique, 

experimenters do not necessarily have to be knowledgeable in the task modeled. In this sense the 

rater-model triangulation could expand the range of psychological tasks that a modeler can 

afford to tackle.  

General Discussion and Conclusions 

LPSA learns to create a representation of the constraints of a complex environment by 

putting them together in a system of simultaneous equations. This system is solved by a 

mechanism involving dimension reduction, and the result of it is a multidimensional space where 

every event and context is represented as a vector. We propose that the creation of this space is 

what characterizes learning in complex, dynamic tasks. 

Problem solving, mental models, and reasoning are the explanatory concepts employed in 

cognitive science to account for performance in complex task. LPSA shows that simple ideas 

such as similarity-based processing and pattern matching could have a role even in cognitively 

complex tasks. LPSA is a simple computational model based on the analysis of massive amounts 

of knowledge. It assumes that representation takes place in a space that has fewer dimensions 

than the external (distal stimuli) space represented. It also assumes that humans retrieve the most 

similar past experiences to the current one automatically. The response to the current situation 

(for example, in grading a landing) occurs partially because the ratings of past landing which are 

similar to this one "come to mind", and the response is a composite of those ratings. 

LPSA and the concept problem space 

LPSA is a new way of representing a problem space. Moreover, the theory is explicit 

about how an agent could proceed to generate the representations from a corpus of experience. 
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Newell and Simon posed an interesting question: How can we find an objective representation of 

the task, or at least, one that most participants share? They proposed that a different problem 

space could be constructed for two tasks that were formally equivalent. The idea of generating an 

objective representation, something that is shared by any participant, was considered impossible. 

In their example they compared two tasks - number scrabble8 and tic-tac-toe - where the first 

was represented as strings of numbers, and the second as the typical grid containing Os and Xs. 

It is not clear which representation should be chosen to represent the problem space. A player 

could be using either representation, or some other one when playing either game.  

They proposed two solutions to this problem: (1) to omit the description of an objective 

problem space in the theory, and (2) to construct a hypothetical problem space that is objective 

only in the sense that “all of the representations that human subjects in fact use can be embedded 

on as specializations in this larger space” (Newell & Simon, 1972, p.64). This second option is 

what they followed in their research.  

LPSA proposes a different solution. The answer is related to the solution that researchers 

such as Landauer (2002) and Edelman (1999) have proposed to the classic epistemological 

problem of the commonality in representation. The problem has often been illustrated with the 

following question: “What is common in minds – or the nervous systems - of two different 

persons who see a cat on a mat?”  This is a deep problem of representation, since most theories 

do not explain how there is a common representation in two minds, or how the representation has 

been generated. The “Landauer-Edelman” answer to this problem for semantics and object 

recognition respectively is that the two minds are exposed to huge amounts of experience coming 

from the same environment, and statistically even if the samples of experiences are only partially 

shared, the representations of the environment in two minds tend to be similar.  
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Provided that (1) the mechanism used in the two observers is the same (whatever the 

SVD and dimension reduction approximate in LSA and LPSA), (2) their experience (size of the 

sample) is extensive, and (3) the environment has a determined structure, the two representations 

in the heads of the two subjects must be approximately the same. In the field of perception and 

object recognition, the Chorus of prototypes model (Edelman, 1999) has this same propriety, and 

we expect that LPSA models of huge domains trained with ample experience may exhibit it too. 

In that sense, LPSA proposes that an objective problem space can be determined. It is, of course, 

true that each person that masters a domain (e.g., pilots, nuclear power plant operators, or 

managers) has a different representation of it. But it is also the case that, if the three conditions 

described above are true for a particular domain and pair of subjects, their representations of the 

domain must be very similar. These representations can be captured and de-individualized by a 

model that does something like LPSA does, and that formalization can be considered the closest 

thing to an objective problem-solving representation that we can propose. 

Even though similarity plays a fundamental role in theories of knowledge representation 

in psychology, the symbolic approach used in Newell and Simon (1972) and perpetuated in the 

rule-based unified theories of cognition (e.g., Anderson & Lebiere, 1998; Newell, 1990) does not 

represent similarity between symbols as a structural characteristic. For example, one of the 

problem-solving tasks that Newell and Simon used, Cryptarithmetic, has states defined by letters 

and numbers. For this task, they explicitly said that there is absolutely no representation of 

similarity (our emphasis): “An important consequence of taking letters as primitive symbols is 

that we cannot then speak of one pair of letters as more closely resembling each other than 

another pair. We cannot say that s resembles z more closely that it resembles t. Letters, as 

primitive symbols, can only be tokens of the same type or different type. There is no notion of 
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degree of difference among primitive symbols” (Newell & Simon, 1972, p. 26). In this sense, the 

otherwise central construct of similarity is ignored. This is the case not only for letters, but for 

many different representations used in problem solving in the classical tradition.  

LPSA represents the problem space using similarities between types. The similarities are 

derived empirically from a corpus of contexts where each type appears. Our assumption is that 

types  appearing in the same contexts tend to fulfill similar roles and functions in problem 

solving. When the vocabulary of a task increases, the probability of two different actions having 

the same functionality is higher. There are no known natural languages that do not exhibit 

polysemy. There are virtually no complex problem-solving tasks in which the same goal cannot 

be achieved by different series of actions. 

There is another epistemological problem that LPSA solves: the origin of problem 

spaces. The range of tasks that we used differs markedly from the kind of tasks that other 

theories of problem solving have tried in the past. For the very early attempts of the general 

problem solver (GPS, Newell & Simon, 1963) to the more contemporary approaches to expert 

and novice comparisons, the tasks selected have had a remarkable importance in the shape 

theories take to explain them. Particularly distressing was the fact that each task generated an 

independent theory, often poorly specified by a flow diagram, and thus different results could 

barely be integrated: ”Theorists seem simply to write a different theory for each task” (Newell, 

1980, p. 694). Newell proposed that the integrative metatheory could be built around the problem 

space hypothesis: ”the fundamental organizational unit of all human goal-oriented symbolic 

activity is the problem space“ (Newell, 1980, p.696).  

The concept of problem space has been central theories of problem solving.9 This concept 

has been used widely, and different researchers have interpreted it in different ways. Even their 
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own creators have changed it in successive publications (see Quesada, unpublished, appendix J 

for a review of the changes in the definition). For example, in the book ‘universal subgoaling and 

chunking’ (Laird, Rosenbloom, & Newell, 1986), we find some evidence that the definition of 

problem space is not considered a closed, finished one. Newell mentions ‘a list of some forty key 

questions that needed to be answered to define problem spaces adequately’ (p. xiv) that was 

never published, implying that a univocal definition of the concept was still under construction. 

It is natural that a useful concept experiences many incarnations in psychology. LPSA 

retakes and extends the central idea of the problem space, but has reworked it once more. In this 

sense, LPSA is more a continuation of the theory building efforts from the past than a completely 

new start. There are, however, several differences between the classical idea of problem space 

and the one that LPSA proposes. We find the following differences worth mentioning: 

(1) In LPSA, problem spaces are metric spaces; this can be considered a significant 

departure from the original proposal, in which problem spaces were characterized as finite 

directed graphs, and often as simple search trees. LPSA takes advantage of the mathematical 

apparatus defined on vector representations. This approach is also comparatively simpler than 

alternative representations, such as propositions and productions.  

(2) Problem spaces are derived empirically from experience. In most theories of 

representation in problem solving, the problem spaces are hypothesized by experimenters, not 

derived automatically by an unsupervised procedure. Newell (1980) pointed out that one of the 

major items on the agenda of cognitive psychology is to banish the homunculus. The 

homunculus is present in the classical problem-solving theory at least in one place: the intelligent 

creation of the problem space. The proposal goes like this: the generation of problem spaces is a 

symbolic cognitive task, and then it must be performed by the subject by means of a problem 
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space. LPSA provides a solution to break this recursive explanation: the problem spaces are 

derived automatically from experience as described in this paper, there is no need for an 

intelligent agent in their creation. 

Two systems of reasoning 

Since LPSA needs a corpus of experience, and does not propose mechanisms to act when 

there is no experience, we need to assume that there are two modes of reasoning, one for 

situations in which we know very little and another for those situations where we already have a 

knowledge base. In this sense, LPSA is a theory of experienced problem solving, but not a theory 

for all kinds of problem solving. A logical step is to propose that there is more than one system 

of reasoning, and that LPSA is reflecting one of several systems.  

The question, ”Do humans use two modes of [cognition, representation, processing, 

learning, etc] or just one?“ is central to cognitive science and has been discussed by several 

theorists (e.g., Hahn & Chater, 1998; Pothos, in press; Shanks & St. John, 1994; Sloman, 1996). 

In the domain of expert chess, the question has been formulated as ”How much of expert 

problem-solving behavior is explained by real-time search through the task problem space and 

how much is explained by pattern recognition?“ (Gobet, 1997, p. 291). Evans and Over (1996, 

chapter 7) proposed that almost all reasoning tasks show evidence of a logical and non-logical 

component of performance. They argued that the two modes of performing are interactive rather 

than competing. Their distinction is closely related to the literature on implicit versus explicit 

learning.  

Stanovich (1991) reviews a collection of theories in which theorists have proposed two 

different systems of reasoning. He grouped them as system1 and system2. System1 is 

characterized as automatic, unconscious, and relatively undemanding of computational capacity. 
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System2 is controlled, reflected in IQ tests, rule-based, and involved in analytical cognition. The 

tasks that pertain to system1 are highly contextualized, whereas system2 tends to decontextualize 

(abstract) problems. The two systems can produce contrary solutions to the same situation. 

Stanovich (1991) seems to be very concerned with the evolutionary interpretation of the two 

systems and its relevance to set the arguments about rational behavior. 

Sloman (1996) tagged the two components “associative system” and “rule-based 

system.” He used similarity-based thought and temporal similarity relations to draw inferences 

and make predictions that resemble those of a sophisticated statistician: ”Rather than trying to 

reason on the basis of an underlying causal or mechanical structure, it constructs estimates based 

on underlying statistic structure. Lacking highly predictive causal models, this is the preferred 

mode for many forecasters, such as weather and economic ones“ (Sloman, 1996, p. 4). In pilots, 

for example, the underlying causal or mechanical structure can be present, but, after extensive 

experience, it can be easier for them to operate using the statistical structure that they have 

extracted during practice.  

 We consider LPSA to correspond to the associative system, ”system1.” The system2 or 

rule-based system could be made responsible for all the effects that LPSA does not cover: 

knowledge-lean tasks, learning from being told and instruction, deductive reasoning, and 

planning. 

Related approaches and future directions 

LPSA is a similarity-based theory and it uses a spatial metaphor in the Shepard (1987) 

tradition. The level of specification of LPSA is more detailed than any other (partial) theory of 

CPS. To our knowledge, there are no theories of CPS that actually spell out the representations 
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and processes that are supposed to be functioning when people interact with different complex 

tasks.  Below, we compare LPSA to four related approaches:  

(1) Case-based reasoning. The idea of using similarity-based theories for problem solving 

is not new, it is explicitly presented in case-based reasoning (CBR), as well as in the work on 

analogical reasoning (e.g., Holyoak & Thagard, 1989), where similar elements in two situations 

have to be mapped in order to solve the problem. In CBR, a solution to a new problem is created 

by adapting past solutions to problems that resemble the new one. Both LPSA and CBR share 

certain characteristics: for example both may use nearest neighbors algorithms to select the 

closer represented cases to the current situation. Also, both tend to use flat (non-hierarchical) 

representations.  However, the CBR expert systems are not the result of automatic learning 

procedures, but rather based on “knowledge engineering”, where humans compile the relevant 

domain knowledge into a computer accessible form (Hahn & Chater, 1998). Another difference 

is that LPSA does not keep a different representation for different repetitions of the same event, 

but a single abstraction that combines the knowledge that it has of that particular event. In this 

sense, LPSA is closer to abstraction-based models of representation (e.g., Smith & Medin, 1981) 

than to exemplar-based models (e.g., Nosofsky, 1988).  

(2) In Case-based decision theory (Gilboa & Schmeidler, 1995) the memory is also 

considered to be a matrix of problems by actions, like in LPSA. In contrast with LPSA, there can 

be only one solution per problem, no repeated problems, and problems are not defined as 

collections of actions. There is also no dimension-reduction step. These are all reasonable 

assumptions for discrete, one-shot decisions. LPSA assumptions are better suited to multi-stage 

decision situations. In these situations it is not easy to map actions and results (important in 

CBDT to calculate utilities of actions) because they may be separated by long intervals. This is 
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known as the credit assignment problem and LPSA bypasses it by not using utility to create 

representations (as CBDT), but context-based similarity.  

(3) Instance-based learning theory ( IBLT, Gonzalez, Lerch, & Lebiere, 2003) is also an 

abstraction-based model. It has the added advantage that it proposes a general heuristic for the 

situations when the cognitive system has no experience (or the reasoning mode system1). LPSA 

and IBLT share some assumptions, try to explain similar phenomena (learning in dynamic 

decision making situations) and have very different strong points (representational clarity and 

generality for LPSA versus detailed performance process specified in IBLT).  

(4) Minerva-DM (Dougherty, Gettys, & Ogden, 1999) Minerva-DM is an exemplar 

model of memory. It proposes that humans retrieve traces from memory every time they find a 

judgment situation (called probe). The response evoked by the probe is computed using the 

average of the responses for the memory traces that are most similar to the probe. The vectors for 

the traces and probe are concatenations of smaller vectors (minivectors) representing features. 

The mapping between the feature represented and the representation is arbitrary: any random 

vector will do, as long as it is different from the one representing a different feature. That is, 

representations are voided of semantics. This is a disadvantage when compared with the vectors 

that LPSA generates, which are all ‘grounded’ on a particular environment.  

LPSA is a newcomer among theories of problem solving. We have tried to situate it by 

comparing and contrasting it with more familiar approaches, and we have stressed its limited 

scope. There is clearly more to problem solving than what LPSA addresses. Nevertheless, LPSA 

offers the cognitive theorist some powerful new methods.  We have only begun to explore its 

promise, however. Future work must proceed in two directions. First, and most obviously, the 

ability of LPSA to account for a broader range of issues in the study of problem solving needs to 
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be explored. In addition, however, alternative approaches to similarity must be considered. LPSA 

uses metric spaces, but other models of representation, such as the information-distance approach 

of Chater & Vitanyi (2003) and the Bayesian model of generalization proposed by Tenenbaum & 

Griffiths (2001). Similarity is a central concept in cognitive science, and cognitive science is 

about to find ways of dealing with it. What we propose is to use large, naturalistic corpora of 

problem solving activity to generate problem space representations. The particular representation 

LPSA generates is a metric space via dimension reduction. The great advantage of LPSA is that 

it can deal with truly complex problem solving tasks, and with large corpora that provide realistic 

estimates of human problem solving behavior. 
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Footnotes 

1 Although it is pretty common to see problem spaces described as trees, we used the less 

exigent description of problem spaces as directed graphs because some problem spaces of 

classical tasks in the literature contain loops, for example the task ‘missionaries and cannibals’. 

The tree structure specifically defines that there is only one path that connect two elements 

(leaves), so any structure that displays loop is not a tree. 

2 However, recent literature (e.g., Tenenbaum, de Silva, & Langford, 2000) has proposed  

methods for nonlinear dimensionality reduction.  

3 The estimated total is 69 participants x 20 trials (in Quesada et al.) + 84 participants x 

25 trials (in Cañas et al.) = 3480. There were about  30 trials that were not logged correctly.  

4 This method was selected so the cosines were very distinctive and easy to compare. A 

subspace where a few items (instead of pairs) have very distinctive cosines could be found too, 

but this approach was used because the sample of stimuli was easier to obtain.   

5 Although the F test is not particularly informative, since it is testing the uninteresting 

hypothesis of the ICC being 0 versus the alternative of ICC being greater than 0, as McGraw  

and Wong (1996) noted. 

6 This time the required correlation coefficient is Pearson, since human similarity 

judgments and cosines are not in the same scale, and do not necessarily have a comparable 

variance, so intraclass correlation is ruled out. 

7A p value of .002 indicates that none of the polychoric correlations for the 

randomizations was higher than the observed one, being the proportion 1/501 = .002 

8 Number scrabble consists on 9 cards on a table, with 9 digits, each participant draws 

one, in turns, and the one who collects 3 cards whose digits sum 15 (e.g., 2 + 4 + 9 = 15) wins. If 
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all the pieces are drawn without any player adding 15, the game is a draw. It is formally 

equivalent to tic-tac-toe. 

9 However, the problem space is a surprisingly ill-defined concept that has been changed 

and reworked in successive papers by their own proponents, and by others. Since most 

researchers in problem solving use it, it has been stretched and adapted in different ways to cover 

new situations, and some authors (e.g., Burns & Vollmeyer, 2000) have issued warnings about 

this. 
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Table 1 

Extract from a Firechief log file 

No. Command Time Performance Score Appliance Code Appliance Type Position Destination Landscape 

1 Move 44 100.00 4 Copter (11, 4) (12, 9) Forest 

2 Move 62 99.77 4 Copter (12, 9) (11, 9) Forest 

3 Drop Water 78 99.42 4 Copter (11, 9)  Forest 

4 Move 137 98.95 3 Copter (8, 6) (12, 10) Clearing 

5 Drop water 147 98.95 3 Copter (12, 10)  Clearing 

6 Move 178 98.71 2 Truck (4, 11) (13, 8) Forest 

7 Move 247 98.48 1 Truck (4, 14) (14, 10) Forest 

8 Control Fire 255 98.48 2 Truck (13, 8)  Forest 
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Figure Captions 

Figure 1: Annotated screenshot of an ongoing Firechief trial. Each cell type and appliance 

has different properties such as flammability, speed, etc. 

Figure 2: First 8 movements in 3 slices randomly sampled from the Firechief experiments 

described in Quesada et al. (2000) and Cañas et al. (Cañas et al., 2003). When an action is shared 

by two extracts, it is marked as a shaded cell. The actions that participants performed are 

depicted as arrows for movements, squares for control fires, and circles for drop-water actions. 

Figure 3: Observed versus predicted average human judgments for six pairs of Firechief 

trials. 

Figure 4: Basic scheme of a landing. (1) Glideslope. (2) Flare initiation height. (3) Pitch 

rate (4) Glideslope predicted intercept point. (5) Touchdown point. (6) Reversal in the direction 

of the vertical acceleration at touchdown point. 

Figure 5: Schema of the proposed "triangulation of expertise" approach 

Figure 6: Agreement between the model and the reduced-information expert for each of 

the rating criteria 

Figure 7: Agreement between the model and the reduced-information expert for each of 

the rating criteria when the model has been trained on a corpus where the environment changes 

randomly. 
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Appendix: Instructions 

The following test will measure how good you are and how much you have learnt. The 

buttons trigger videos of some replay trials from firechief. The buttons are grouped in seven 

groups of two. The speed is eight times faster than what you have experienced, but you should 

still be able to understand what the player is doing. 

In this last part of the experiment your task will be to compare these seven pairs of trials 

and emit a similarity judgment from 0 to 100 in the text box. You will give it a 0 it they have 

absolute nothing in common, and a 100 if they are exactly the same or really similar in what they 

are doing. 

You can change your mind -and your ratings- at any time. For example, imagine that you 

gave the previous pair of trials a 100, but in the current pair the trials are even more similar to 

each other. Then, you can go back, give the previous pair a 90 (or 80) and then rate the current 

pair as 100. 

You can replay pairs to remember them better. For example, if you doubt which pair 

(example, A and C) should get a higher rating of similarity, just go ahead and play them again. It 

is very important to evaluate the similarity correctly. There are important differences in the pairs 

selected. You may want to know that they are selected from a continuum of similarity (that is, 

they are in different 'steps' of a 'ladder' of similarity). One pair is extremely related, one is very 

unrelated, and the rest lie in between. 
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