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Gabriel Baglietto, Belén Moglia, Nara Guisoni y Luis Diambra por tratarme

tan bien en La Plata; and to Nick Jones and Sumeet Agarwal for making me

so welcome in Oxford. I am also grateful to all the people who have helped

in one way or another with my research, be it reading manuscripts, providing

data, suggesting ideas, or simply with stimulating conversations. I’m proba-

bly leaving many deserving people out when I mention Dante Chialvo, Álex

Arenas, Ginestra Bianconi, Yamir Moreno, Jennifer Dunne, Alberto Pascual,
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trella Ryan, Luna Álvarez, Javier (Chancly) Pascual, Nikolina Dimitrov, Felisa

Torralba y Caroline de Cannart por su diversa ayuda. Three members of my

family who have been particularly influential on my scientific interests and

helpful in various ways are my uncle Dave Jones, my grandfather Tony Jones,

and my aunt Sue Ziebland.
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Abstract

This thesis is a compendium of research which brings together ideas from the

fields of Complex Networks and Computational Neuroscience to address two

questions regarding neural systems:

1) How the activity of neurons, via synaptic changes, can shape the topology

of the network they form part of, and

2) How the resulting network structure, in its turn, might condition aspects of

brain behaviour.

Although the emphasis is on neural networks, several theoretical findings which

are relevant for complex networks in general are presented – such as a method

for studying network evolution as a stochastic process, or a theory that allows

for ensembles of correlated networks, and sets of dynamical elements thereon,

to be treated mathematically and computationally in a model-independent

manner. Some of the results are used to explain experimental data – cer-

tain properties of brain tissue, the spontaneous emergence of correlations in

all kinds of networks... – and predictions regarding statistical aspects of the

central nervous system are made. The mechanism of Cluster Reverberation is

proposed to account for the near-instant storage of novel information the brain

is capable of.
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Preamble: The Ant, the

Grasshopper and Complexity

Once upon a time, in a charming and peaceful little valley, a grasshopper

sat under the shade of a sunflower, idly strumming up a tune, when a young

worker ant came into view. The grasshopper watched as she trundled her way

laboriously up an incline under the weight of a large piece of leaf. When she

was close enough, he hailed her:

‘Ahoy there, friend. I hope I won’t seem tactless if I point out what a sin-

gularly cumbersome bit of leaf you have there. Would you not rather put it

down for a while and join me for a quick jam session? You could bang along

on some twigs or something.’

‘Thank you for the offer, but I must continue on my way,’ replied the ant,

glancing up in slight surprise at being thus addressed.

‘Oh, what a pity,’ the grasshopper rejoined. ‘And where, if I may be so bold as

to inquire, would you be taking your rather unappetising ration of cellulose?’

‘Well, I can’t say I really know... I just follow this trail of pheromones I’ve

come across. I’m sure it’s for some noble purpose though.’

‘Ah, that must be reassuring. And I suppose when you get to wherever it is

you don’t know you’re going you intend to eat your bit of leaf...’

‘Oh no, I can’t digest something like this – who do you take me for?’

‘You can’t? Well, how strange...’

‘What’s strange?’

‘However did an animal evolve which, instead of engaging in biologically rea-

sonable (not to mention enjoyable) activities, such as playing music to attract

sexual partners, prefers to lug useless bits of leaf about? How on earth can

that serve to spread your genes?’

‘I’m not interested in music or sex, whatever those are. I just follow simple

rules, like all my identical sisters. You could say we’re automata.’

‘Thanks, I was going to but wasn’t sure whether you’d be offended. Well, let
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me wish you an agreeable day of toil, you frigid little automaton.’

With that, the grasshopper gave a big leap into the air, slightly exasper-

ated by the folly so often displayed by his fellow insects. Looking down, he

spotted a few more ants, all carrying leaves in the same direction as the one

he had just met. Intrigued, he fluttered slightly higher (since grasshoppers

can, actually, fly, if not all that well). He realised the ants were all heading

for a nest some way off. In fact, there were many ant trails leading to various

sources of food. It dawned on the grasshopper that although the individual

ants were just boring little morons idiotically following rules, the nest as a

whole was managing to find the closest leaves, bring them back along optimal

routes, and feed them to its plantations of fungi. The colony was behaving

like an intelligent organism, in some respects not so different from he himself,

who functioned thanks to the cells of his body – each with the same genome,

like the ants – cooperating through the obedience to relatively simple rules.

This thought impressed the grasshopper very much, driving him to flutter

even higher so as to see things in greater perspective. From there he considered

the apparently fragile web of trophic, parasitical and symbiotic interactions

linking all the living beings in the valley – a network which nonetheless must

have evolved a particularly robust structure not to shatter at the first environ-

mental fluctuation. He became so enthralled by the idea of such complexity

on one scale emerging from simplicity on another that he didn’t even pay any

attention to an attractive young grasshopperess making her wanton way just

below him. Instead, he couldn’t help fearing that a butterfly he noticed gently

flapping his wings would probably set off a hurricane somewhere. As he flew

ever higher, he began to see snowflakes glide by, overwhelmingly intricate and

beautiful patterns self-organised out of the simplest little water molecules. Fi-

nally he was so high that he began to reflect on how the very stellar systems,

galaxies, clusters, superclusters, filaments of galaxies... – of which his whole

world was but an infinitesimal component – also interacted with each other

via the simple rules of gravity and pressure to form objects marvellous beyond

conception.

What he didn’t notice until it was too late, as he left behind the cosy

protection of the atmosphere, was how ultraviolet sunlight and ionising cos-

mic rays were steadily burning his wings each to a crisp. Beginning to fall, he
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only hoped he would have time to consider the several morals to his tragic tale.

After a while spent plummeting to his doom he realised that, the freefall

terminal velocity and life expectancy of a grasshopper being what they respec-

tively were, he would most likely die peacefully of old age somewhere along

his way down – never again contemplating his Edenic valley except, like some

prophetic locust, from afar.
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Chapter 1

Resumen en español

Paradigma de sistema complejo y el peor comprendido de nuestros órganos, el

cerebro es, esencialmente, una inmensa red de células que se comunican entre

śı mediante señales electro-qúımicas. Este trabajo recoge y desarrolla ideas

del joven campo de las Redes Complejas para tratar de mejorar nuestro en-

tendimiento acerca del comportamiento colectivo complejo que puede emerger

en las redes de neuronas a partir de dinámicas individuales relativamente sen-

cillas.

El Caṕıtulo 2 es una breve introducción a las Redes Complejas y a la

Neurociencia Computacional. Se describe, entre otras cosas, el modelo de

Hopfield de red neuronal atractora, en que cada nodo representa una neurona

y las sinapsis son representadas por los enlaces. Este sistema puede almacenar

información, en forma de patrones o configuraciones concretas de neuronas

activas e inactivas, en los pesos sinápticos; es decir, en la intensidad con la

que la actividad de una neurona influye sobre sus vecinas. Si, para representar

un patrón dado, dos neuronas vecinas han de adoptar el mismo estado (activo

o inactivo), se refuerza la interacción entre ambas, mientras que se debilita

en caso contrario. Repitiendo esta operación para cada pareja conectada de

neuronas y para cada patrón, estos patrones se convierten en los estados que

minimizan la enerǵıa total (atractores de la dinámica), y el sistema evolu-

ciona siempre hacia el patrón que más se parezca a su estado inicial. Este

mecanismo, llamado de memoria asociativa, es la responsable del almacenaje

y la recuperación de información tanto en modelos más realistas de medios

neuronales, como en muchos aparatos artificiales que desempeñan tareas tales

como la identificación y la clasificación de imágenes. Además, hoy en d́ıa

existen evidencias experimentales suficientes para asegurar que algo parecido

ocurre en el cerebro: mediante los procesos bioqúımicos de potenciación de

1
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largo plazo (LTP, por sus siglas en inglés) y depresión de largo plazo (LTD),

las sinapsis modifican gradualmente sus conductancias durante el aprendizaje.

El Caṕıtulo 3 aborda el problema de cómo puede desarrollarse una red con

el tipo de estructuras que se observa en el cerebro. Para ello se formaliza como

un proceso estocástico una red que evoluciona mediante cambios probabiĺısticos

que dependen de cualquier manera de información local y global de los grados

(números de vecinos) de los nodos, tal como se hace en la Ref. (Johnson et al.,

2010a). Se considera que estas suposiciones son relevantes para el caso del

cerebro ya que la arborización y la atrofia sinápticas dependen de la actividad

eléctrica de la neurona en cuestión, que a su vez puede estar relacionada con

el número de vecinos que tenga, y con la densidad sináptica media en la red.

Se demuestra cómo esta situación viene descrita por una ecuación de Fokker-

Planck, y se aplica a dos conjuntos de datos reales neurofisiológicos: por una

parte, la curvas de poda sináptica (fuerte reducción de la densidad sináptica

que sufre el córtex durante la infancia) de autopsias humanas pueden explicarse

con unas suposiciones mı́nimas; por otra, varias magnitudes estad́ısticas de la

red del anélido C. Elegans (distribución de grados, perfil de correlaciones, clus-

tering o agrupamiento y camino mı́nimo medio) emergen con cierta precisión

y de manera natural justo en la transición de fase que presenta el modelo.

Esto da fuerza a la idea de que el sistema nervioso optimiza su rendimiento

colocándose cerca de un punto cŕıtico. Un caso parecido, en que los enlaces

de la red, en vez de desaparecer o aparecer, son redirigidos estocásticamente,

presentado en la Ref. (Johnson et al., 2009b), se describe en el Apéndice A.

El resto de la tesis se centra en los efectos que pueden tener sobre el com-

portamiento colectivo de sistemas de neuronas las caracteŕısticas topológicas

descritas en el Caṕıtulo 3. Se sabe que la heterogeneidad de la distribución

de grados de la red suele tener una influencia significativa en la dinámica de

elementos conectados mediante sus enlaces. En el caso de redes neuronales de

Hopfield, Torres et al. (Torres et al., 2004) demostraron que, en redes libres

de escala (que son altamente heterogéneas), el rendimiento aumenta con la

heterogeneidad. El Caṕıtulo 4 examina el mismo efecto en una red neuronal

que incluye otro ingrediente biológico: la depresión sináptica, gracias a la cual

se observa una transición entre una fase de memoria estática a otra en que el

sistema salta caóticamente entre los patrones guardados. Resulta que cerca

de este punto cŕıtico (el famoso Borde del Caos) la red es capaz de realizar

una tarea dinámica necesaria para los seres vivos: reconocer, de entre varios

patrones que tenga almacenados, uno dado que se le “enseñe” y retenerlo in-
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definidamente después. Como demostramos en la Ref. (Johnson et al., 2008),

la heterogeneidad de la distribución de grados de la red acerca el punto cŕıtico

a una región del espacio de parámetros en que apenas hay depresión sináptica.

Teniendo en cuenta que esta depresión empeora la capacidad de memoria del

sistema, se concluye que una red altamente heterogénea es la óptima para re-

alizar este tipo de tarea dinámica. Las redes funcionales medidas en el córtex

humano durante tareas del estilo adopta la red libre de escala más heterogéna

posible, por lo que cabe la hipótesis de que el cerebro esté maximizando aśı su

rendimiento.

Otra propiedad altamente estudiada de las redes complejas es la existencia

de correlaciones entre los grados de nodos vecinos. Cuando dichas correla-

ciones son positivas (nodos muy conectados se suelen conectar con otros que

también tienen muchos vecinos, y los que tienen pocos con otros parecidos) se

dice que la red es asortativa; mientras que es disasortativa si las correlaciones

son negativas (los que tienen muchas conexiones se conectan, preponderante-

mente, con los que tienen pocas). Curiosamente, se hab́ıa observado que por

lo general las redes sociales (por ejemplo, redes de colaboraciones profesionales

o de contactos sexuales) son asortativas, mientras que prácticamente todas las

demás (genéticas, tróficas, proteicas, de transportes, de palabras, Internet, la

Web...) son significativamente disasortativas. Aunque se hab́ıa estudiado los

efectos de estas correlaciones en varios sistemas, las técnicas matemáticas y

computacionales para ello padećıan de inconvenientes que restaban general-

idad a los resultados. Para solventar esto, en el Caṕıtulo 5 se describe un

nuevo método para particionar el espacio de las fases de redes en regiones de

correlaciones iguales, una técnica que permite tanto análisis teórico como com-

putacional de este tipo de sistemas. Utilizando este método junto con ideas

de Teoŕıa de la Información se demuestra también el resultado principal de la

Ref. (Johnson et al., 2010b): que la disasortatividad es el estado “natural”

(en cuanto a situación de equlibrio) de las redes heterogéneas, lo cual explica

la preponderancia en la realidad de este tipo de configuraciones. La prefer-

encia de los humanos por agregarse en función de propiedades similares seŕıa

la explicación de que las redes sociales se encuentren fuera del equilibrio, en

regiones asortativas del espacio de fases.

En el Caṕıtulo 6 se aplica el método del Caṕıtulo 5 al caso de una red

neuronal de Hopfield que no sólo presenta heterogeneidad, sino también cor-

relaciones nodo-nodo. Se encuentra, como ya fue descrito en la Ref. (de Fran-

ciscis et al., 2011), que estos sistemas pueden aumentar de manera notable su
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robustez frente a ruido gracias a las correlaciones positivas. De nuevo, esto

parece encajar, al menos cualitativamente, con resultados experimentales que

han encontrado redes funcionales en el córtex humano altamente asortativas.

Hemos dicho que las redes neuronales pueden aprender gracias a una apropi-

ada modificación de los pesos sinápticos mediante LTP y LTD, lo que explica

la memoria de largo plazo. Pero estos procesos bioqúımicos ocurren en un

tiempo caracteŕıstico de al menos minutos. Los modelos de memoria de corto

plazo, que ocurren en escalas de tiempo menores, suelen dar por hecho que

la información que se utiliza está de antemano almacenada en el cerebro, y

que el sujeto realizando la tarea sólo ha de activar y mantener de alguna

manera la configuración correcta (como en el Caṕıtulo 4). Pero es fácil darse

cuenta de que esto no puede ser el caso para cualquier tarea: basta mirar

algo totalmente nuevo por un instante, cerrar los ojos, y pensar en lo que

se ha visto. Los únicos modelos de memoria de corto plazo existentes que

no requieren aprendizaje sináptico se basan en que cada neurona mantenga

de alguna manera la información que le corresponde (t́ıpicamente gracias a

una serie de procesos sub-celulares). Pero al no emerger la memoria como

propiedad colectiva del sistema, sino como suma de memorias individuales,

estos modelos padecen de una gran falta de robustez frente a ruido. Y, lejos

de presentar un comportamiento individual fiable, las neuronas se caracterizan

justamente por ser células de una alta variabilidad, con tendencia a disparar

de manera más o menos aleatoria. En el Caṕıtulo 7 se propone un mecanismo,

llamado Cluster Reverberation (CR), o Reverberación de Grupo, gracias al cual

incluso sistemas como redes con unidades simples, binarias, como en el modelo

de Hopfield pueden almacenar información instantáneamente sin necesidad de

aprendizaje sináptico, y de una manera que puede ser todo lo robusto frente

a ruido como se quiera (Johnson et al., 2011). Para ello el sistema aprovecha

la existencia de estados metastables (situaciones que minimizan la enerǵıa del

sistema localmente, sin corresponder al mı́nimo global) y como consecuencia

aparecen transitorios en la dinmica de la actividad neuronal cuyas propiedades

son consecuencia inmediata de las caracteŕısticas de la topoloǵıa subyacente y

que es del tipo de las descritas anteriormente en el Caṕıtulo 3 y en experimen-

tos, esto es, el grado de agrupamiento o la modularidad de la red. Básicamente,

grupitos densamente interconectados de neuronas pueden mantener un estado

conjunto de alta o baja actividad, en promedio. Considerando cada grupito

como un elemento funcional elemental, en vez de cada neurona, se consigue la

aparición de las propiedades requeridas. Es más, algunas otras caracteŕısticas
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de la memoria de corto plazo emergen de manera natural de este mecanismo.

En particular, se demuestra que la información se pierde gradualmente con el

tiempo según una ley aproximadamente potencial, como ha sido descrito en

experimentos psicof́ısicos.

En conclusión, las principales aportaciones originales de esta Tesis son:

• Métodos anaĺıticos y computacionales para estudiar redes evolutivas (John-

son et al., 2009b, 2010a) y redes con correlaciones nodo-nodo (Johnson

et al., 2010b; de Franciscis et al., 2011).

• Una respuesta a la pregunta de por qué la mayoŕıa de las redes reales

son disasortativas (Johnson et al., 2010b).

• Propiedades topológicas que pueden optimizar el rendimiento de redes

neuronales (Johnson et al., 2008; de Franciscis et al., 2011).

• Un mecanismo que pudiera estar detrás de la memoria de corto plazo

(Johnson et al., 2011).





Chapter 2

Where we are and where we’d

like to go

2.1 From bridges to brains

Strolling through the streets of Königsberg, a young Immanuel Kant may have

wondered whether, as some hoped, a path could be found that would take him

once and only once over each of the city’s celebrated seven bridges and back to

where he started. In 1736 Leonard Euler pointed out that for this or any other

problem of the kind all that mattered was which land masses were connected

to each other, and by how many bridges. In other words, the situation could

be captured by a graph, as in Fig. 2.1, in which each land mass is represented

by a node (also called vertex) and each bridge by a link (or edge). He showed

that in the case of Königsberg no such walk could be found, since an “Eulerian

cycle” in a connected graph exists if and only if the degrees of all nodes are

even numbers – the degree of a node being its number of edges (Euler, 1736).

And thus was Graph Theory born.

For over two centuries, the graphs people were interested in were precisely

defined objects, usually sufficiently small to be drawn on a piece of paper. But

in the late nineteen fifties, mathematicians began to study random graphs –

i.e., defined only by some random generation process – perhaps with a view to

better dealing with ever-growing communications networks (Bollobás, 2001).

E. N. Gilbert considered a situation in which there are n nodes and each pair is

connected by an edge with probability q (Gilbert, 1959). For different values of

these parameters, he was able to obtain the likelihood of the graph being con-

nected (that is, of there being a path joining any two nodes). A similar model

was proposed by Paul Erdös and Alfréd Rényi: each of all the possible graphs

7
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Figure 2.1: The problem of the Seven Bridges of Königsberg can be reduced

to a graph in which nodes and edges represent land masses and bridges, re-

spectively.

with n nodes and m edges had an equal chance of being “picked” (Erdös and

Rényi, 1959). In fact, a given graph will be generated with equal probability

in either scenario, so the descriptions are equivalent, and usually known as

the Erdös-Rényi (ER) model. It is simple to see that if one were to average

over many graphs generated by either of these processes, the degrees would

follow a binomial distribution – tending, for large n, to a Poisson distribution.

That is, p(k) is symmetrically centred around its mean value and drops off

exponentially – where ki is the degree of node i. An interesting phenomenon

that can be observed using the ER model is that of percolation. If we measure

the size Φ of the largest connected component (that is, of the highest number

of nodes in the graph forming a connected subgraph) we obtain at different

values of the probability q (or, equivalently, of m = 1
2
qn2), we see that there is

a critical value, qc = 1/n, above which Φ/n does not vanish for high n – that

is, there will usually exist a connected subgraph of a size comparable to that

of the whole system. This passing from one situation (or phase) to another,

each characterised by some qualitatively different characteristic, is known in

physics as a phase transition. In this case, it is a second-order transition, since

the control parameter Φ varies continuously (and not abruptly, as in first-

order transitions), and has innumerable applications. For instance, the nodes

might be people susceptible to some disease, trees which may be set on fire,

or oil bubbles in a porous medium. The epidemic will spread, the forest will

burn, or the oil will be extractable if the density of edges – contagious contact,

fire-conducting proximity, or links between pores – is over the critical value.
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In his 1929 short story Chains (Láncszemek, in the original Hungarian)

Frigyes Karinthy suggested that the number of people in a chain of acquain-

tances grows exponentially with size, and thus that very few steps are needed

to join anyone with any other person. This Small World idea was taken up in

1967 by Stanley Milgram, who performed a series of experiments that, while

somewhat less controversial than his well-known obedience-to-authority explo-

rations, have nonetheless been widely discussed (Milgram, 1967). He and his

colleagues sent various letters to random people with the request to attempt

to send them on to a particular individual many thousands of miles away, plus

the constraint that this had to be done via people with whom the sender was

on first-name terms. Many of the letters reached their destination, after having

been sent on by a surprisingly small number of intervening people. This was

later popularised as the Six Degrees of Separation – the famous idea that any

two people are linked by a path of only six acquaintances. Within the con-

nected component of an ER random graph any two nodes are also joined by a

short path – of the order of the logarithm of the number of nodes. However,

this is less surprising, since these networks are not clustered; that is, they do

not have the property typical of social networks whereby “the friends of my

friends are (also likely to be) my friends.” In 1998, Duncan Watts and Steven

Strogatz put forward a network model which took this feature into account.

They considered a ring of n nodes, each connected to their k nearest neigh-

bours (they set k = 4). Each edge was then broken from one of its nodes and

rewired to some other random node with a probability p. Thus, p = 0 leaves

the ring intact, while p = 1 changes it into an ER random graph. Two magni-

tudes were measured for different values of p: the mean-minimum-path length,

l, and the clustering coefficient, C. The first is simply an average over all pairs

of nodes of the minimum-paths connecting them. The latter can be seen as

the probability that two neighbours of a given node are directly connected to

each other. For p = 0, the clustering is high (C = 1
2
) and independent of

the network size, while the mean minimum path scales with n (l ≃ n/8). At

the other extreme, p = 1 yields a vanishingly small clustering (C = k/n) but

short paths (l ≃ ln n/ ln k). The most interesting case is found at intermediate

values of p. As p grows from zero, l falls very rapidly to a value close to the

random case, but C does not present this drop until a much higher value is

reached. Watts and Strogatz called this intermediate zone the Small-World

region, since everyone is highly-interconnected while much of the local struc-

ture is conserved. They suggested that this is actually a property of many
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real networks (as has since turned out to be the case (Newman, 2003c)), most

especially of social networks – in which C is often several orders of magnitude

greater than if the graph were random, while l is not much larger than in such

a case. As the authors point out, it is essential to take this feature into account

for the study of, say, epidemics.

Another feature of networks which is quite ubiquitous in the real world is

that degree distributions are highly heterogeneous; in fact, they often follow

power-laws, p(k) ∼ k−γ, with γ a positive constant typically between 2 and 3.

Such networks are nowadays referred to as scale free. In the nineteen fifties,

Herbet Simon showed that these distributions come about when “the rich get

richer” (Simon, 1955). Applying this idea to the case of scientific citations,

Derek de Solla Price proposed the first known model of a scale-free network,

in which nodes represent papers and edges are citations (de S. Price, 1965).

Each node has an in-degree (the number of papers citing it) and an out-degree

(papers it cites). That is, the network is directed, since edges have a direc-

tion. Assuming that the probability a paper has of being cited by a new one

is proportional to the number already citing it (its in-degree), the network is

built up through the gradual addition of nodes, the neighbours of these be-

ing chosen according to their existing in-degrees. Price showed analytically

that such a mechanism leads to an in-degree distribution p(k) ∼ k−(2+1/m),

with m a parameter of the model equivalent to the mean degree1. He called

this mechanism cumulative advantage. Somewhat ironically – considering that

Price, with a PhD in history from Cambridge, is best known as the father

of scientometrics – this work was mostly ignored by the scientific commu-

nity. The model was rediscovered in 1999 by Albert-László Barabási and Reka

Albert, with the difference that they considered the network to be undirected

(Barabási and Albert, 1999). They coined the term preferential attachment for

the rich-get-richer mechanism, which is now generally assumed to be behind

the formation of most scale-free networks (although other mechanisms exist

(Caldarelli et al., 2002; Krapivsky et al., 2000; Newman, 2005)). Among many

interesting consequences of such degree heterogeneity, Mark Newman showed

that the clustering and mean-minimum-path length are respectively higher and

lower than in homogeneous networks, making all scale-free networks to some

extent small worlds (Newman, 2003b). It also has important consequences for

dynamical processes taking place among elements on the network, such as the

1Note that in a directed network, the mean in-degree and mean out-degree coincide.
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synchronisation of coupled oscillators (Barahona and Pecora, 2002).

As mentioned above, networks can be made up of separate components

such that no path exists between nodes in different subgraphs. This is an ex-

treme case of community structure. However, what is usually more interesting

is the fact that communities may exist such that there is a higher density of

edges within them than without, even if the network is connected (Girvan and

Newman, 2002). These communities are also at times called modules or clus-

ters (although this can create some confusion with the related but distinct idea

of clustering referred to above). Given a network, one can make a partition –

that is, divide the nodes up into groups – and calculate what proportion of the

edges fall within these, compared with the random expectation. This measure

is called the modularity of this partition, and sometimes one speaks of the

modularity of a graph referring to that of the partition for which this value is

maximum. Determining the community structure of empirical networks can

often provide useful insights into aspects of the systems. For instance, the

communities may correspond to functional groups in a metabolic network, or

groups of people who share some trait. However, there are many problems

related to making this kind of measurement. For one thing, there are so many

possible partitions that even an ER random graph can have a fairly high mod-

ularity due simply to statistical fluctuations (Reichardt and Bornholdt, 2006).

Then there is the fact that community structure can exist on may different

levels – that is, the groups considered can be of any size – so one must usually

consider a hierarchy of modules (Arenas et al., 2006). Furthermore, finding

an optimal partition is an NP-Complete problem (Garey and Johnson, 1979),

which makes comparing the modularity of each possible partition intractable

in all but very small networks. For these and other reasons, in recent years

much work has gone into finding efficient algorithms to determine the commu-

nity structure of networks, albeit approximately (Girvan and Newman, 2002;

Donetti and Muñoz, 2004; Blondel et al., 2008) – as well as into comparing the

results offered by each approach (L. Danon et al., 2005).

Finally, another feature of networks worth mentioning arises when the

nodes of a network are endowed with some property and this is reflected by

the layout of the edges: the situation is called a mixing pattern (Newman,

2002, 2003a). For instance, people might tend to choose sexual partners who

share certain characteristics, such as mother-tongue or self-defined race. In

these cases the network is assortative, since nodes of a kind assort, or group

together. However, if the property in question were, say, gender, then the same



12 Chapter 2. Where we are and where we’d like to go

graphs would be disassortative if most of the relations were heterosexual. In

these cases the property can be considered discrete, but it can be continuous –

for instance, people might assort according to age. An interesting case is when

the property in question is the degree of each node, since it is then an entirely

topological issue. The extent to which the degrees of neighbouring nodes are

correlated – as given, for example, by Pearson’s correlation coefficient (New-

man, 2002) – is then a measure of the assortativity of the graph, being positive

for assortative networks and negative for disassortative ones. It turns out that

there is a striking universality in the nature of the degree-degree correlations

displayed by real-world networks, whether natural or artificial: social networks,

like the ones just described, tend to be assortative, while almost all other kinds

of network are disassortative (Pastor-Satorras et al., 2001; Newman, 2003c).

Often specific functional constraints can be found to justify correlations of

one or other kind, but in Chapter 5 of this thesis the purely topological ex-

planation put forward in Ref. (Johnson et al., 2010b) is described. In any

case, the degree-degree correlations of a network can play a significant role in

the behaviour of processes taking place thereon. For example, assortative net-

works have lower percolation thresholds and are more robust to targeted attack

(Newman, 2003a), while disassortative ones make for more stable ecosystems

and seem to be more synchronizable (Brede and Sinha).

All the aspects of networks mentioned in this brief overview, as well as many

others, have been shown to be relevant for a wide range of complex systems

(Albert and Barabási, 2002; Newman, 2003c; Boccaletti et al., 2006). Among

these is the brain, a paradigm of complexity as well as the least understood

of our organs. However, research focusing on how the collective behaviour

of neural systems, as observed in mathematical models, is influenced by the

topology of the underlying network is relatively scarce. This is perhaps due in

part to the attention that other biological properties of the nervous system have

tended to draw from the Computational Neuroscience community. Thanks to

the flurry of activity that the field of Complex Networks has been enjoying

over the last decade, this is a particularly good moment to undertake a more

systematic analysis of how dynamics and topology are related in this kind of

systems.
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2.2 Neural networks in neuroscience

Ever since the publication of Santiago Ramón y Cajal’s drawings of neurons –

in his words, those “mysterious butterflies of the soul” – it has been clear that

the nervous system is composed of a large number of such cells connected to

one another to form a network (y Cajal, 1995). Long axons, ending in termi-

nals which form synapses to the dendrites which branch out from neighbouring

neurons, transmit action potentials (APs) – changes in the cellular membrane

voltage – and enable neurons somehow to cooperate and give rise the aston-

ishing emergent phenomenon called thought. One of these APs is formed each

time the membrane electric potential of a neuron surpasses a threshold value,

leading to the opening of a great many voltage-dependent ionic gates between

the cell and the extra-cellular medium. In turn, the membrane potential of a

given neuron is constantly affected by action potentials arriving from neigh-

bouring neurons, and thus an extremely complex web of cellular signalling is

achieved.

The first model neuron was proposed by McCulloch and Pitts (1943). This

was simply an element that would return a Heaviside step function of the sum

of its inputs. Sets of such “artificial neurons” could be used to implement

any logical gate. Shortly after this, another important suggestion was made,

this time by the psychologist Donald Hebb. Attempting to relate Pavlovian

conditioning experiments with cellular plasticity, he conjectured, in 1949, the

existence of some biological mechanism that would lead to neurons which re-

peatedly fired (i.e., let off action potentials) together becoming more strongly

coupled (Hebb, 1949). The initiation and propagation of action potentials

in individual neurons was first modelled mathematically by Alan L. Hodgkin

and Andrew Huxley in 1952 by means of a set of nonlinear ordinary differential

equations which took into account the various ion fluxes (Hodgkin and Huxley,

1952).

However, the concept of a neural network (as understood in theoretical

and computational neuroscience) was partly inspired by mathematical models

of spin systems. The first of these was the Ising model, put forward in 1920

by Wilhelm Lenz and studied by Ernst Ising with a view with a view to un-

derstanding phase transitions and magnets (Onsager, 1944; Brush, 1967). It

was known that the spin of electrons conferred a magnetic moment to indi-

vidual atoms, but it wasn’t clear how exactly a very many such spins could

self-organise into a large body producing a net magnetic field. By considering

an infinite set of entities (spins) with possible values plus or minus one (up
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Figure 2.2: Drawing of the cells of the chick cerebellum, from “Estructura de

los centros nerviosos de las aves”, Madrid, 1905. Notice how the neurons make

up a complex network of synaptic interactions.

or down, say) which, when placed at the nodes of a lattice, interact in such a

way that energy is lowest when neighbours are aligned, and a temperature pa-

rameter to govern the extent of random fluctuations, it was eventually shown

that, below a certain critical temperature (in two or more dimensions), sym-

metry is spontaneously broken and most of the spins end up aligned (Baxter,

1982). This ferromagnetic solution comes about and is then maintained be-

cause it has a lower energy than any other configuration of spins. Subsequent

models, in particular that of Sherrington and Kirkpatrick (1975), incorporated

inhomogeneities in the coupling strengths such that there was no longer a con-

figuration which simultaneously minimized all interaction energies, leading to

frustrated states (spin-glasses).

These ideas were put together, by Amari (1972) and then by Hopfield

(1982), in the first neural network models to exhibit the mechanism known as

associative memory. Each model neuron was placed at the node of a network,

originally assumed to be fully connected (all nodes connected to all the rest),

and followed a dynamics which can be seen either as that of Ising spins or of

McCulloch-Pitts neurons. However, a noise parameter usually referred to as

“temperature” by analogy with spin systems could be included to allow for

non-deterministic behaviour. By setting the interaction strengths (synaptic

weights) not randomly, as in the Sherrington-Kirkpatrick model, but according



2.2 Neural networks in neuroscience 15

to the Hebb rule referred to above, information could be stored and retrieved

by the system. More specifically, a set of particular patterns, or configurations

of positive and negative elements (firing and non-firing neurons), are recorded

in the following way: for each pattern, one looks at each pair of neurons and

adds a quantity to the weight of the synapse joining them if the pattern in

question requires them to be in the same state, and subtracts it when they

should be opposite. In this way, the minimum energy configurations correspond

to the stored patterns, which therefore become attractors of the dynamics: if

the temperature is not too heigh to destroy all order, the system will evolve

towards whichever of these patterns most resembles the initial configuration

it is placed in. Figure 2.3 illustrates how this mechanism works for a system

such that the firing and non-firing neurons represent black and white pixels of

a bitmap image.

Thanks to associative memory, if we were to store, say, a set of photos

of various people and then “show” the network a different picture of one of

the same subjects, it would be able to retrieve the correct identity. Not only

is this mechanism used nowadays in technology capable of performing tasks

such as pattern discrimination and classification, but it is widely considered

to underlie our own capacity for learning and recalling information. There is

evidence from neuronal readouts that this is so (Amit, 1995), and not long ago,

in vivo experiments finally established that learning is indeed related to the

processes of long term potentiation (LTP) and depression (LTD) – by which

synapses between neurons that fire nearly simultaneously gradually increase or

decrease their conductance depending on the interval of time elapsed (Gruart

et al., 2006; Roo et al., 2008).

The neural network models studied nowadays generally include more real-

istic dynamics both for the neurons and for the synapses, taking into account

a variety of cellular and subcellular processes (Amit, 1989; Torres and Varona,

2010). For example, the fact that the conductance of synapses in reality de-

pends on their workload has been found to enable a network to switch from

one pattern to another – either spontaneously or as a reaction to sensory stim-

uli – providing a means for the performance of dynamic tasks (Cortes et al.,

2006; Holcman and Tsodyks, 2006); this result also seems to agree well with

physiological data (Korn and Faure, 2003). In fact, there is evidence that the

brain somehow maintains itself close to a boundary – called, in physics, a crit-

ical point – between an ordered and a chaotic regime (Egúıluz et al., 2005;

Chialvo, 2004; Chialvo et al., 2008; Bonachela et al., 2010; Torres and Varona,
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Figure 2.3: In the Hopfield neural-network model, the interaction strengths

(representing synaptic weights) store information in the form of particular

patterns, or configurations of firing neurons, which become attractors of the

dynamics. Whatever the initial state of the system, it will always evolve to-

wards one of these patterns, thus allowing for the storage and retrieval of

information. The mechanism, known as associative memory, is thought to be

at the basis of memory in the brain. In this case, the network is “remember-

ing” an illustration by Jean-Baptiste Oudry for Jean de la Fontaine’s fable La

Cigale et la Fourmi.

2010). This would be in line with research that shows how certain useful prop-

erties – such as the computational capacity of some neural-network models

(Bertschinger and Natschläger, 2004), or the dynamic range of sensitivity to

stimuli in sensory systems (Kinouchi and Copelli, 2006) – are optimised at this

“edge of chaos (Chialvo, 2006)”.

That these models should actually reflect, albeit in an enormously simpli-

fied way, what actually goes on in our brains tends to fit in quite well with

intuitive expectations – to the extent that so-called connectionist models seem

to be gradually becoming the accepted paradigm in relevant areas of psychol-

ogy and philosophy (Marcus and G.F., 2001; Frank, 1997). For instance, from
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this point of view the way in which the recollection of a particular detail often

evokes, almost instantly, a whole landscape of sensations and emotions makes

sense, since these concepts will have been stored in some way as the same pat-

tern. Also, the fact that new memories are recorded in synapses which were

already being used to store previous information would seem to explain why

memories tend to fade slowly with time, yet can still be recalled, at least to

some extent, when a particular thought in some sense overlaps with (reminds

one of) one of them. When this happens, the old memory springs to mind and,

if held there for long enough, can be refreshed via long term potentiation and

depression – although interaction with other patterns or with current stimuli

may well modify the refreshed information. Similarly, previous information

influences the storing of new memories, leading to the well known fact that we

tend to “see” things the way we expect them to be.

It seems, then, that the basic mechanisms behind the ability of our brains

to remember things, at least when the information is stored slowly enough for

the biochemical processes of LTP and LTD to be at work (long-term memory),

are now understood. Not only are the implications of such knowledge far-

reaching in themselves. The way in which it was developed is also particularly

notworthy. More or less sketchy ideas from areas as diverse as behavioural

psychology, neurophysiology and theoretical physics were brought together in

order to come up with a minimal mathematical model capable of manifesting

the sought-after phenomenon of information retrieval as a consequence of the

known properties of a great many simple elements. This kind of research can

at first seem more like a mathematical game than anything to do with nitty-

gritty reality. But the fact the basic mechanism of associative memory has

since borne up to decades of experimenting and theoretical probing reveals

how insightful it can actually be. It is likely that other features of brain

function – short-term memory, information processing or emotional tagging,

to name but the first few that spring to mind – will eventually be thrown under

a similar light. In fact, we can expect the nature of even such an elusive and

intimate phenomenon as consciousness some day to become clear. After all,

the explanations behind other emergent properties of matter which in their day

seemed almost mystical, such as temperature or life, are now well understood.
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2.3 A declaration of intent

As Zora Neale Hurston put it, “Research is formalized curiosity. It is poking

and prying with a purpose.” But there are many possible purposes, and even

more different ways of poking and prying. The motivation behind the work

presented here is to understand how the phenomena we observe in certain

systems on a macroscopic scale can come about from interactions of their

many relatively simple constituent elements. In the case of neural systems, it

seems reasonable to assume that these basic elements are neurons, and that

it is thanks to the cooperation of a great many of these cells that such organs

are able to think and feel. The human brain – with about 100 billion neurons

connected by 100 trillion synapses – being the most complex system we know

of, an enormous degree of simplification will be required for our description to

be of any use to this purpose. (In fact, if we could somehow simulate a brain

in all detail, the result would be just as unfathomable as the original object,

however exciting the activity may prove for other reasons.) The physiology of

the neuron is nowadays quite well understood. However, just as the properties

of atoms or transistors that are key to understanding phase transitions or the

workings of a microchip are, respectively, magnetic interactions and voltage-

dependent gating, we must try to ascertain exactly which neuronal features are

necessary for the macroscopic behaviour we are interested in to occur. One

way to do this is to start by considering only the most basic characteristics

and explore what non-trivial phenomena emerge from these, allowing us then

to add new ingredients one at a time to pinpoint the relevant ones. In this

line, we consider large sets of Hopfield’s simple binary model neurons to study

how network properties are related to collective behaviour.

This work is laid out as follows. Chapter 3 deals with development. The

appearance and disappearance of edges in a network (growth and death of

synapses, in the case of the brain) is formalised as a stochastic process and

studied in a general setting (Johnson et al., 2009b, 2010a). It turns out that

many of the topological features observed in experiments are well modelled in

this way – which to some extent justifies, a posteriori, our initial assumptions.

The following chapters describe particular phenomena that emerge as a di-

rect consequence of some of those topological features: degree heterogeneity in

conjunction with synaptic depression improves the performance of dynamical

tasks (Johnson et al., 2008) (Chapter 4); assortativity serves to enhance a neu-

ral network’s robustness to noise (de Franciscis et al., 2011) (Chapter 6); and

clustering or modularity can lead to metastable states with certain properties
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essential for some short-term memory abilities (properties hitherto lacking in

previous models) (Johnson et al., 2011) (Chapter 7). Thanks to the extreme

simplicity of the basic elements we are considering, we are able not only to

simulate but also to understand mathematically how exactly the interesting

phenomena emerge. This makes it possible to predict, to some extent, which

extra ingredients will not invalidate the results if they are taken into account

explicitly.

Some of the work has a more general scope than the study of neural net-

works. In particular, the equations obtained in Chapter 3 can be applied to any

network that evolves under the influence of probabilistic addition and deletion

of edges. And the method put forward in Chapter 5 for the study of correlated

networks can be used not just for analysing particular models, as we go on

to do in Chapter 6, but to solve many other problems – such as that of the

ubiquity of disassortative networks in nature and technology (Johnson et al.,

2010b), or how the property of nestedness typical of ecosystems is related to

other topological characteristics (c.f. Appendix C).

To sum up, the aim of the thesis is to shed light on how cellular dy-

namics can lead to the complex network structures of neural systems,

and, in its turn, in what ways this topology can influence, optimise

and determine the collective behaviour of such systems.

The main contributions made are:

• An analytical method to study the evolution of networks governed by a

combination of local and global stochastic rules.

• A mathematical and computational technique for the study of correlated

networks in a model-independent way.

• Possible biological justifications for two non-trivial features of the topol-

ogy of the human cortex: heterogeneity of the degree distribution and

high assortativity.

• An answer to the long-standing question of why most networks are dis-

assortative.

• Cluster Reverberation: the first mechanism proposed which would allow

neural systems to store information instantaneously in a robust manner.





Chapter 3

Evolving networks and the

development of neural systems

The highly heterogeneous degree distributions of most empirical networks is

assumed in many cases to arise from some form of cummulative advantage,

or preferential attachment. However, the origin of various other topological

features is often not clear and attributed to specific functional requirements.

We show how it is possible to analyse a very general scenario in which nodes

gain or lose edges according to arbitrary functions of local and/or global degree

information. Applying our method to two rather different examples of brain

development – synaptic pruning in humans and the neural network of the worm

C. Elegans – we find that simple biologically motivated assumptions lead to

very good agreement with experimental data. In particular, many nontrivial

topological features of the worm’s brain arise naturally at a critical point.

3.1 Introduction

The conceptual simplicity of a network – a set of nodes, some pairs of which

connected by edges – often suffices to capture the essence of cooperation in

complex systems. Ever since Barabási and Albert presented their evolving

network model (Barabási and Albert, 1999), in which linear preferential at-

tachment leads asymptotically to a scale-free degree distribution (the degree,

k, of a node being its number of neighbouring nodes), there have been many

variations or refinements to the original scenario (Albert and Barabási, 2000;

G. Bianconi and Barabási, 2001; Krapivsky et al., 2000; Bianconi and Barabási,

2001; Park et al., 2005; Ree, 2007) (see also the review by Boccaletti et al.

(2006)). In Ref. (Johnson et al., 2009b), we show how topological phase tran-

21
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sitions and scale-free solutions can emerge in the case of nonlinear rewiring

in fixed-size networks, and this work is summarized in Appendix A. In Ref.

(Johnson et al., 2010a) we extend our scope to more general and realistic situa-

tions, considering the evolution of networks making only minimal assumptions

about the attachment/detachment rules. In fact, all we assume is that these

probabilities factorize into two parts: a local term that depends on node de-

gree, and a global term, which is a function of the mean degree of the network.

This is the work described in this chapter.

Our motivation can be found in the mechanisms behind many real-world

networks, but we focus, for the sake of illustration, on the development of bio-

logical neural networks, where nodes represent neurons and edges play the part

of synaptic interaction (Amit, 1989; Sporns et al., 2004; Torres and Varona,

2010). Experimental neuroscience has shown that enhanced electric activity

induces synaptic growth and dendritic arborization (Lee et al., 1980; Frank,

1997; Klintsova and Greenough, 1999; Roo et al., 2008). Since the activity

of a neuron depends on the net current received from its neighbours, which

tends to be higher the more neighbours it has, we can see node degree as a

proxy for this activity – accounting for the local term alluded to above. On

the other hand, synaptic growth and death also depend on concentrations of

various molecules, which can diffuse through large areas of tissue and there-

fore cannot in general be considered local. A feature of brain development in

many animals is synaptic pruning – the large reduction in synaptic density

undergone throughout infancy. Chechik et al. (1999, in press) have shown

that via an elimination of less needed synapses, this can reduce the energy

consumed by the brain (which in a human at rest can account for a quarter

of total energy used) while maintaining near optimal memory performance.

Going on this, we will take the mean degree of the network – or mean synaptic

density – to reflect total energy consumption, hence the global terms in our

attachment/detachment rules (Johnson et al., 2009a).

An alternative approach would be to consider some kind of model neu-

rons explicitly and couple the probabilities of synaptic growth and death to

neuronal dynamic variables, such as local and global fields. In an Amari-

Hopfield network, for example, the expected value of the field (total incoming

current) at node i is proportional to i’s degree (Torres et al., 2004), the to-

tal current (energy consumption) in the network therefore being proportional

to the mean degree; qualitatively, these observations are likely to hold also

in more realistic situations (Magistretti, 2009), although relations need not
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be linear. Co-evolving networks of this sort are currently attracting atten-

tion, with dynamics such as Prisoner’s Dilemma (Poncela et al., 2008), Voter

Model (Vazquez et al., 2008) or Random Walkers (Antiqueira et al., 2009).

Although we consider this line of work particularly interesting, for generality

and analytical tractability we opt here to use only topological information for

the attachment/detachment rules, although our results can be applied to any

situation in which the dynamical states of the elements at the nodes can be

functionally related to degrees1.

Following a brief general analysis, we show how appropriate choices of func-

tions induce the system to evolve towards heterogeneous (sometimes scale-free)

networks while undergoing synaptic pruning in quantitative agreement with

experiments. At the same time, degree-degree correlations emerge naturally,

thus making the resulting networks disassortative – as tends to be the case for

most biological networks – and leading to realistic small-world parameters.

3.2 Basic considerations

Consider a simple undirected network with N nodes defined by the adjacency

matrix â, the element âij representing the existence or otherwise of an edge

between nodes i and j. Each node can be characterized by its degree, ki =∑
j âij. Initially, the degrees follow some distribution p(k, t = 0) with mean

κ(t). We wish to study the evolution of networks in which nodes can gain or

lose edges according to stochastic rules which only take into account local and

global information on degrees. So as to implement this in the most general

way, we will assume that at every time step, each node has a probability of

gaining a new edge, P
gain
i , to a random node; and a probability of losing a

randomly chosen edge, P lose
i . We assume these factorize as P

gain
i = u(κ)π(ki)

and P lose
i = d(κ)σ(ki), where u, d, π and σ can be arbitrary functions, but

impose nothing else other than normalization.

For each edge that is withdrawn from the network, two nodes decrease in

degree: i, chosen according to σ(ki), and j, a random neighbour of i’s; so

there is an added effective probability of loss kj/(κN). Similarly, for each edge

placed in the network, not only l chosen according to π(kl) increases its degree;

1For instance, the stationary distribution of walkers used for edge dynamics by Antiqueira
et al. (2009) is actually obtained purely from topological information, although it can only
be written in terms of local degrees for undirected networks.
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a random node m will also gain, with the consequent effective probability

N−1 (though see2). Let us introduce the notation π̃(k) ≡ π(k) + N−1 and

σ̃(k) ≡ σ(k) + k/(κN). Network evolution can now be seen as a one step

process (van Kampen, 1992) with transition rates u(κ)π̃(k) and d(κ)σ̃(k). The

expected value for the increment in a given p(k, t) at each time step (which we

equate with a temporal derivative) defines a master equation for the degree

distribution (Johnson et al., 2009b):

dp(k, t)

dt
= u (κ) π̃(k − 1)p(k − 1) + d (κ) σ̃(k + 1)p(k + 1)

(3.1)

− [u (κ) π̃(k) + d (κ) σ̃(k)] p(k, t).

Assuming now that p(k, t) evolves towards a stationary distribution, pst(k),

then this must necessarily satisfy detailed balance since it is a one step process

(van Kampen, 1992); i.e., the flux of probability from k to k+1 must equal the

flux from k +1 to k, for all k (Marro and Dickman). This condition (sufficient

for Eq. (3.1) to be zero) can be written as

∂pst(k)

∂k
=

[
u(κst)
d(κst)

π̃(k)

σ̃(k + 1)
− 1

]
pst(k), (3.2)

where we have substituted a difference for a partial derivative and κst ≡∑
k kpst(k). Setting π and σ so as to be normalized to one (i.e.,

∑
k p(k)π(k) =∑

k p(k)σ(k) = 1, ∀t), which is equivalent to saying that at each time step ex-

actly u(κ) nodes are chosen to gain edges and d(κ) to lose them, then in the

stationary state we will have u(κst) = d(κst) since the total number of edges

will be conserved. From Eq. (3.2) we can see that pst(k) will have an extremum

at some value ke if it satisfies π̃(ke) = σ̃(ke + 1). ke will be a maximum (mini-

mum) if the numerator in Eq. (3.2) is smaller (greater) than the denominator

for k > ke, and viceversa for k < ke. Assuming, for example, that there is

one and only one such ke, then a maximum implies a relatively homogeneous

distribution, while a minimum means pst(k) will be split in two, and therefore

highly heterogeneous. More intuitively, if for nodes with large enough k there

is a higher probability of gaining edges than of losing them, the degrees of

these nodes will grow indefinitely, leading to heterogeneity. If, on the other

hand, highly connected nodes always lose more edges than they gain, we will

2We are ignoring the small corrections that arise because j ̸= i and l ̸= m, which in any
case would disappear if self-connections were allowed.
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obtain quite homogeneous networks. From this reasoning we can see that a

particularly interesting case (which turns out to be critical) is that in which

π(k) and σ(k) are such that

π̃(k) = σ̃(k) ≡ v(k), ∀k. (3.3)

According to Eq. (3.2), Condition (3.3) means that for large k, ∂pst(k)/∂k →
0, and pst(k) flattens out – as for example a power-law does.

The standard Fokker-Planck approximation for the one step process defined

by Eq. (3.1) is (van Kampen, 1992):

∂p(k, t)

∂t
=

1

2

∂2

∂k2
{[d(κ)σ̃(k) + u(κ)π̃(k)] p(k, t)}

(3.4)

+
∂

∂k
{[d(κ)σ̃(k) − u(κ)π̃(k)] p(k, t)} .

For transition rates which meet Condition (3.3), Eq. (3.4) can be written as:

∂p(k, t)

∂t
=

1

2
[d (κ) + u (κ)]

∂2

∂k2
[v(k)p(k, t)]

(3.5)

+ [d (κ) − u (κ)]
∂

∂k
[v(k)p(k, t)] .

Ignoring boundary conditions, the stationary solution must satisfy, on the one

hand, v(k)pst(k) = Ak + B, so that the diffusion is stationary, and, on the

other, u(κst) = d(κst), to cancel out the drift. For this situation to be reach-

able from any initial condition, u(κ) and d(κ) must be monotonous functions,

decreasing and increasing respectively.

3.3 Synaptic pruning

As a simple example, we will first consider global probabilities which have the

linear forms:

u[κ(t)] =
n

N

(
1 − κ(t)

κmax

)
and d[κ(t)] =

n

N

κ(t)

κmax
, (3.6)

where n is the expected value of the number of additions and deletions of edges

per time step, and κmax is the maximum value the mean degree can have. This

choice describes a situation in which the higher the density of synapses, the less

likely new ones are to sprout and the more likely existing ones are to atrophy

– a situation that might arise, for instance, in the presence of a finite quantity
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of nutrients. Again taking into account that π and σ are normalized to one,

summing over P
gain
i − P lose

i we find that the expected increment in κ(t) is

⟨∆κ(t)

∆t
⟩ = 2{u[κ(t)] − d[κ(t)]} = 2

n

N

[
1 − 2

κ(t)

κmax

]
(independently of the local probabilities). Therefore, the mean degree will

increase or decrease exponentially with time, from κ(0) to 1
2
κmax. Assuming

that the initial condition is, say, κ(0) = κmax, and expressing the solution in

terms of the mean synaptic density – i.e., ρ(t) ≡ κ(t)N/(2V ), with V the total

volume considered – we have

ρ(t) = ρf

(
1 + e

−t/τp
)

, (3.7)

where we have defined ρf ≡ ρ(t → ∞) and the time constant for pruning is

τp = ρfN/n. This equation was fitted in Fig. 3.1 to experimental data on

layers 1 and 2 of the human auditory cortex3 obtained during autopsies by

Huttenlocher and Dabholkar (1997).

It seems reasonable to assume that the initial overgrowth of synapses is due

to the transient existence of some kind of growth factors. If we account for

these by including a nonlinear, time-dependent term g(t) ≡ a exp(−t/τg) in

the probability of growth, i.e., u[κ(t), t] = (n/N)[1−κ(t)/κmax+g(t)], leaving

d[κ(t)] as before, we find that ρ(t) becomes

ρ(t) = ρf

[
1 + e

−t/τp −
(
1 + e

−t0/τp
)

e
− t−t0

τg
]

, (3.8)

where t0 is the time at which synapses begin to form (t = 0 corresponds to

the moment of conception) and τg is the time constant related to growth. The

inset in Fig. 3.1 shows the best fit to the auditory cortex data. Since the

contour conditions ρf and (for Eq. (3.8)) t0 are simply taken as the value

of the last data point and the time of the first one, in each case, the time

constants τp and τg are the only parameters needed for the fit.

3.4 Phase transitions

The drift-like evolution of the mean degree we have just illustrated with the

example of synaptic pruning is independent of the local probabilities π(k)

3Data points for three particular days (smaller symbols) are omitted from the fit, since
we believe these must be from subjects with inherently lower synaptic density.
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Figure 3.1: Synaptic densities in layers 1 (red squares) and 2 (black circles) of

the human auditory cortex against time from conception. Data from Hutten-

locher and Dabholkar (1997), obtained by directly counting synapses in tissues

from autopsies. Lines follow best fits to Eq. (3.7), where the parameters were:

for layer 1, τp = 5041 days; and for layer 2, τp = 3898 days (for ρf we have

used the last data pints: 30.7 and 40.8 synapses/µm3, for layers 1 and 2 respec-

tively). Data pertaining to the first year and to days 4700, 5000 7300, shown

with smaller symbols, where omitted from the fit. Assuming the existence of

transient growth factors, we can include the data points for the first year in

the fit by using Eq. (3.8). This is done in the inset (where time is displayed

logarithmically). The best fits were: for layer 1, τg = 151.0 and τp = 5221;

and for layer 2, τg = 191.1 and τp = 4184, all in days (we have approximated

t0 to the time of the first data points, 192 days).

and σ(k). The effect of these is rather in the diffusive behaviour which can

lead, as mentioned, either to homogeneous or to heterogeneous final states.

A useful bounded order parameter to characterize these phases is therefore

m ≡ exp (−σ2/κ2) , where σ2 = ⟨k2⟩ − κ2 is the variance of the degree dis-

tribution (⟨·⟩ ≡ N−1
∑

i(·) represents an average over nodes). We will use

mst ≡ limt→∞ m(t) to distinguish between the different phases, since mst = 1

for a regular network and mst → 0 for one following a highly heterogeneous

distribution. Although there are particular choices of probabilities which lead

to Eq. (3.5), these are not the only critical cases, since the transition from
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Figure 3.2: Evolution of the degree distributions of networks beginning as

regular random graphs with κ(0) = 20 in the critical (top) and supercritical

(bottom) regimes. Local probabilities are σ(k) = k/(⟨k⟩N) in both cases, and

π(k) = 2σ(k)−N−1 and π(k) = k3/2/(⟨k3/2⟩N) for the critical and supercritical

ones, respectively. Global probabilities as in Eq. (3.6), with n = 10 and

κmax = 20. Symbols in the main panels correspond to p(k, t) at different times

as obtained from MC simulations. Lines result from numerical integration of

Eq. (3.1). Insets show typical time series of κ and m. Light blue lines are

from MC simulations and red lines are theoretical, given by Eq. (3.7) and Eq.

(3.1), respectively. N = 1000.

homogeneous to heterogeneous stationary states can come about also with

functions which never meet Condition (3.3). Rather, this is a classic topolog-

ical phase transition, the nature of which depends on the choice of functions

(Park and Newman, 2004; Burda et al., 2004; Derényi et al., 2004) .

Evolution of the degree distribution is shown in Fig. 3.2 for critical and

supercritical choices for the probabilities, as given by MC simulations (starting

from regular random graphs) and contrasted with theory. (The subcritical

regime is not shown since the stationary state has a distribution similar to

the ones at t = 103 MCS in the other regimes.) The disparity between the

theory and the simulations for the final distributions is due to the build up of

certain correlations not taken into account in our analysis. This is because the

existence of some very highly connected nodes reduces the probability of there

being very low degree nodes. In particular, if there are, say, x nodes connected

to the rest of the network, then a natural cutoff, kmin = x, emerges. Note

that this occurs only when we restrict ourselves to simple networks, i.e., with

only one edge allowed for each pair of nodes. This topological phase transition

is shown in Fig. 3.3, where mst is plotted against parameter α for global
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Figure 3.3: Phase transitions in mst for π(k) ∼ kα and σ(k) ∼ k, and u(κ)

and d(κ) as in Eq. (3.6). N = 1000 (blue squares), 1500 (red triangles) and

2000 (black circles); κ(0) = κmax = 2n = N/50. Corresponding lines are from

numerical integration of Eq. (3.1). The bottom left inset shows values of the

highest eigenvalue of the Laplacian matrix (red squares) and of Q = λN/λ2

(black circles), a measure of unsynchronizability; N = 1000. The top right

inset shows transitions for the same parameters in the final values of Pearson’s

correlation coefficient r (see Section 3.5), both for only one edge allowed per

pair of nodes (red squares) and without this restriction (black circles).

probabilities as in Eq. (3.6) and local ones π(k) ∼ kα and σ(k) ∼ k. This

situation corresponds to one in which edges are eliminated randomly while

nodes have a power-law probability of sprouting new ones (note that power-

laws are good descriptions of a variety of monotonous response functions, yet

only require one parameter). Although, to our knowledge, there are not yet

enough empirical data to ascertain what degree distribution the structural

topology of the human brain follows, it is worth noting that its functional

topology, at the level of brain areas, has been found to be scale-free with an

exponent very close to 2 (Egúıluz et al., 2005).

In general, most other measures can be expected to undergo a transition

along with its variance. For instance, highly heterogeneous networks (such

as scale-free ones) exhibit the small-world property, characterized by a high

clustering coefficient, C ≫ ⟨k⟩/N , and a low mean minimum path, l ∼ ln(N)

(Watts and Strogatz, 1998). A particularly interesting topological feature of
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a network is its synchronizability – i.e., given a set of oscillators placed at

the nodes and coupled via the edges, how wide a range of coupling strengths

will result in them all becoming synchronized. Barahona and Pecora showed

analytically that, for linear oscillators, a network is more synchronizable the

lower the relation Q = λN/λ2 – where λN and λ2 are the highest and lowest

non-zero eigenvalues of the Laplacian matrix (Λ̂ij ≡ δijki − âij), respectively

(Barahona and Pecora, 2002). The bottom left inset in Fig. 3.3 displays the

values of Q and λN obtained for the different stationary states. There is a

peak in Q at the critical point. It has been argued that this tendency of

heterogeneous topologies to be particularly unsynchronizable poses a paradox

given the wide prevalence of scale-free networks in nature, a problem that has

been deftly got around by considering appropriate weighting schemes for the

edges (Motter et al., 2005; Chavez et al., 2005) (see also4, and the review by

Arenas et al. (2008a)). However, there is no generic reason why high synchro-

nizability should always be desirable. In fact, it has recently been shown that

heterogeneity can improve the dynamical performance of model neural net-

works precisely because the fixed points are easily destabilised (Johnson et al.,

2008) (as well as conferring robustness to thermal fluctuations and improving

storage capacity (Torres et al., 2004)). This makes intuitive sense, since, pre-

sumably, one would not usually want all the neurons in one’s brain to be doing

exactly the same thing. Therefore, this point of maximum unsynchronizability

at the phase transition may be a particularly advantageous one.

On the whole, we find that three classes of network – homogeneous, scale-

free (at the critical point) and ones composed of starlike structures, with a

great many small-degree nodes connected to a few hubs – can emerge for any

kind of attachment/detachment rules. It follows that a network subject to

some sort of optimising mechanism, such as Natural Selection for the case of

living systems, could thus evolve towards whichever topology best suits its

requirements by tuning these microscopic actions.

3.5 Correlations

Most real networks have been found to exhibit degree-degree correlations, also

known as mixing by degree (Pastor-Satorras et al., 2001; Newman, 2003c).

4Using pacemaker nodes, scale-free networks have also been shown to emerge via rules
which maximize synchrony (Sendina-Nadal et al., 2008).
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They can thus be classified as assortative, when the degree of a typical node

is positively correlated with that of its neighbours, or disassortative, when

the correlation is negative. This property has important implications for net-

work characteristics such as connectedness and robustness (Newman, 2002,

2003a). A useful measure of this phenomenon is Pearson’s correlation coef-

ficient applied to the edges (Newman, 2003c,a; Boccaletti et al., 2006): r =

([klk
′
l]− [kl]

2)/([k2
l ]− [kl]

2), where kl and k′
l are the degrees of each of the two

nodes pertaining to edge l, and [·] ≡ (⟨k⟩N)−1
∑

l(·) represents an average

over edges; |r| ≤ 1. Writing
∑

l(·) =
∑

ij âij(·), r can be expressed in terms of

averages over nodes:

r =
⟨k⟩⟨k2knn(k)⟩ − ⟨k2⟩2

⟨k⟩⟨k3⟩ − ⟨k2⟩2
, (3.9)

where knn(k) is the mean nearest-neighbour-degree function; i.e., if knn,i ≡
k−1

i

∑
j âijkj is the mean degree of the neighbours of node i, knn(k) is its av-

erage over all nodes such that ki = k. Whereas most social networks are

assortative (r > 0) – due, probably, to mechanisms such as homophily (New-

man, 2003c) – almost all other networks, whether biological, technological or

information-related, seem to be generically disassortative. The top right inset

in Fig. 3.3 displays the stationary value of r obtained in the same networks as

in the main panel and lower inset. It turns out that the heterogeneous regime

is disassortative, the more so the larger α. (Note that a completely homoge-

neous network cannot have degree-degree correlations, since all degrees are the

same.) It is known that the restriction of having at most one edge per pair of

nodes induces disassortativity (Park and Newman, 2003; Maslov et al., 2004).

However, in our case this is not the sole origin of the correlations, as can also

be seen in the same inset of Fig. 3.3, where we have plotted r for networks in

which we have lifted the restriction and allowed any number of edges per pair

of nodes. In fact, when multiple edges are allowed, the correlations are slightly

stronger. As we shall discuss in Chapter 5, there is a general entropic rea-

son for heterogeneous networks, in their equilibrium state (i.e., in the absence

of correlating mechanisms), to become disassortative (Johnson et al., 2010b).

But neither is this here the case, since the networks generated are driven from

equilibrium by the mechanisms of preferential attachment and detachment.

To understand how these specific correlations come about, consider a pair

of nodes (i, j), which, at a given moment, can either be occupied by an edge or

unoccupied. We will call the expected times of permanence for occupied and

unoccupied states τo
ij and τu

ij , respectively. After sufficient evolution time (so
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that occupancy becomes independent of the initial state5), the expected value

of the corresponding element of the adjacency matrix, E(âij) ≡ ϵ̂ij, will be

ϵ̂ij =
τo
ij

τo
ij + τu

ij

.

If p+
ij (p−ij) is the probability that (i, j) will become occupied (unoccupied) given

that it is unoccupied (occupied), then τo
ij ∼ 1/p−ij and τu

ij ∼ 1/p+
ij, yielding

ϵ̂ij =

(
1 +

p−ij
p+

ij

)−1

.

Taking into account the probability that each node has of gaining or losing an

edge, we obtain6: p+
ij = u(⟨k⟩)N−1[π(ki) + π(kj)] and p−ij = d(⟨k⟩)[σ(ki)/ki +

σ(kj)/kj]. Then, assuming that the network is sparse enough that p−ij ≫ p+
ij

(since the number of edges is much smaller than the number of pairs), and

particularising for power-law local probabilities π(k) ∼ kα and σ(k) ∼ kβ, the

expected occupancy of the pair is

ϵ̂ij ≃
p+

ij

p−ij
=

u(⟨k⟩)
d(⟨k⟩)

⟨kβ⟩
⟨kα⟩N

(
kα

i + kα
j

kβ−1
i + kβ−1

j

)
.

Considering the stationary state, when u(⟨k⟩) = d(⟨k⟩), and for the case of

random deletion of edges, β = 1 (so that the only nonlinearity is due to α),

the previous expression reduces to

ϵ̂ij ≃
⟨k⟩

2⟨kα⟩N
(
kα

i + kα
j

)
. (3.10)

(Note that this matrix is not consistent term by term, since
∑

j ϵ̂ij ̸= ki,

although it is globally consistent:
∑

ij ϵ̂ij = ⟨k⟩N .) The nearest-neighbour-

degree function is now

knn(ki) =
1

ki

∑
j

ϵ̂ijkj =
⟨k⟩

2⟨kα⟩
(⟨k⟩kα−1

i + ⟨kα+1⟩k−1
i )

(a decreasing function for any α), with the result that Pearson’s coefficient

becomes

r =
1

⟨kα⟩

(
⟨k⟩3⟨kα+1⟩ − ⟨k2⟩2⟨kα⟩

⟨k⟩⟨k3⟩ − ⟨k2⟩2

)
. (3.11)

5Note that this will always happen eventually since the process is ergodic.
6Again, we are ignoring corrections due to the fact that i is necessarily different from j.
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More generally, one can understand the emergence of these correlations in

the following way. For the network to become heterogeneous, we must have

π(k) + N−1 ≥ σ(k) + k/(⟨k⟩N) for large enough k, so that highly connected

nodes do not lose more edges than they can acquire (see Section 3.2). This

implies that π(k) must be increasing and approximately linear or superlinear.

The expected value of the degree of a node i, chosen according to π(ki), is then

E(ki) = N−1
∑

k π(k)k & ⟨k2⟩/⟨k⟩, while that of its new, randomly chosen

neighbour, j, is only E(kj) = ⟨k⟩. This induces disassortative correlations

which can never be compensated by the breaking of edges between nodes whose

expected degree values are N−1
∑

k σ(k)k and ⟨k2⟩/⟨k⟩ if σ(k) is an increasing

function. It thus ensues that a scenario such as the one analysed in this paper

will never lead to assortative networks except for some cases in which σ(k)

is a decreasing function – meaning that less connected nodes should be more

likely to lose edges. Assortativity could, however, arise if there were some bias

also on the node chosen to be i’s neighbour, e.g. on the postsynaptic neuron

– which is precisely what happens in most social networks, where individuals

do not generally choose their friends, partners, etc. randomly. Although there

seem to be other reasons for the ubiquity of disassortative networks in nature

(Johnson et al., 2010b), it is possible that the generality of the scenario studied

here may also play a part.

We can use the expected value matrix ϵ̂ to estimate other magnitudes. For

example, the clustering coefficient, as defined by Watts and Strogatz (Watts

and Strogatz, 1998), is an average over nodes of Ci, with Ci the proportion

of i’s neighbours which are connected to each other; so its expected value is

E(Ci) = ϵ̂jl conditioned to j and l being neighbours of i’s. This means that,

on average, we can make the approximation that

kj = kl = ⟨knn⟩ =
⟨k⟩

2⟨kα⟩
[⟨k⟩⟨kα−1⟩ + ⟨kα+1⟩⟨k−1⟩].

Substituting this value in Eq. (3.10), and taking into account that one edge

of j’s and one of l’s are taken up by i, we have

C ≃ ⟨k⟩
⟨kα⟩N

(⟨knn⟩ − 1)α. (3.12)

For a rough estimate of the mean minimum path (the minimum path between

two nodes being the smallest number of edges one has to follow to get from one

to the other), we can proceed as Albert and Barabási (2002). For a given node,

let us define the number of nearest neighbours, z1, next-nearest neighbours,

z2, and in general mth neighbours, zm. Using the relation zm = z1 (z2/z1)
m−1 ,
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and assuming that the network is connected and can be obtained in l steps,

this yields

1 +
l∑
1

zm = N. (3.13)

On average, z1 = ⟨k⟩ and z2 = ⟨k⟩[(1 − C)⟨knn⟩ − 1] (since for each second

nearest neighbour, one edge goes to the reference node and a proportion C to

mutual neighbours). Now, if N ≫ z1 and z2 ≫ z1, Eq. (3.13) leads to

l ≃ 1 +
ln(N/⟨k⟩)

ln[(1 − C)⟨knn⟩ − 1]
. (3.14)

3.6 The C. Elegans neural network

There exists a biological neural network which has been entirely mapped (al-

though not, to the best of our knowledge, at different stages of development)

– that of the much-investigated worm C. Elegans (White et al., 1986; Watts

and Strogatz, 1998). With a view to testing whether such a network could

arise via simple stochastic rules of the kind we are here considering, we ran

simulations for the same number of nodes, N = 307, and (stationary) mean

degree, ⟨k⟩ = 14.0 (in the simple, undirected representation of the network).

Using the global probabilities given by Eq. (3.6) and local ones π(k) ∼ kα

and σ(k) ∼ k (as in Fig. 3.3), we obtain a surprising result. Precisely at the

critical point, α = αc ≃ 1.35, there are some remarkable similarities between

the biological network and the ones produced by the model.

Figure 3.4 displays the degree distributions, both for the empirical net-

work and for the average (stationary) simulated network corresponding to the

critical point, while the top inset shows the mean-nearest-neighbour degree

function knn(k) for the same networks. Both p(k) and knn(k) of the simulated

networks can be seen to be very similar to those measured in the biological one.

Furthermore, as is displayed in Table 3.1, the clustering coefficient obtained in

simulation is almost the same as the empirical one. The mean minimum path is

similar though slightly smaller in simulation, probably due to the worm’s brain

having modules related to functions (Arenas et al., 2008b). Finally, Pearson’s

coefficient is also in fairly good agreement, although the simulated networks

are actually a bit more disassortative. It should, however, be stressed that the

simulation results are for averages over 100 runs, while the biological system is

equivalent to a single run; given the small number of neurons, statistical fluc-

tuations can be fairly large, so one should refrain from attributing too much
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Figure 3.4: Degree distribution (binned) of the C. Elegans neural network

(circles) (White et al., 1986) and that obtained with MC simulations (line) in

the stationary state (t = 105 steps) for an equivalent network in which edges

are removed randomly (β = 1) at the critical point (α = 1.35). N = 307, κst =

14.0, averages over 100 runs. Global probabilities as in Eq. (3.6). The slope is

for k−5/2. Top right inset: mean-neighbour-degree function knn(k) as measured

in the same empirical network (circles) and as given by the same simulations

(line) as in the main panel. The slope is for k−1/2. Bottom left inset: mst
of equivalent network for a range of α, both from simulations (circles) and as

obtained with Eq. (3.1). (See also Table 3.1.)

importance to the precise values obtained – at least until we can average over

100 worms. Table 3.1 also shows the values of C, l and r both as estimated

form the theory laid out in Section 3.5, and for the equivalent network in the

configuration model (Newman, 2003c) – generally taken as the null model for

heterogeneous networks, where the probability of an edge existing between

nodes i and j is kikj/(⟨k⟩N). It is clear that whereas the configuration-model

predictions deviate substantially from the magnitudes measured in the C. El-

egans neural network, the growth process we are here considering accounts for

them quite well. It is interesting that it should be at the critical point that a

structural topology so similar to the empirical one emerges, since it seems that

the brain’s functional topology may also be related to a critical point (Chialvo,

2004; Chialvo et al., 2008).
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systems

Experiment Simulation Theory Config.

C 0.28 0.28 0.23 0.15

l 2.46 2.19 1.86 1.96

r -0.163 -0.207 -0.305 -0.101

Table 3.1: Values of small-world parameters C and l, and Pearson’s correlation

coefficient r, as measured in the neural network of the worm C. Elegans (White

et al., 1986), and as obtained from simulations in the stationary state (t = 105

steps) for an equivalent network at the critical point when edges are removed

randomly – i.e., for α = 1.35 and β = 1. N = 307, κst = 14.0; averages

over 100 runs and global probabilities as in Eq. (3.6). Theoretical estimates

correspond to Eqs. (3.12), (3.14) and (3.11) applied to the networks generated

by the same simulations. The last column lists the respective configuration

model values: C and l are obtained theoretically as in (Newman, 2003c), while

r, from MC simulations as in (Maslov et al., 2004), is the value expected due

to the absence of multiple edges. (See also Fig. 3.4.)

3.7 Discussion

With this work we have attempted, on the one hand, to extend our under-

standing of evolving networks so that any choice of transition probabilities

dependent on local and/or global degrees can be treated analytically, thereby

obtaining some model-independent results; and on the other, to illustrate how

such a framework can be applied to realistic biological scenarios. For the latter,

we have used two examples relating to two rather different nervous systems:

i) synaptic pruning in humans, for which the use of nonlinear global prob-

abilities reproduces the initial increase and subsequent depletion in synaptic

density in good accord with experiments – to the extent that nonmonotonic

data points spanning a lifetime can be very well fitted with only two parame-

ters; and

ii) the structure of the C. Elegans neural network, for which it turns out that

by only considering the numbers of nodes and edges, and imposing random

deletion of edges and power-law probability of growth, the critical point leads
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to networks exhibiting many of the worm’s nontrivial features – such as the

degree distribution, small-world parameters, and even level of disassortativity.

These examples indicate that it is not far-fetched to contemplate how many

structural features of the brain or other networks – and not just the degree

distributions – could arise by simple stochastic rules like the ones considered;

although, undoubtedly, other ingredients such as natural modularity (Arenas

et al., 2008b), a metric (Kaiser and Hilgetag, 2004) or functional requirements

(Sporns et al., 2004) can also be expected to play a role in many instances. We

hope, therefore, that the framework laid out here – in which for simplicity we

have assumed the network to be undirected and to have a fixed size, although

generalizations are straightforward – may prove useful for interpreting data

from a variety of fields. It would be particularly interesting to try to locate

and quantify the biological mechanisms assumed to be behind this kind of

network dynamics.





Chapter 4

Bringing on the Edge of Chaos

with heterogeneity

The collective behaviour of systems of coupled excitable elements, such as

neurons, has been shown to depend significantly on the heterogeneity of the

degree distribution of the underlying network of interactions. For instance,

broad – in particular, scale-free – distributions have been found to improve

static memory performance in neural-network models. Here we look at the

influence of degree heterogeneity in a neural network which, due to the effect

of synaptic depression (a kind of fatigue of the interaction strengths), exhibits

chaotic behaviour. Not only can the existence of a chaotic phase be related

to neurophysiological experiments; it allows the system to perform a class

of dynamic pattern-recognition tasks. We find first of all that, as has been

described in a few other systems, optimal performance is achieved close to the

phase transition – i.e., at the so-called Edge of Chaos. Furthermore, we obtain

a functional relationship between the level of synaptic depression required to

bring on chaos and the heterogeneity of the degree distribution. This result

points to a clear advantage of low-exponent scale-free networks, and suggests

an explanation for their apparent ubiquity in certain biological systems.

4.1 Exciting cooperation

Excitable systems allow for the regeneration of waves propagating through

them, and may thus respond vigorously to weak stimulus. The brain and other

parts of the nervous system are well–studied paradigms, and forest fires with

constant ignition of trees and autocatalytic reactions in surfaces, for instance,

also share some of the basics (Bak et al., 1990; Meron, 1992; Lindner et al.,

39
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2004; Izhikevich, 2007; Arenas et al., 2008a). The fact that signals are not

gradually damped by friction in these cases is a consequence of cooperation

among many elements in a nonequilibrium setting. These systems can be

seen as large networks of nodes that are “excitable”. This admits various

realizations, but typically means that each element has a threshold and a

refractory time between consecutive responses – a behaviour that impedes

thermal equilibrium.

Some brain tasks can be simulated with mathematical neural networks. As

described in Chapter 2, these consist of neurons – often modelled as variables

which are as simple as possible while still able to display the essence of the

cooperative behaviour of interest1 – connected by edges representing synapses

(Amari, 1972; Hopfield, 1982; Amit, 1989; Torres and Varona, 2010). If the

edges are weighted according to some prescription – such as the Hebb rule

(Hebb, 1949) – which saves information from a set of given patterns of activ-

ity (particular configurations of active and inactive neurons), these patterns

become attractors of the phase-space dynamics. Therefore, the system is then

able to retrieve the stored patterns; this mechanism is known as associative

memory. Actual neural systems do much more than just recalling a memory

and staying there, however. That is, one should expect dynamic instabilities

or some other destabilizing mechanism. This expectation is reinforced by re-

cent experiments suggesting that synapses undergo rapid changes with time

which may both determine brain tasks (Abbott et al., 1997; Tsodyks et al.,

1998; Hilfiker et al., 1999; Pantic et al., 2002) and induce irregular and perhaps

chaotic activity (Barrie et al., 1996; Korn and Faure, 2003).

One may argue that the observed rapid changes (which have been found

to cause “synaptic depression” and/or “facilitation” on the time scale of mil-

liseconds (Tsodyks et al., 1998; Pantic et al., 2002) – i.e., much faster than

the plasticity processes whereby synapses store patterns (Malenka and Nicoll,

1999)) may simply correspond to the characteristic behaviour of single ex-

citable elements. Furthermore, a fully-connected network which describes co-

operation among such excitable elements has recently been shown to exhibit

both attractors and chaotic instabilities (Marro et al., 2008). The work de-

scribed here, first reported by Johnson et al. (2008), extends and generalizes

this study to conclude on the influence of the excitable network topology on

1Several studies have already shown that binary neurons can capture the essence of
cooperation in many more complex settings. See, for instance, (Pantic et al., 2002) in the
case of integrate and fire neuron models of pyramidal cells.
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dynamic behaviour. We show, in particular, an interesting correlation between

certain wiring topology and optimal functionality.

4.2 The Fast-Noise model

Consider N binary nodes (si = ±1) and the adjacency matrix, âij = 1, 0, which

indicates the existence or not of an edge between nodes i, j = 1, 2, ..., N. Let

there be a set of M patterns, ξν
i = ±1, ν = 1, ...M (which we generate here at

random), and assume that they are “stored” by giving each edge a base weight

ωij = N−1
∑

ν ξν
i ξν

j . Actual weights are dynamic, however, namely, ωij = ωijxj

where xj is a stochastic variable. Assuming the limit in which this varies in a

time scale infinitely smaller than the one for node dynamics, we can consider

a stationary distribution such as P (xj|S) = qδ(xj − Ξj) + (1 − q)δ(xj − 1),

S = {sj} , for instance. This amounts to assuming that, at each time step,

every connection has a probability q of altering its weight by a factor Ξj which

is a function (to be determined) of the local field at j, defined as the net

current arriving to j from other nodes. This choice differs essentially from the

one used by Marro et al. (2008), where q depends on the global degree of order

and Ξj is a constant independent of j.

Assume independence of the noise at different edges, and that the transition

rate for the stochastic changes is

c̄ (S → Si)

c̄ (Si → S)
=

∏
j/âij=1

∫
dxjP (xj|S)Ψ(uij)∫

dxjP (xj|Si)Ψ(−uij)
,

where uij ≡ sisjxjωijT
−1, Ψ(u) = exp

(
−1

2
u
)

to have proper contour condi-

tions, T is a “temperature” or stochasticity parameter, and Si stands for S

after the change si → −si. (This formalism and its interpretation is described

in detail by Marro and Dickman.) We define the effective local fields heff
i =

heff
i (S, T, q) via

∏
j φ−

ij/φ
+
ij = exp

(
−heff

i si/T
)
, where φ±

ij ≡ q exp (±Ξjvij) +

(1 − q) exp (±vij), with vij = 1
2
âijuij. Effective weights ωeff

ij then follow from

heff
i =

∑
j ωeff

ij sj âij. To obtain an analytical expression, we linearize around

ωij = 0 (a good approximation when M ≪ N), which yields

ωeff
ij = [1 + q (Ξj − 1)] ωij.

In order to fix Ξj here, we first introduce the overlap vector −→m = (m1, ...mM),

with mν ≡ N−1
∑

i ξ
ν
i si, which measures the correlation between the current

configuration and each of the stored patterns, and the local one −→mj of com-

ponents mν
j ≡ ⟨k⟩−1

∑
l ξ

ν
l slâjl, where ⟨k⟩ is the mean node connectivity, i.e.,
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the average of ki =
∑

j âij. We then assume, for any q ̸= 0, that the relevant

factor is Ξj = 1 + ζ(hν
j )(Φ − 1)/q, with

ζ(hν
j ) =

χα

1 + M/N

∑
ν

|hν
j |α,

where χ ≡ N/⟨k⟩ and α > 0 is a parameter. This comes from the fact that

the field at node j can be written as a sum of components from each pattern,

namely, hj =
∑M

ν hν
j , where

hν
j = ξν

j N−1
∑

i

âijξ
ν
i si = χ−1ξν

j mν
j .

Our choice for Ξj, which amounts to assuming that the “fatigue” at a given

edge increases with the field at the preceding node j (and allows to recover the

fully–connected limit described by Marro et al. (2008) if α = 2), finally leads

to

ωeff
ij = [1 + (Φ − 1)ζj(

−→mj)] ωij.

Varying Φ one sets the nature of the weights. That is, 0 < Φ < 1 corresponds

to resistance (depression) due to heavy local work, while the edge facilitates

– i.e., tends to increase the effect of the signal under the same situation –

for Φ > 1. (The action of the edge is reversed for negative Φ.) We performed

Monte Carlo simulations using standard parallel updating with the effective

rates c̄ (S → Si) computed using the latter effective weights.

4.3 Edge of Chaos

It is possible to solve the single pattern case (M = 1) under a mean-field as-

sumption, which is a good approximation for large enough connectivity. That

is, we may substitute the matrix âij by its mean value over network realizations

to obtain analytical results that are independent of the underlying disorder.

Imagine that each node hosts ki half–edges according to a distribution p(k),

the total number of half–edges in the network being ⟨k⟩N . Choose a node i

at random and randomly join one of its half–edges to an available free half–

edge. The probability that this half–edge ends at node j is kj/ (⟨k⟩N) . Once

all the nodes have been linked up, the expected value (as a quenched average

over network realizations) for the number of edges joining nodes i and j is2

2Assuming one edge at most between any two nodes, âij = 0, 1, the value will be slightly
smaller, but it is easy to prove that this is also a good approximation if the network has a
structural cut-off: ki <

√
⟨k⟩N , ∀i.
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E(âij) = kikj/ (⟨k⟩N). This expression, which can be seen as a definition

of the so-called configuration model for complex networks (Newman, 2003c),

is valid for random networks with a given degree sequence (or, in practise, a

given degree distribution) that have zero degree-degree correlations between

neighbours (Johnson et al., 2010b). Using the notation ηi ≡ ξisi, we have

mj = χ⟨ηiâij⟩i = χ
N

∑
i ηiâij. Because node activity is not statistically inde-

pendent of connectivity (Torres et al., 2004), we must define a new set of

overlap parameters, analogous to m and mj. That is, µn ≡ ⟨kn
i ηi⟩i/⟨kn⟩ and

the local versions µj
n ≡ χ⟨kn

i ηiâij⟩i/⟨kn⟩. After using âij = E(âij), one ob-

tains the relation µi
n = ⟨kn+1⟩kiµn+1/(⟨kn⟩⟨k⟩2). Inserting this expression into

the definition of µn, and substituting ⟨si⟩ = tanh[T−1heff
i (S)] (for large N),

standard mean-field analysis yields

µn(t + 1) =
1

⟨kn⟩
⟨kn tanh MT,Φ(k, t)⟩k ,

where the last quantity is defined as

MT,Φ =
k

TN

[
µ1(t) + (Φ − 1)

⟨kα+1⟩
⟨k⟩α+1

|µ1(t)|α µα+1(t)

]
.

This is a two-dimensional map which is valid for any random topology of

distribution p(k). Note that the macroscopic magnitude of interest is µ0 =

m ≡ |−→m|.
A main consequence of this is the existence of a critical temperature, Tc, un-

der very general conditions. More specifically, as T is decreased, the overlap m

describes a second–order phase transition from a disordered or, say, “paramag-

netic” phase to an ordered (“ferromagnetic”) phase which exhibits associative

memory. The mean-field temperature at which this transition occurs is

Tc =
⟨k2⟩
⟨k⟩N

.

On the other hand, the map reduces to

µn (t + 1) = sign

{
µn (t)

[
1 + (Φ − 1)

⟨kα+1⟩
⟨k⟩α+1

]}
for T = 0. This implies the existence at Φ = Φ0, where

Φ0 = 1 − ⟨k⟩α+1

⟨kα+1⟩
,

of a transition as Φ is decreased from the ferromagnetic phase to a new phase

in which periodic hopping between the attractor and its negative occurs. This
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is confirmed by the Monte Carlo simulations for M > 1; that is, the hopping is

also among different attractors for finite T. The simulations also indicate that

this transition washes out at low enough finite temperature. Instead, Monte

Carlo evolutions show that, for a certain range of Φ values, the system activity

then exhibits chaotic behaviour.

The transition from ferromagnetic to chaotic states is a main concern here-

after. Our interest in this regime follows from several recent observations

concerning the relevance of chaotic activity in a network. In particular, it has

been shown that chaos might be responsible for certain states of attention dur-

ing brain activity (Torres et al., 2008, 2009), and that some network properties

such as the computational capacity (Bertschinger and Natschläger, 2004) and

the dynamic range of sensitivity to stimuli (de Assis and Copelli, 2008) may

become optimal at the Edge of Chaos in a variety of settings.

We next note that the critical values Tc and Φ0 only depend on the mo-

ments of the generic distribution p(k), and that the ratio ⟨ka⟩/⟨k⟩a, a > 1,

is a convenient way of characterizing heterogeneity. We studied in detail

two particular types of connectivity distributions with easily tunable hetero-

geneity; that is, networks with ⟨k⟩N/2 edges randomly distributed with p (k)

such that the heterogeneity depends on a single parameter. Our first case

is the bimodal distribution, p(k) = 1
2
δ(k − k1) + 1

2
δ(k − k2) with parameter

∆ = (k2 − k1)/2 = ⟨k⟩ − k1 = k2 − ⟨k⟩. Our second case is the scale–free

distribution, p(k) ∼ k−γ, which does not have any characteristic size but k is

confined to the limits, k0 and km ≤ min(k0N
1

γ−1 , N − 1) for finite N . Notice

that the network in this case gets more homogeneous as γ is increased3, and

that this kind of distribution seems to be most relevant in nature (Newman,

2003c; Boccaletti et al., 2006). In particular, it seems important to mention

that the functional topology of the human brain, as defined by correlated ac-

tivity between small clusters of neurons, has been shown to correspond to this

case with exponent γ ≃ 2 (Egúıluz et al., 2005). (It has not yet been pos-

sible to ascertain the brain’s structural topology experimentally, but there is

some evidence that function reflects structure at least to some extent (Zhou

et al., 2006b). Furthermore, it has been suggested, based on indirect meth-

ods, that the structural connectivity of cat and macaque brains, at the level

of brain areas, may indeed be scale free (Kaiser et al., 2007) – and in any

3The distribution is truncated and therefore not strictly scale free for γ < 2. However,
nature shows examples for which γ is slightly larger than 1, so we consider the whole range
here.
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Figure 4.1: The temperature dependence of the difference between the values

for the fatigue at which the ferromagnetic–periodic transition occurs, as ob-

tained analytically for T = 0 (Φ0) and from MC simulations at finite T (Φc).

The critical temperature is calculated as Tc = ⟨k2⟩ (⟨k⟩N)−1 for each topology.

Data are for bimodal distributions with varying ∆ and for scale–free topologies

with varying γ, as indicated. Here, ⟨k⟩ = 20, N = 1600 and α = 2. Standard

deviations, represented as bars in this graph, were shown to drop with N−1/2

(not depicted).

case displays significantly higher heterogeneity than that of, say, Erdős–Rényi

random graphs.)

We obtained the critical value of the fatigue, Φc (T ) , from Monte Carlo

simulations at finite temperature T. These indicate that chaos never occurs for

T & 0.35Tc. On the other hand, a detailed comparison of the value Φc with Φ0

– as obtained analytically for T = 0 – indicates that Φc ≃ Φ0.

Figure 4.1 illustrates the “error” Φ0 − Φc (T ) for different topologies. This

shows that the approximation Φc ≃ Φ0 is quite good at low T for any of the

cases examined. Therefore, assuming the critical values for the main param-

eters, Tc and Φ0, as given by our map, we conclude that the more heteroge-

neous the distribution of connectivities of a network is, the lower the amount

of fatigue, and the higher the critical temperature, needed to destabilize the

dynamics. As an example of this interesting behaviour, consider a network

with ⟨k⟩ = ln(N), and dynamics according to α = 2. If the distribution were
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Figure 4.2: The critical fatigue values Φ0 (solid lines) and Φc from MC averages

over 10 networks (symbols) with T = 2/N, ⟨k⟩ = 20, N = 1600, α = 2. The

dots below the lines correspond to changes of sign of the Lyapunov exponent

as given by the iterated map, which qualitatively agree with the other results.

This is for bimodal and scale–free topologies, as indicated.

regular, the critical values would be Tc = ln(N)/N (which goes to zero in the

thermodynamic limit) and Φ0 = 0. However, a scale–free topology with the

same number of edges and γ = 2 would yield Tc = 1 and Φ0 = 1−2(ln N)3/N2

(which goes to 1 as N → ∞).

Figure 6.5 illustrates, for two topologies, the phase diagram of the ferromagnetic–

chaotic transition. Most remarkable is the plateau observed in the Edge-of-
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Chaos or transition curve for scale–free topologies around γ ≃ 2, for which

very little fatigue, namely, Φ . 1 which corresponds to slight depression, is

required to achieve chaos. The limit γ → ∞ corresponds to ⟨k⟩–regular graphs

(equivalent to ∆ = 0). If γ is reduced, km increases and k0 decreases. The

network is truncated when km = N . It follows that a value of γ exits at which

k0 cannot be smaller, so that km must drop to preserve ⟨k⟩. This explains the

fall in Φc as γ → 1.

Assuming that the “ferromagnetic phase” here corresponds to a synchronous

state, our results are in qualitative agreement with the ones obtained recently

for coupled oscillators (Nishikawa et al., 2003; Zhou et al., 2006a). As a matter

of fact, the range of coupling strengths which allow for stability of synchronous

states in these systems has been shown to depend on the spectral gap of the

Laplacian matrix (Barahona and Pecora, 2002), implying that the more het-

erogeneous a topology is, the more easily activity can become unstable. It

should be emphasized, however, that the dynamics we are considering here

does not come within the scope of the formalism used to derive these results,

since activity at node i depends on the local field at node j.

4.4 Network performance

As a further illustration of our findings, we monitored the performance as a

function of topology during a simulation of pattern recognition. That is, we

“showed” the system a pattern, say ν chosen at random from the set of M

previously stored, every certain number of time steps. This was performed in

practice by changing the field at each node for one time step, namely, hi →
hi + δξν , where δ measures the intensity of the input signal. Ideally, the

network should remain in this configuration until it is newly stimulated. The

performance may thus be estimated from a temporal average of the overlap

between the current state and the input pattern, ⟨mν⟩time. This is observed

to simply increase monotonically with ∆ for the bimodal case. The scale–free

case, however, as illustrated in Fig. 4.3, shows how the task is better performed

the closer to the Edge of Chaos the network is. This is because the system is

then easily destabilized by the stimulus while being able to retrieve a pattern

with accuracy. Figure 4.3 also shows that the best performance for the scale–

free topology when Φ = 1, i.e., in the absence of any fatigue, definitely occurs

around γ = 2.
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Figure 4.3: Network “performance” (see the main text) against ∆ for bimodal

topologies (above) and against γ for scale–free topologies (below). Φ = 0.8 for

the first case and Φ = 1 in the second. Averages over 20 network realizations

with stimulation every 50 MC steps for 2000 MC steps, δ = 5 and M = 4;

other parameters as in Fig. 6.5. Inset shows sections of typical time series

of mν for ∆ = 10 (above) and γ = 4 (below); the corresponding stimulus for

pattern ν is shown underneath.

4.5 Discussion

The model network we have studied is one of the simplest relevant situations

one may conceive. In particular, as emphasized above, we are greatly simply-

fieng the elements at the nodes (neurons) as binary variables. However, our
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assumption of dynamic connections which depend on the local fields in such

a simple scenario happens to show that a close relation may exist between

topological heterogeneity and function, thus suggesting this may indeed be a

relevant property for a realistic network efficiently to perform certain high level

tasks. In a similar way to networks shown previously to be useful for pattern

recognition and family identification (Cortes et al., 2005), our system retrieves

memory patterns with accuracy in spite of noise, and yet it is easily destabi-

lized so as to change state in response to an input signal – without requiring

excessive fatigue for the purpose. There is a relation between the amount Φ

of fatigue and the value of γ for which performance is maximized. One may

argue that the plateau of “good” behaviour shown around γ ≃ 2 for scale–free

networks with Φ . 1 (Fig. 6.5) is a possible justification for the supposed

tendency of certain systems in nature to evolve towards this topology. It may

also prove useful for implementing some artificial networks.





Chapter 5

Correlated networks and

natural disassortativity

An intriguing feature of complex networks is the ubiquity of strong negative

degree-degree correlations between neighbouring nodes – the only exceptions

being social systems, which tend to be assortative instead of disassortative.

With the double purpose of addressing this mystery and uncovering the effects

of correlations on network behaviour, we put forward a method which allows

for the model-independent study of ensembles of correlated networks. We go

on to show, by means of an information theory approach, that the expected

value of correlations for a network at equilibrium (i.e., in the absence of spe-

cific correlating mechanisms) is not, as had been supposed, uncorrelated, but

rahter disassortative. It turns out that the correlations of some networks are in

excellent agreement with our predictions, while others, with known correlating

or anticorrelating mechanisms, indeed appear to have been driven from their

equilibrium points as expected. Therefore, our approach not only provides a

parsimonious topological answer to a long-standing question, but also a neu-

tral model against which to contrast experimental data to determine whether

mechanisms must be sought to account for observed correlations. We go on

to use our method, in Chapter 6, to study the influence of assortativity on

neural-network dynamics.

5.1 Assortativity of networks

Complex networks, whether natural or artificial, have non-trivial topologies

which are usually studied by analysing a variety of measures, such as the

degree distribution, clustering, average paths, modularity, etc. (Albert and

51
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Barabási, 2002; Dorogovtsev and Mendes, 2003; Pastor-Satorras and Vespig-

nani, 2004; Newman, 2003c; Boccaletti et al., 2006) The mechanisms which

lead to a particular structure and their relation to functional constraints are

often not clear and constitute the subject of much debate (Newman, 2003c;

Boccaletti et al., 2006). When nodes are endowed with some additional “prop-

erty,” a feature known as mixing or assortativity can arise, whereby edges are

not placed between nodes completely at random, but depending in some way

on the property in question. If similar (dissimilar) nodes tend to wire together,

the network is said to be assortative (disassortative) (Newman, 2002, 2003a).

An interesting situation is when the property taken into account is the

degree of each node – i.e., the number of neighbouring nodes connected to it.

It turns out that a high proportion of empirical networks – whether biological,

technological, information-related or linguistic – are disassortatively arranged

(high-degree nodes, or hubs, are preferentially linked to low-degree neighbours,

and viceversa) while social networks are usually assortative. Such degree-

degree correlations have important consequences for network characteristics

such as connectedness and robustness (Newman, 2002, 2003a).

However, while assortativity in social networks can be explained taking

into account homophily (Newman, 2002, 2003a) or modularity (Newman and

Park, 2003), the widespread prevalence and extent of disassortative mixing in

most other networks remains somewhat mysterious. Maslov et al. found that

the restriction of having at most one edge per pair of nodes induces some dis-

assortative correlations in heterogeneous networks (Maslov et al., 2004), and

Park and Newman showed how this analogue of the Pauli exclusion principle

leads to the edges following Fermi statistics (Park and Newman, 2003) (see

also (Capocci and Colaiori, 2006)). However, this restriction is not sufficient

to fully account for empirical data. In general, when one attempts to consider

computationally all the networks with the same distribution as a given empiri-

cal one, the mean assortativity is not necessarily zero (Holme and Zhao, 2007).

But since some “randomization” mechanisms induce positive correlations and

others negative ones (Farkas et al., 2004; Johnson et al., 2010a), it is not clear

how the phase space can be properly sampled numerically.

In this chapter we develop a method for the study of correlated networks

which is model-independent, and describe the main result of Ref. (Johnson

et al., 2010b) – namely, that there is a general reason, consistent with empirical

data, for the “natural” mixing of most networks to be disassortative. Using

an information-theory approach we find that the configuration which can be
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expected to come about in the absence of specific additional constraints turns

out not to be, in general, uncorrelated. In fact, for highly heterogeneous

degree distributions such as those of the ubiquitous scale-free networks, we

show that the expected value of the mixing is usually disassortative: there are

simply more possible disassortative configurations than assortative ones. This

result provides a simple topological answer to a long-standing question. Let us

caution that this does not imply that all scale-free networks are disassortative,

but only that, in the absence of further information on the mechanisms behind

their evolution, this is the neutral expectation.

5.2 The entropy of network ensembles

The topology of a network is entirely described by its adjacency matrix â; the

element âij represents the number of edges linking node i to node j (for undi-

rected networks, â is symmetric). Among all the possible microscopically dis-

tinguishable configurations a set of L edges can adopt when distributed among

N nodes, it is often convenient to consider the set of configurations which have

certain features in common – typically some macroscopic magnitude, like the

degree distribution. Such a set of configurations defines an ensemble. In a

seminal series of papers Bianconi has determined the partition functions of

various ensembles of random networks and derived their statistical-mechanics

entropy (Bianconi, 2008, 2009; Anand and Bianconi, 2009). This allows the

author to estimate the probability that a random network with certain con-

straints has of belonging to a particular ensemble, and thus assess the relative

importance of different magnitudes and help discern the mechanisms respon-

sible for a given real-world network. For instance, she shows that scale-free

networks arise naturally when the total entropy is restricted to a small finite

value. Here we take a similar approach: we obtain the Shannon information

entropy encoded in the distribution of edges. As we shall see, both methods

yield the same results (Jaynes, 1957; Anand and Bianconi, 2009), but for our

purposes the Shannon entropy is more tractable.

The Shannon entropy associated with a probability distribution pm is

s = −
∑
m

pm ln(pm),

where the sum extends over all possible outcomes m. For a given pair of

nodes (i, j), pm can be considered to represent the probability of there being

m edges between i and j. For simplicity, we shall focus here on networks such
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that âij can only take values 0 or 1, although the method is applicable to any

number of edges allowed. In this case, we have only two terms: p1 = ϵ̂ij and

p0 = 1 − ϵ̂ij, where ϵ̂ij ≡ E(âij) is the expected value of the element âij given

that the network belongs to the ensemble of interest. The entropy associated

with pair (i, j) is then

sij = − [ϵ̂ij ln(ϵ̂ij) + (1 − ϵ̂ij) ln(1 − ϵ̂ij)] ,

while the total entropy of the network is S =
∑N

ij sij:

S = −
N∑
ij

[ϵ̂ij ln(ϵ̂ij) + (1 − ϵ̂ij) ln(1 − ϵ̂ij)] . (5.1)

Since we have not imposed symmetry of the adjacency matrix, this expression

is in general valid for directed networks. For undirected networks, however,

the sum is only over i ≤ j, with the consequent reduction in entropy.

For the sake of illustration, we shall estimate the entropy of the Internet

at the autonomous system (AS) level and compare it with the values obtained

in (Bianconi, 2008, 2009; Anand and Bianconi, 2009) assuming the network

belongs to two different ensembles: the fully random graph, or Erdős-Rényi

(ER) ensemble, and the configuration ensemble with a scale-free degree distri-

bution (p(k) ∼ k−γ) (Newman, 2003c) and structural cutoff, ki <
√
⟨k⟩N , ∀i

(Bianconi, 2008, 2009; Anand and Bianconi, 2009) (⟨k⟩ is the mean degree).

In this example, we assume the network to be sparse enough to expand the

term ln(1− ϵ̂ij) in Eq. (5.1) and keep only linear terms. This reduces Eq. (5.1)

to

Ssparse ≃ −
N∑
ij

ϵ̂ij[ln(ϵ̂ij) − 1] + O(ϵ̂2
ij).

In the ER ensemble, each of N nodes has an equal probability of receiving

each of 1
2
⟨k⟩N undirected edges. So, writing ϵ̂ER

ij = ⟨k⟩/N , we have

SER = −1

2
⟨k⟩N [ln (⟨k⟩/N) − 1] .

The configuration ensemble, which imposes a given degree sequence (k1, ...kN),

is defined via the expected value of the adjacency matrix (Newman, 2003c;

Johnson et al., 2008):

ϵ̂c
ij = kikj/(⟨k⟩N).

This value leads to

Sc = ⟨k⟩N [ln(⟨k⟩N) + 1] − 2N⟨k ln k⟩,
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Figure 5.1: Evolution of the Internet at the AS level. Empty (blue) squares

and circles: entropy per node of randomized networks in the fully random

and in the configuration ensembles, as obtained by Bianconi (hence the “B”

superscription) (Bianconi, 2008, 2009; Anand and Bianconi, 2009). Filled (red)

triangles and diamonds: Shannon entropy for an ER network and a scale-free

one with γ = 2.3, respectively.

where ⟨·⟩ ≡ N−1
∑

i(·) stands for an average over nodes.

Fig. 5.1 displays the entropy per node obtained in (Bianconi, 2008, 2009;

Anand and Bianconi, 2009) for the first two levels of approximation (ensembles)

to the Internet at the AS level, first taking into account only the numbers of

nodes N and edges L = 1
2
⟨k⟩N , and then also the degree sequence. Alongside

these, we plot the Shannon entropy both for an ER random network, (which

coincides exactly with Bianconi’s expression), and for a scale-free network with

γ = 2.3 (the slight disparity arising from this exponent’s changing a little with

time).

5.3 Entropic origin of disassortativity

We shall now go on to analyse the effect of degree-degree correlations on the

entropy. In the configuration ensemble, the expected value of the mean degree
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Figure 5.2: Shannon entropy of correlated scale-free networks against param-

eter β (left panel) and against Pearson’s coefficient r (right panel), for various

values of γ (increasing from bottom to top). ⟨k⟩ = 10, N = 104.

of the neighbours of a given node is

knn,i = k−1
i

∑
j

ϵ̂c
ijkj =

⟨k2⟩
⟨k⟩

,

which is independent of ki. However, as mentioned above, real networks often

display degree-degree correlations, with the result that knn,i = knn(ki). If

knn(k) increases (decreases) with k, the network is assortative (disassortative).

A measure of this phenomenon is Pearson’s coefficient applied to the edges

(Newman, 2003c, 2002, 2003a; Boccaletti et al., 2006):

r =
[klk

′
l] − [kl]

2

[k2
l ] − [kl]2

,

where kl and k′
l are the degrees of each of the two nodes belonging to edge l,

and [·] ≡ (⟨k⟩N)−1
∑

l(·) is an average over edges. Writing
∑

l(·) =
∑

ij âij(·),
r can be expressed as

r =
⟨k⟩⟨k2knn(k)⟩ − ⟨k2⟩2

⟨k⟩⟨k3⟩ − ⟨k2⟩2
. (5.2)

The ensemble of all networks with a given degree sequence (k1, ...kN) contains a

subset for all members of which knn(k) is constant (the configuration ensemble),

but also subsets displaying other functions knn(k). We can identify each one



5.3 Entropic origin of disassortativity 57

of these subsets (regions of phase space) with an expected adjacency matrix ϵ̂

which simultaneously satisfies the following conditions:

i)
∑

j

kj ϵ̂ij = kiknn(ki), ∀i, and

ii)
∑

j

ϵ̂ij = ki, ∀i (for consistency).

An ansatz which fulfils these requirements is any matrix of the form

ϵ̂ij =
kikj

⟨k⟩N
+

∫
dν

f(ν)

N

[
(kikj)

ν

⟨kν⟩
− kν

i − kν
j + ⟨kν⟩

]
, (5.3)

where ν ∈ R and the function f(ν) is in general arbitrary, although depending

on the degree sequence it shall here be restricted to values which maintain

ϵ̂ij ∈ [0, 1], ∀i, j. This ansatz yields

knn(k) =
⟨k2⟩
⟨k⟩

+

∫
dνf(ν)σν+1

[
kν−1

⟨kν⟩
− 1

k

]
(5.4)

(the first term being the result for the configuration ensemble), where σb+1 ≡
⟨kb+1⟩ − ⟨k⟩⟨kb⟩. In practice, one could adjust Eq. (5.4) to fit any given func-

tion knn(k) and then wire up a network with the desired correlations: it suffices

to throw random numbers according to Eq. (5.3) with f(ν) as obtained from

the fit to Eq. (5.4)1. To prove the uniqueness of a matrix ϵ̂ obtained in this

way (i.e., that it is the only one compatible with a given knn(k)) assume that

there exists another valid matrix ϵ̂′ ̸= ϵ̂. Writting ϵ̂′ij − ϵ̂ij ≡ h(ki, kj) = hij,

then i) implies that
∑

j kjhij = 0, ∀i, while ii) means that
∑

j hij = 0, ∀i. It

follows that hij = 0, ∀i, j.

In many empirical networks, knn(k) has the form knn(k) = A + Bkβ, with

A,B > 0 (Boccaletti et al., 2006; Pastor-Satorras et al., 2001) – the mixing

being assortative (disassortative) if β is positive (negative). Such a case is

fitted by Eq. (5.4) if

f(ν) = C

[
δ(ν − β − 1)

σ2

σβ+2

− δ(ν − 1)

]
,

1Although, as with the configuration ensemble, it is not always possible to wire a network
according to a given ϵ̂.
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with C a positive constant, since this choice yields

knn(k) =
⟨k2⟩
⟨k⟩

+ Cσ2

[
kβ

⟨kβ+1⟩
− 1

⟨k⟩

]
. (5.5)

After plugging Eq. (5.5) into Eq. (5.2), one obtains:

r =
Cσ2

⟨kβ+1⟩

(
⟨k⟩⟨kβ+2⟩ − ⟨k2⟩⟨kβ+1⟩

⟨k⟩⟨k3⟩ − ⟨k2⟩2

)
. (5.6)

Inserting Eq. (5.3) in Eq. (5.1), we can calculate the entropy of correlated

networks as a function of β and C – or, by using Eq. (5.6), as a function of r.

Particularizing for scale-free networks, then given ⟨k⟩, N and γ, there is always

a certain combination of parameters β and C which maximizes the entropy; we

shall call these β∗ and C∗. For γ . 5/2 this point corresponds to C∗ = 1. For

higher γ, the entropy can be slightly higher for larger C. However, for these

values of γ, the assortativity r of the point of maximum entropy obtained with

C = 1 differs very little from the one corresponding to β∗ and C∗ (data not

shown). Therefore, for the sake of clarity but with very little loss of accuracy,

in the following we shall generically set C = 1 and vary only β in our search

for the level of assortativity, r∗, that maximizes the entropy given ⟨k⟩, N and

γ. Note that C = 1 corresponds to removing the linear term, proportional

to kikj, in Eq. (5.3), and leaving the leading non-linearity, (kikj)
β+1, as the

dominant one.

Fig. 5.2 displays the entropy curves for various scale-free networks, both

as functions of β and of r: depending on the value of γ, the point of maximum

entropy can be either assortative or disassortative. This can be seen more

clearly in Fig. 5.3, where r∗ is plotted against γ for scale-free networks with

various mean degrees ⟨k⟩. The values obtained by Park and Newman (Park

and Newman, 2003) as those resulting from the one-edge-per-pair restriction

are also shown for comparison: notice that whereas this effect alone cannot

account for the Internet’s correlations for any γ, entropy considerations would

suffice if γ ≃ 2.1. As shown in the inset, the results are robust in the large

system-size limit.

Since most networks observed in the real world are highly heterogeneous,

with exponents in the range γ ∈ (2, 3), it is to be expected that these should

display a certain disassortativity – the more so the lower γ and the higher ⟨k⟩.
In Fig. 5.4 we test this prediction on a sample of empirical, scale-free net-

works quoted in Newman’s review (Newman, 2003c) (p. 182). For each case,

we found the value of r that maximizes S according to Eq. (5.1), after insert-

ing Eq. (5.3) with the quoted values of ⟨k⟩, N and γ. In this way, we obtained
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Figure 5.3: Lines from top to bottom: r at which the entropy is maximized, r∗,

against γ for random scale-free networks with mean degrees ⟨k⟩ = 1
2
, 1, 2 and

4 times k0 = 5.981, and N = N0 = 10697 nodes (k0 and N0 correspond to the

values for the Internet at the AS level in 2001 (Park and Newman, 2003), which

had r = r0 = −0.189). Symbols are the values obtained in (Park and Newman,

2003) as those expected solely due to the one-edge-per-pair restriction (with

k0, N0 and γ = 2.1, 2.3 and 2.5). Inset: r∗ against N for networks with

fixed ⟨k⟩/N (same values as the main panel) and γ = 2.5; the arrow indicates

N = N0.

the expected assortativity for six networks, representing: a peer-to-peer (P2P)

network, metabolic reactions, the nd.edu domain, actor collaborations, protein

interactions, and the Internet (see (Newman, 2003c) and references therein).

For the metabolic, Web domain and protein networks, the values predicted are

in excellent agreement with the measured ones; therefore, no specific anticor-

relating mechanisms need to be invoked to account for their disassortativity.

In the other three cases, however, the predictions are not accurate, so there

must be additional correlating mechanisms at work. Indeed, it is known that

small routers tend to connect to large ones (Pastor-Satorras et al., 2001), so

one would expect the Internet to be more disassortative than predicted, as is

the case2 – an effect that is less pronounced but still detectable in the more

2However, as Fig. 5.3 shows, if the Internet exponent were the γ = 2.2 ± 0.1 reported
in (Pastor-Satorras et al., 2001) rather than γ = 2.5, entropy would account more fully for
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Figure 5.4: Level of assortativity that maximizes the entropy, r∗, for various

real-world, scale-free networks, as predicted theoretically by Eq. (5.1) (circles)

and as directly measured (horizontal lines), against exponent γ.

egalitarian P2P network. Finally, as is typical of social networks, the actor

graph is significantly more assortative than predicted, probably due to the ho-

mophily mechanism whereby highly connected, big-name actors tend to work

together (Newman, 2002, 2003a).

5.4 To sum up...

We have shown how the ensemble of networks with a given degree sequence

can be partitioned into regions of equally correlated networks and found, using

an information-theory approach, that the largest (maximum entropy) region,

for the case of scale-free networks, usually displays a certain disassortativity.

Therefore, in the absence of knowledge regarding the specific evolutionary

forces at work, this should be considered the most likely state. Given the

accuracy with which our approach can predict the degree of assortativity of

certain empirical networks with no a priori information thereon, we suggest

this as a neutral model to decide whether or not particular experimental data

require specific mechanisms to account for observed degree-degree correlations.

these correlations.



Chapter 6

Enhancing robustness to noise

via assortativity

As we saw in Chapter 4, the performance of attractor neural networks depends

crucially on the heterogeneity of the underlying topology’s degree distribution.

We take this analysis a step further by examining the effect of degree-degree

correlations – or assortativity – on neural-network behaviour. In Chapter 5 we

described a method for studying correlated networks and dynamics thereon,

both analytically and computationally, which is independent of how the topol-

ogy may have evolved. We now make use of this to show how the robustness to

noise is greatly enhanced in assortative (positively correlated) neural networks,

especially if it is the hub neurons that store the information.

6.1 Background

For a dozen years or so now, the study of complex systems has been heav-

ily influenced by results from network science – which one might regard as

the fusion of graph theory with statistical physics (Newman, 2003c; Boccaletti

et al., 2006). Phenomena as diverse as epidemics (Watts and Strogatz, 1998),

cellular function (Süel et al., 2006), power-grid failures (Buldyrev et al., 2010)

or internet routing (Boguñá et al., 2010), among many others (Arenas et al.,

2008a), depend crucially on the structure of the underlying network of inter-

actions. One of the earliest systems to have been described as a network was

the brain, which is made up of a great many neurons connected to each other

by synapses (y Cajal, 1995; Amit, 1989; Abbott and Kepler, 1990; Torres and

Varona, 2010). Mathematically, the first neural networks combined the Ising

model (Baxter, 1982) with the Hebb learning rule (Hebb, 1949) to reproduce,

61
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very successfully, the storage and retrieval of information (Amari, 1972; Hop-

field, 1982; Amit, 1995). Neurons were simplified to binary variables (like

Ising spins) representing firing or non-firing cells. By considering the trivial

fully-connected topology, exact solutions could be reached, which at the time

seemed more important than attempting to introduce biological realism. Sub-

sequent work has tended to focus on considering richer dynamics for the cells

rather than on the way in which these are interconnected (Vogels et al., 2005;

Torres et al., 2007; Mejias et al., 2010). However, the topology of the brain

– whether at the level of neurons and synapses, cortical areas or functional

connections – is obviously far from trivial (Amaral et al., 2000; Sporns et al.,

2004; Egúıluz et al., 2005; Arenas et al., 2008b; Bullmore and Sporns, 2009;

Johnson et al., 2010a).

The number of neighbours a given node in a network has is called its de-

gree, and much attention is paid to degree distributions since they tend to be

highly heterogeneous for most real networks. In fact, they are often approxi-

mately scale-free (i.e., described by power laws) (Newman, 2003c; Boccaletti

et al., 2006; Peretto, 1992; Barabási and Oltvai, 2004). By including this topo-

logical feature in a Hopfield-like neural-network model, Torres et al. Torres

et al. (2004) found that degree heterogeneity increases the system’s perfor-

mance at high levels of noise, since the hubs (high degree nodes) are able to

retain information at levels well above the usual critical noise. To prove this

analytically, the authors considered the configurational ensemble of networks

(the set of random networks with a given degree distribution but no degree-

degree correlations) and showed that Monte Carlo (MC) simulations were in

good agreement with mean-field analysis, despite the approximation inherent

to the latter technique when the network is not fully connected. A similar ap-

proach can also be used to show how heterogeneity may be advantageous for

the performance of certain tasks in models with a richer dynamics (Johnson

et al., 2008). It is worth mentioning that this influence of the degree distri-

bution on dynamical behaviour is found in many other settings, such as the

more general situation of systems of coupled oscillators (Barahona and Pecora,

2002).

Another property of empirical networks that is quite ubiquitous is the exis-

tence of correlations between the degrees of nodes and those of their neighbours

(Pastor-Satorras et al., 2001; Newman, 2002, 2003a). If the average degree-

degree correlation is positive the network is said to be assortative, while it is

called disassortative if negatively correlated. Most heterogeneous networks are
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disassortative (Newman, 2003c), which, as described in Chapter 5, seems to be

because this is in some sense their equilibrium (maximum entropy) state given

the constraints imposed by the degree distribution (Johnson et al., 2010b).

However, there are probably often mechanisms at work which drive systems

from equilibrium by inducing different correlations, as appears to be the case

for most social networks, in which nodes (people) of a kind tend to group to-

gether. This feature, known as assortativity or mixing by degree, is also relevant

for processes taking place on networks. For instance, assortative networks have

lower percolation thresholds and are more robust to targeted attack (Newman,

2003a), while disassortative ones make for more stable ecosystems and are –

at least according to the usual definition – more synchronizable (Brede and

Sinha).

The approach usually taken when studying correlated networks computa-

tionally is to generate a network from the configuration ensemble and then

introduce correlations (positive or negative) by some stochastic rewiring pro-

cess (Maslov et al., 2004). A drawback of this method, however, is that results

may well then depend on the details of this mechanism: there is no guarantee

that one is correctly sampling the phase space of networks with given corre-

lations. For analytical work, some kind of hidden variables from which the

correlations originate are often considered (Caldarelli et al., 2002; Söderberg,

2002; Boguñá and Pastor-Satorras, 2003; Fronczak and Fronczak, 2006) – an

assumption which can also be used to generate correlated networks compu-

tationally (Boguñá and Pastor-Satorras, 2003). This can be a very powerful

method for solving specific network models. However, it may not be appro-

priate if one wishes to consider all possible networks with given degree-degree

correlations, independently of how these may have arisen. In this chapter, we

get round the problem by making use of the method put forward by Johnson

et al. (2010b) (and described in Chapter 5) whereby the ensemble of all net-

works with given correlations can be considered theoretically without recurring

to hidden variables (de Franciscis et al., 2011). Furthermore, we show how this

approach can be used computationally to generate random networks that are

representative of the ensemble of interest (i.e., they are model-independent).

In this way, we study the effect of correlations on a simple neural network

model and find that assortativity increases performance in the face of noise –

particularly if it is the hubs that are mainly responsible for storing information

(and it is worth mentioning that there is experimental evidence suggestive of a

main functional role played by hub neurons in the brain (Morgan and Soltesz,
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2008; Bonifazi et al., 2009)). The good agreement between the mean-field

analysis and our MC simulations bears witness both to the robustness of the

results as regards neural systems, and to the viability of using this method for

studying dynamics on correlated networks.

6.2 Preliminary considerations

6.2.1 Model neurons on networks

The attractor neural network model put forward by Hopfield (Hopfield, 1982)

consists of N binary neurons, each with an activity given by the dynamic vari-

able si = ±1. Every time step (MCS), each neuron is updated according to

the stochastic transition probability P (si → ±1) = 1
2
[1 ± tanh (hi/T )] (paral-

lel dynamics), where the field hi is the combined effect on i of all its neighbours,

hi =
∑

j ŵijsj, and T is a noise parameter we shall call temperature, but which

represents any kind of random fluctuations in the environment. This is the

same as the Ising model for magnetic systems, and the transition rule can be

derived from a simple interaction energy such that aligned variables s (spins)

contribute less energy than if they were to take opposite values. However,

this system can store P given configurations (memory patterns) ξν
i = ±1 by

having the interaction strengths (synaptic weights) set according to the Hebb

rule (Hebb, 1949): ŵij ∝
∑P

ν=1 ξν
i ξν

j . In this way, each pattern becomes an

attractor of the dynamics, and the system will evolve towards whichever one is

closest to the initial state it is placed in. This mechanism is called associative

memory, and is nowadays used routinely for tasks such as image identifica-

tion. What is more, it has been established that something similar to the

Hebb rule is implemented in nature via the processes of long-term potenti-

ation and depression at the synapses (Malenka and Nicoll, 1999; Roo et al.,

2008; Rodŕıguez-Moreno and Paulsen, 2008; Kwag and Paulsen, 2009), and

this phenomenon is indeed required for learning (Gruart et al., 2006).

To take into account the topology of the network, we shall consider the

weights to be of the form ŵij = ω̂ij âij, where the element âij of the adjacency

matrix represents the number of directed edges (usually interpreted as synapses

in a neural network) from node j to node i, while ω̂ stores the patterns, as

before:

ω̂ij =
1

⟨k⟩

P∑
ν=1

ξν
i ξν

j .

For the sake of coherence with previous work, we shall assume â to be sym-
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metric (i.e., the network is undirected), so each node is characterized by a

single degree ki =
∑

j âij. However, all results are easily extended to directed

networks – in which nodes have both an in degree, kin
i =

∑
j âij, and an out

degree, kout
i =

∑
j âji – by bearing in mind it is only a neuron’s pre-synaptic

neighbours that influence its behaviour. The mean degree of the network is

⟨k⟩, where the angles stand for an average over nodes1: ⟨·⟩ ≡ N−1
∑

i(·).

6.2.2 Network ensembles

When one wishes to consider a set of networks which are randomly wired while

respecting certain constraints – that is, an ensemble – it is usually useful to

define the expected value of the adjacency matrix2, E(â) ≡ ϵ̂. The element

ϵ̂ij of this matrix is the mean value of âij obtained by averaging over the en-

semble. For instance, in the Erdős-Rényi (ER) ensemble all elements (outside

the diagonal) take the value ϵ̂ER
ij = ⟨k⟩/N , which is the probability that a

given pair of nodes be connected by an edge. For studying networks with a

given degree sequence, (k1, ...kN), it is common to assume the configuration

ensemble, defined as

ϵconf
ij =

kikj

⟨k⟩N
This expression can usually be applied also when the constraint is a given de-

gree distribution, p(k), by integrating over p(ki) and p(kj) where appropriate.

One way of deriving ϵ̂conf is to assume one has ki dangling half-edges at each

node i; we then randomly choose pairs of half-edges and join them together

until the network is wired up. Each time we do this, the probability that we

join i to j is kikj/(⟨k⟩N)2, and we must perform the operation ⟨k⟩N times.

Bianconi showed that this is also the solution for Barabási-Albert evolved net-

works (Bianconi, 2002). However, we should bear in mind that this result is

only strictly valid for networks constructed in certain particular ways, such

as in these examples. It is often implicitly assumed that were we to average

over all random networks with a given degree distribution, the mean adjacency

matrix obtained would be ϵ̂conf . However, as we discussed in Chapter 5, this

1In directed networks the mean in degree and the mean out degree necessarily coincide,
whatever the forms of the in and out distributions.

2As in statistical physics, one can consider the microcanonical ensemble, in which each
element (network) satisfies the constraints exactly, or the canonical ensemble, where the
constraints are satisfied on average (Bianconi, 2009). Throughout this work, we shall refer
to canonical ensembles.
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Figure 6.1: Mean-nearest-neighbour functions knn(k) for scale-free networks

with β = −0.5 (disassortative), 0.0 (neutral), and 0.5 assortative, generated

according to the algorithm described in Sec. 6.3.2. Inset: degree distribution

(the same in all three cases). Other parameters are γ = 2.5, ⟨k⟩ = 12.5,

N = 104.

is not in fact necessarily true (Johnson et al., 2010b).

6.2.3 Correlated networks

In the configuration ensemble, the expected value of the mean degree of the

neighbours of a given node is knn,i = k−1
i

∑
j ϵ̂conf

ij kj = ⟨k2⟩/⟨k⟩, which is in-

dependent of ki. However, as mentioned above, real networks often display

degree-degree correlations, with the result that knn,i = knn(ki). If knn(k) in-

creases with k, the network is said to be assortative – whereas it is disassorta-

tive if it decreases with k (see Fig. 6.1). This is from the more general nomen-

clature (borrowed form sociology) in which sets are assortative if elements of

a kind group together, or assort. In the case of degree-degree correlated net-

works, positive assortativity means that edges are more than randomly likely

to occur between nodes of a similar degree.

The ensemble of all networks with a given degree sequence (k1, ...kN) con-

tains a subset for all members of which knn(k) is constant (the configuration

ensemble), but also subsets displaying other functions knn(k). We can iden-

tify each one of these subsets (regions of phase space) with an expected ad-

jacency matrix ϵ̂ which simultaneously satisfies the following conditions: i)
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∑
j kj ϵ̂ij = kiknn(ki), ∀i (by definition of knn(k)), and ii)

∑
j ϵ̂ij = ki, ∀i (for

consistency). As we showed in Chapter 5, the general solution to this problem

is a matrix of the form

ϵ̂ij =
kikj

⟨k⟩N
+

∫
dν

f(ν)

N

[
(kikj)

ν

⟨kν⟩
− kν

i − kν
j + ⟨kν⟩

]
, (6.1)

where ν ∈ R and the function f(ν) is determined by knn(k) (Johnson et al.,

2010b). (If the network were directed, then ki = kin
i and kj = kout

j in this

expression.) This yields

knn(k) =
⟨k2⟩
⟨k⟩

+

∫
dνf(ν)σν+1

[
kν−1

⟨kν⟩
− 1

k

]
(6.2)

(the first term being the result for the configuration ensemble), where σb+1 ≡
⟨kb+1⟩ − ⟨k⟩⟨kb⟩. This means that ϵ̂ is not just one possible way of obtaining

correlations according to knn(k); rather, there is a two-way mapping between

ϵ̂ and knn(k): every network with this particular function knn(k) and no other

ones are contained in the ensemble defined by ϵ̂. Thanks to this, if we are

able to consider random networks drawn according to this matrix (whether

we do this analytically or computationally; see Section 6.3.2), we can be con-

fident that we are correctly taking account of the whole ensemble of interest.

In other words, whatever the reasons behind the existence of degree-degree

correlations in a given network, we can study the effects of these with only

information on p(k) and knn(k) by obtaining the associated matrix ϵ̂. This is

not to say, of course, that all topological properties are captured in this way: a

particular network may have other features – such as higher order correlations,

modularity, etc. – the consideration of which would require concentrating on

a sub-partition of those with the same p(k) and knn(k). But this is not our

purpose here.

In many empirical networks, knn(k) has the form knn(k) = A + Bkβ, with

A,B > 0 (Boccaletti et al., 2006; Pastor-Satorras et al., 2001) – the mixing

being assortative if β is positive, and disassortative when negative. Such a

case is fitted by Eq. (6.2) if

f(ν) = C

[
σ2

σβ+2

δ(ν − β − 1) − δ(ν − 1)

]
, (6.3)

with C a positive constant, since this choice yields

knn(k) =
⟨k2⟩
⟨k⟩

+ Cσ2

[
kβ

⟨kβ+1⟩
− 1

⟨k⟩

]
. (6.4)
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In Chapter 5 we discussed how the most likely configurations for networks

with scale-free degree distributions (p(k) ∼ k−γ) and correlations given by

Eq. (6.4) are generally disassortative. We also showed that the maximum

entropy is usually obtained for values of C close to one. Here, we shall use

this result to justify concentrating on correlated networks with C = 1, so that

the only parameter we need to take into account is β. It is worth mentioning

that Pastor-Satorras et al. originally suggested using this exponent as a way

of quantifying correlations (Pastor-Satorras et al., 2001), since this seems to

be the most relevant magnitude. Because β does not depend directly on p(k)

(as r does), and can be defined for networks of any size (whereas r, in very

heterogeneous networks, always goes to zero for large N due to its normaliza-

tion (Dorogovtsev et al., 2005)), we shall henceforth use β as our assortativity

parameter.

So, after plugging Eq. (6.3) into Eq. (6.1), we find that the ensemble of

networks exhibiting correlations given by Eq. (6.4) (and C = 1) is defined by

the mean adjacency matrix

ϵ̂ij =
1

N
[ki + kj − ⟨k⟩]

+
σ2

σβ+2

1

N

[
(kikj)

β+1

⟨kβ+1⟩
− kβ+1

i − kβ+1
j + ⟨kβ+1⟩

]
. (6.5)

6.3 Analysis and results

6.3.1 Mean field

Let us consider the single-pattern case (P = 1, ξi = ξ1
i ). Substituting the

adjacency matrix â for its expected value ϵ̂ (as given by Eq. (6.5)) in the ex-

pression for the local field at i – which amounts to a mean-field approximation

– we have

hi =
1

⟨k⟩
ξi

{[
(ki − ⟨k⟩) +

σ2

σβ+2

(⟨kβ+1⟩ − kβ+1
i )

]
µ0

+ ⟨k⟩µ1 +
σ2

σβ+2

(kβ
i − ⟨kβ+1⟩)µβ+1

}
,

where we have defined

µα ≡ ⟨kα
i ξisi⟩
⟨kα⟩

for α = 0, 1, β + 1. These order parameters measure the extent to which the

system is able to recall information in spite of noise (Johnson et al., 2008).
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For the first order we have µ0 = m ≡ ⟨ξisi⟩, the standard overlap measure

in neural networks (analogous to magnetization in magnetic systems), which

takes account of memory performance. However, µ1, for instance, weighs the

sum with the degree of each node, with the result that it measures information

per synapse instead of per neuron. Although the overlap m is often assumed

to represent, in some sense, the mean firing rate of neurological experiments,

it is possible that µ1 is more closely related to the empirical measure, since the

total electric potential in an area of tissue is likely to depend on the number of

synapses transmitting action potentials. In any case, a comparison between the

two order parameters is a good way of assessing to what extent the performance

of neurons depends on their degree – larger-degree model neurons can in general

store information at higher temperatures than ones with smaller degree can

(Torres et al., 2004).

Substituting si for its expected value according to the transition probability,

si → tanh(hi/T ), we have, for any α,

⟨kα
i ξisi⟩ = ⟨kα

i ξi tanh(hi/T )⟩;

or, equivalently, the following 3-D map of closed coupled equations for the

macroscopic overlap observables µ0, µ1 and µβ+1 – which describes, in this

mean-field approximation, the dynamics of the system:

µ0(t + 1) =

∫
p(k) tanh[F (t)/(⟨k⟩T )]dk

µ1(t + 1) =
1

⟨k⟩

∫
p(k)k tanh[F (t)/(⟨k⟩T )]dk (6.6)

µβ+1(t + 1) =
1

⟨kβ+1⟩

∫
p(k)kβ+1 tanh[F (t)/(⟨k⟩T )]dk,

with

F (t) ≡ (kµ0(t) + ⟨k⟩µ1(t) − ⟨k⟩µ0(t))

+
σ2

σβ+2

[kβ+1(µβ+1(t) − µ0(t))

+ ⟨kβ+1⟩(µ0(t) − µβ+1(t))].

This can be easily computed for any degree distribution p(k). Note that taking

β = 0 (the uncorrelated case) the system collapses to the 2-D map obtained by
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Torres et al. (2004), while it becomes the typical 1-D case for a homogeneous

p(k) – say a fully-connected network (Hopfield, 1982). It is in principle pos-

sible to do similar mean-field analysis for any number P of patterns, but the

map would then be 3P -dimensional, making the problem substantially more

complex.

At a critical temperature Tc, the system will undergo the characteristic

second order phase transition from a phase in which it exhibits memory (akin

to ferromagnetism) to one in which it does not (paramagnetism). To obtain

this critical temperature, we can expand the hyperbolic tangent in Eqs. (6.6)

around the trivial solution (µ0, µ1, µβ+1) ≃ (0, 0, 0) and, keeping only linear

terms, write

µ0 = µ1/Tc,

µ1 =
1

⟨k⟩2Tc

[
⟨k⟩2µ1 + σ2µβ+1

]
,

µβ+1 =
1

Tc⟨k⟩⟨kβ+1⟩

[
σβ+2µ0

+
σ2

σβ+2

(
⟨kβ+1⟩2 − ⟨k2(β+1)⟩

)
µ0

+ ⟨k⟩⟨kβ+1⟩µ1 −
σ2

σβ+2

(
⟨kβ+1⟩2 − ⟨k2(β+1)⟩

)
µβ+1

]
.

Defining

A ≡ σ2

⟨k⟩2
,

B ≡ σ2

σβ+2

⟨k2(β+1)⟩ − ⟨kβ+1⟩2

⟨k⟩⟨kβ+1⟩
,

D ≡ σβ+2

⟨k⟩⟨kβ+1⟩
,

Tc will be the solution to the third order polynomial equation:

T 3
c − (B + 1)T 2

c + (B − A)Tc + A(B − D) = 0. (6.7)

Note that for neutral (i.e., uncorrelated) networks, β = 0, and so A = B = D.

We then have Tc = ⟨k2⟩/⟨k⟩2, as expected (Johnson et al., 2008).
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6.3.2 Generating correlated networks

Given a degree distribution p(k), the ensemble of networks compatible with

this constraint and with degree-degree correlations according to Eq. (6.4)

(with some exponent β) is defined by the mean adjacency matrix ϵ̂ of Eq.

(6.5) – as described in Section 6.2.3 and by Johnson et al. (2010b). Therefore,

although there will generally be an enormous number of possible networks in

this volume of phase space, we can sample them correctly simply by generating

them according to ϵ̂. To do this, first we have to assign to each node a degree

drawn from p(k). If the elements of ϵ̂ were probabilities, it would suffice then

to connect each pair of nodes (i, j) with probability ϵ̂ij to generate a valid

network. Strictly speaking, ϵ̂ is an expected value, which in certain cases can

be greater than one. To get round this, we write a probability matrix p̂ = ϵ̂/a

with a some value such that all elements of p̂ are smaller than one. If we

then take random pairs of nodes (i, j) and, with probability p̂ij, place an edge

between them, repeating the operation until 1
2
⟨k⟩N edges have been placed,

the expected value of edges joining i and j will be ϵ̂ij. This method is like the

hidden variable technique (Boguñá and Pastor-Satorras, 2003) in that edges

are placed with a predefined probability (which is why the resulting ensemble

is canonical). The difference lies in the fact that in the method here described

correlations only depend on the degrees of nodes.

We are interested here in neural networks, in which a given pair of nodes

can be joined by several synapses, so we shall not impose the restriction of

so-called simple networks of allowing only one edge at most per pair. We

shall, however, consider networks with a structural cutoff: ki <
√
⟨k⟩N , ∀i

(Bianconi, 2008). This ensures that, at least for β ≤ 0, all elements of ϵ̂ are

indeed smaller than one.

Because we can expect effects due to degree-degree correlations to be largest

when p(k) is very broad, and since most networks in nature and technol-

ogy seem to exhibit approximately power-law degree distributions (Newman,

2003c; Arenas et al., 2008a; Peretto, 1992; Barabási and Oltvai, 2004), we shall

here test our general theoretical results against simulations of scale-free net-

works: p(k) ∼ k−γ. This means that a network (or the region of phase space

to which it belongs) is characterized by the set of parameters {⟨k⟩, N, γ, β}.
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Figure 6.2: Stable stationary value of the weighted overlap µ1 against temper-

ature T for scale-free networks with correlations according to knn ∼ kβ, for

β = −0.5 (disassortative), 0.0 (neutral), and 0.5 (assortative). Symbols from

MC simulations, with errorbars representing standard deviations, and lines

from Eqs. (6.6). Other network parameters as in Fig. 6.1. Inset: µ1 against T

for the assortative case (β = 0.5) and different system sizes: N = 104, 3 · 104

and 5 · 104.

6.3.3 Assortativity and dynamics

In Fig. 6.2 we plot the stationary value of µ1 against the temperature T ,

as obtained from simulations and Eqs. (6.6), for disassortative, neutral and

assortative networks. The three curves are similar at low temperatures, but

as T increases their behaviour becomes quite different. The disassortative

network is the least robust to noise. However, the assortative one is capable

of retaining some information at temperatures considerably higher than the

critical value, Tc = ⟨k2⟩/⟨k⟩, of neutral networks. A comparison between µ1

and µ0 (see Fig. 6.3) shows that it is the high degree nodes that are mainly

responsible for this difference in performance. This can be seen more clearly in

Fig. 6.4, which displays the difference µ1−µ0 against T for the same networks.

It seems that, because in an assortative network a sub-graph of hubs will

have more edges than in a disassortative one, it has a higher effective critical

temperature. Therefore, even when most of the nodes are acting randomly,

the set of nodes of sufficiently high degree nevertheless displays associative

memory.
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Figure 6.3: Stable stationary values of order parameters µ0, µ1 and µβ+1

against temperature T , for assortative networks according to β = 0.5. Sym-

bols from MC simulations, with errorbars representing standard deviations,

and lines from Eqs. (6.6). Other parameters as in Fig. 6.1.
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Figure 6.4: Difference between the stationary values µ1 and µ0 for networks

with β = −0.5 (disassortative), 0.0 (neutral) and 0.5 (assortative), against

temperature. Symbols from MC simulations, with errorbars representing stan-

dard deviations, and lines from Eqs. (6.6). Line shows the expected level of

fluctuations due to noise, ∼ N− 1
2 . Other parameters as in Fig. 6.1.
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The phase diagram if Fig. 6.5 shows the critical temperature, Tc, as ob-

tained from Eq. (6.7). In addition to the effect reported by Torres et al.

(2004) whereby the Tc of scale-free networks grows with degree heterogeneity

(decreasing γ), it also increases very significantly with positive degree-degree

correlations (increasing β).

At large values of N , the critical temperature scales as Tc ∼ N b, with b ≥ 0

a constant. However, because the moments of k appearing in the coefficients of

Eq. (6.7) can have different asymptotic behaviour depending on the values of

γ and β, the scaling exponent b differs from one region to another in the space

of these parameters. These are the seven regions shown in Fig. 6.6, along with

the scaling behaviour exhibited by each one. This can be seen explicitely in

Fig. 6.7, where Tc, as obtained from MC simulations, is plotted against N for

cases in each of the regions with γ < 3. In each case, the scaling is as given by

Eq. (6.7) and shown in Fig. 6.6. For the four regions with γ < 3, from lowest

to highest assortativity we have scaling exponents which are dependent on:

only γ (region I), only β (region II), both γ and β (region III), and, perhaps

most interestingly, neither of the two (region IV) – with Tc scaling, in the latter

case, as
√

N . As for the more homogeneous γ > 3 part, regions V and VI have

a diverging critical temperature despite the fact that the second moment of

p(k) is finite, simply as a result of assortativity.

The case in which more than one pattern are stored (P > 1) can be explored

numerically. Assuming there are P uncorrelated patterns, we have an order

parameter µν
1 for each pattern ν. A global measure of the degree to which

there is memory can be captured by the parameter ζ, where

ζ2 ≡ 1

1 + P/N

P∑
ν=1

(µν
1)

2.

Notice that the normalization factor is due to the fact that if one pattern is

condensed – i.e., |µ1| . 1 – the others have |µν | ∼ 1/
√

N , ν = 2, ..P , and so ζ ≃
1. Figure 6.8 shows how ζ decreases with T in variously correlated networks

for P = 3 (left panel) and P = 10 patterns (right panel). The behaviour is

not qualitatively different from that observed for the single-pattern case in the

main panel of Fig. 6.2, suggesting that the influence of assortativity we report

is robust as to the number of patterns stored, P .
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Figure 6.5: Phase diagrams for scale-free networks with γ = 2.5, 3, and 3.5.

Lines show the critical temperature Tc marking the second-order transition

from a memory (ferromagnetic) phase to a memoryless (paramagnetic) one,

against the assortativity β, as given by Eq. (6.7). Other parameters as in Fig.

6.1.
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Figure 6.6: Parameter space β−γ partitioned into the regions in which b(β, γ)

has the same functional form – where b is the scaling exponent of the critical

temperature: Tc ∼ N b. Exponents obtained by taking the large N limit in Eq.

(6.7).

6.4 Discussion

We have shown that assortative networks of simple model neurons are able to

exhibit associative memory in the presence of levels of noise such that uncor-
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Figure 6.7: Examples of how Tc scales with N for networks belonging to re-

gions I, II, III and IV of Fig. 6.6 (β = −0.8, −0.35, 0.0 and 0.9, respectively).

Symbols from MC simulations, with errorbars representing standard devia-

tions, and slopes from Eq. (6.7). All parameters – except for β and N – are

as in Fig. 6.1.

related (or disassortative) networks cannot. This may appear to be in con-

tradiction with a recent result obtained using spectral graph analysis – that

synchronizability of a set of coupled oscillators is highest for disassortative

networks (Brede and Sinha). A synchronous state of model oscillators and

a memory phase of model neurons are both sets of many simple dynamical

elements coupled via a network in such a way that a macroscopically coherent

situation is maintained (Barahona and Pecora, 2002). Obviously both systems

require the effective transmission of information among the elements. So why

are opposite results as regards the influence of topology reported for each sys-

tem? The answer is simple: whereas the definition of a synchronous state is

that every single element oscillate at the same frequency, it is precisely when

most elements are actually behaving randomly that the advantages to assor-

tativity we report become apparent. In fact, it can be seen in Fig. 6.2 that at

low temperatures disassortative networks perform the best, although the ef-

fect is small. This is reminiscent of percolation: at high densities of edges the

giant component is larger in disassortative networks, but in assortative ones a

non-vanishing fraction of nodes remain interconnected even at densities below

the usual percolation threshold (Newman, 2002, 2003a). Because in the case



6.4 Discussion 77

 0

 0.5

 1

 0  4  8

(Σ
ν(

µν 1)
2 )1/

2

T

β=-0.5
β=0

β=0.5

 

 

 

 0  4  8
T

β=-0.5
β=0

β=0.5

Figure 6.8: Global order parameter ζ for assortative (β = 0.5), neutral (β =

0.0) and disassortative (β = −0.5) networks with P = 3 (left panel) and

P = 10 (right panel) stored patterns. Symbols from MC simulations, with

errorbars representing standard deviations. All parameters are as in Fig. 6.1.

of targeted attacks it is this threshold which is taken as a measure of resilience,

we say that assortative networks perform the best. The relevance of partial

synchronization and the important role of hubs have already been noted for

systems of (weakly) coupled oscillators (Gómez-Gardenes et al., 2007; Pereira,

2010) – for which, however, assortativity has not been expected to be of con-

sequence (Pereira, 2010). In general, the optimal network for good conditions

(i.e., complete synchronization, high density of edges, low levels of noise) is not

necessarily the one which performs the best in bad conditions (partial synchro-

nization, low density of edges, high levels of noise). It seems that optimality

– whether in resilience or robustness – should thus be defined for particular

conditions.

We have used the technique suggested by Johnson et al. (2010b) to study

the effect of correlations on networks of model neurons, but many other sys-

tems of dynamical elements should be susceptible to a similar treatment. In

fact, Ising spins (Bianconi, 2002), Voter Model agents (Suchecki et al., 2005),

or Boolean nodes (Peixoto, 2010), for instance, are similar enough to binary

neurons that we should expect similar results for these models. If a moral
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can be drawn, it is that persistence of partial synchrony, or coherence of a

subset of highly connected dynamical elements, can sometimes be as relevant

(or more so) as the possibility of every element behaving in the same way. In

the case of real brain cells, experiments suggest that hub neurons play key

functional roles (Morgan and Soltesz, 2008; Bonifazi et al., 2009). From this

point of view, there may be a selective pressure for brain networks to become

assortative – although, admittedly, this organ engages in such complex be-

haviour that there must be many more functional constraints on its structure

than just a high robustness to noise. Nevertheless, it would be interesting to

investigate this aspect of biological systems experimentally. For this, it should

be borne in mind that heterogeneous networks have a natural tendency to be-

come disassortative, so it is against the expected value of correlations discussed

by Johnson et al. (2010b) that empirical data should be contrasted in order

to look for meaningful deviations towards assortativity. Similarly, it may be

necessary to take into account the correlations that could emerge due to the

spatial layout of neurons (Kaiser et al., 2007; Johnson et al., 2011). In any

case, it would be in areas of the cortex specifically related to memory – such

as the temporal (long-term memory) (Miyashita, 1988; Sakai and Miyashita,

1991) or prefrontal (short-term memory) (Camperi and Wang, 1998b; Compte

et al., 2003) lobes – that this effect might be relevant. A curious fact that

would seem to support our hypothesis is that whereas the vast majority of

non-social networks are disassortative (Newman, 2003c), one that appears ac-

tually to be strongly assortative is the functional network of the human cortex

(Egúıluz et al., 2005).



Chapter 7

Cluster Reverberation: A

mechanism for robust

short-term memory without

synaptic learning

Short-term memory cannot in general be explained the way long-term memory

can – as a gradual modification of synaptic conductances – since it takes place

too quickly. Theories based on some form of cellular bistability, however, do

not seem to be able to account for the fact that noisy neurons can collectively

store information in a robust manner. We show how a sufficiently clustered

network of simple model neurons can be instantly induced into metastable

states capable of retaining information for a short time. Cluster Reverbera-

tion, as we call it, could constitute a viable mechanism available to the brain

for robust short-term memory with no need of synaptic learning. Relevant phe-

nomena described by neurobiology and psychology, such as power-law statistics

of forgetting avalanches, emerge naturally from this mechanism.

7.1 Slow but sure, or fast and fleeting?

Of all brain phenomena, memory is probably one of the best understood (Amit,

1989; Abbott and Kepler, 1990; Torres and Varona, 2010). Consider a set of

many neurons, defined as elements with two possible states (firing or not firing,

one or zero) connected among each other in some way by synapses which carry

a proportion of the current let off by a firing neuron to its neighbours; the

probability that a given neuron has of firing at a certain time is then some

79
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function of the total current it has just received. Such a simplified model of

the brain is able to store and retrieve information, in the form of patterns of

activity (i.e., particular configurations of firing and non-firing neurons) when

the synaptic conductances, or weights, have been appropriately set according

to a learning rule (Hebb, 1949). Because each of the stored patterns becomes

an attractor of the dynamics, the system will evolve towards whichever of the

patterns most resembles the initial configuration. Artificial systems used for

tasks such as pattern recognition and classification, as well as more realistic

neural network models that take into account a variety of subcellular processes,

all tend to rely on this basic mechanism, known as Associative Memory (Amari,

1972; Hopfield, 1982).

Synaptic conductances in animal brains have indeed been found to be-

come strengthened or weakened during learning, via the biochemical processes

of long-term potentiation (LTP) and depression (LTD) (Malenka and Nicoll,

1999; Gruart et al., 2006; Roo et al., 2008; Rodŕıguez-Moreno and Paulsen,

2008; Kwag and Paulsen, 2009). Further support for the hypothesis that such a

mechanism underlies long-term memory (LTM) comes from psychology, where

it is being found more and more that so-called connectionist models fit in

well with observed brain phenomena (Marcus and G.F., 2001; Frank, 1997).

However, some memory processes take place on timescales of seconds or less

and in many instances cannot be accounted for by LTP and LTD (Durste-

witz et al., 2000), since these require at least minutes to be effected (Lee

et al., 1980; Klintsova and Greenough, 1999). For example, Sperling found

that visual stimuli are recalled in great detail for up to about one second af-

ter exposure (iconic memory) (Sperling, 1960); similarly, acoustic information

seems to linger for three or four seconds (echoic memory) (Cowan, 1984). In

fact, it appears that the brain actually holds and continually updates a kind of

buffer in which sensory information regarding its surroundings is maintained

(sensory memory) (Baddeley, 1999). This is easily observed by simply closing

one’s eyes and recalling what was last seen, or thinking about a sound after it

has finished. Another instance is the capability referred to as working mem-

ory (Durstewitz et al., 2000; Baddeley and A.D., 2003): just as a computer

requires RAM for its calculations despite having a hard drive for long term

storage, the brain must continually store and delete information to perform

almost any cognitive task. To some extent, working memory could consist in

somehow labelling or bringing forward previously stored concepts, like when

one is asked to remember a particular sequence of digits or familiar shapes.



7.1 Slow but sure, or fast and fleeting? 81

But we are also able to manipulate – if perhaps not quite so well – shapes and

symbols we have only just become acquainted with, too recently for them to

have been learned synaptically. We shall here use short-term memory (STM)

to describe the brain’s ability to store information on a timescale of seconds

or less1.

Evidence that short-term memory is related to sensory information while

long-term memory is more conceptual can again be found in psychology. For

instance, a sequence of similar sounding letters is more difficult to retain for

a short time than one of phonetically distinct ones, while this has no bearing

on long-term memory, for which semantics seems to play the main role (Con-

rad, 1964a,b); and the way many of us think about certain concepts, such as

chess, geometry or music, is apparently quite sensorial: we imagine positions,

surfaces or notes as they would look or sound. Most theories of short-term

memory – which almost always focus on working memory – make use of some

form of previously stored information (i.e., of synaptic learning) and so can

account for the labelling tasks referred to above but not for the instant recall of

novel information (Wang, 2001; Barak and Tsodyks, 2007; Roudi and Latham;

Mongillo et al., 2008; Mejias and Torres, 2009). Attempts to deal with the lat-

ter have been made by proposing mechanisms of cellular bistability : neurons

are assumed to retain the state they are placed in (such as firing or not fir-

ing) for some period of time thereafter (Camperi and Wang, 1998a; Teramae

and Fukai, 2005; Tarnow, 2008). Although there may indeed be subcellular

processes leading to a certain bistability, the main problem with short-term

memory depending exclusively on such a mechanism is that if each neuron

must act independently of the rest the patterns will not be robust to random

fluctuations (Durstewitz et al., 2000) – and the behaviour of individual neurons

is known to be quite noisy (Compte et al., 2003). It is worth pointing out that

one of the strengths of Associative Memory is that the behaviour of a given

neuron depends on many neighbours and not just on itself, which means that

robust global recall can emerge despite random fluctuations at an individual

1We should mention that sensory memory is usually considered distinct from STM – and
probably has a different origin – but we shall use “short-term memory” generically since
the mechanism we propose in this paper could be relevant for either or both phenomena.
On the other hand, the recent flurry of research in psychology and neuroscience on working
memory has lead to this term sometimes being used to mean short-term memory; strictly
speaking, however, working memory is generally considered to be an aspect of cognition
which operates on information stored in STM.
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level.

Something that, at least until recently, most neural network models have

failed to take into account is the structure of the network – its topology – it

often being assumed that synapses are placed among the neurons completely

at random, or even that all neurons are connected to all the rest (a mathe-

matically convenient but unrealistic situation). Although relatively little is yet

known about the architecture of the brain at the level of neurons and synapses,

experiments have shown that it is heterogeneous (some neurons have very many

more synapses than others), clustered (two neurons have a higher chance of be-

ing connected if they share neighbours than if not) and highly modular (there

are groups, or modules, with neurons forming synapses preferentially to those

in the same module) (Sporns et al., 2004; Johnson et al., 2010a). This chapter

describes the main result of Ref. (Johnson et al., 2011) – namely, that it suf-

fices to use a more realistic topology, in particular one which is modular and/or

clustered, for a randomly chosen pattern of activity the system is placed in to

be metastable. This means that novel information can be instantly stored and

retained for a short period of time in the absence of both synaptic learning and

cellular bistability. The only requisite is that the patterns be coarse grained

versions of the usual patterns – that is, whereas it is often assumed that each

neuron in some way represents one bit of information, we shall allocate a bit

to a small group or neurons2 (four or five can be enough).

The mechanism, which we call Cluster Reverberation, is very simple. If

neurons in a group are more highly connected to each other than to the rest

of the network, either because they form a module or because the network

is significantly clustered, they will tend to retain the activity of the group:

when they are all initially firing, they each continue to receive many action

potentials and so go on firing, whereas if they start off silent, there is not

usually enough input current from the outside to set them off. The fact that

each neuron’s state depends on its neighbours conferres to the mechanism a

certain robustness in the face of random fluctuations. This robustness is par-

ticularly important for biological neurons, which as mentioned are quite noisy.

Furthermore, not only does the limited duration of short-term memory states

emerge naturally from this mechanism (even in the absence of interference

from new stimuli) but this natural forgetting follows power-law statistics, as

2This does not, of course, mean that memories are expected to be encoded as bitmaps.
Just as with individual neurons, positions or orientations, say, could be represented by the
activation of particular sets of clusters.
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in experimental settings (Wixted and Ebbesen, 1991, 1997; Sikström, 2002).

The process is reminiscent both of block attractors in ordinary neural net-

works (Dominguez et al., 2009) and of domains in magnetic materials (A. and

R., 1998), while Muñoz et al. have recently highlighted a similarity with Grif-

fiths phases on networks (Muñoz et al., 2010). It can also be interpreted as

a multiscale phenomenon: the mesoscopic clusters take on the role usually

played by individual neurons, yet make use of network properties. Although

the mechanism could also work in conjunction with other ones, such as synaptic

learning or cellular bistability, we shall illustrate it by considering the simplest

model which has the necessary ingredients: a set of binary neurons linked by

synapses of uniform weight according to a topology whose modularity or clus-

tering we shall tune. As with Associative Memory, this mechanism of Cluster

Reverberation appears to be simple and robust enough not to be qualitatively

affected by the complex subcellular processes incorporated into more realis-

tic neuron models – such as integrate-and-fire or Hodgkin-Huxley neurons.

However, such refinements are probably needed to achieve graded persistent

activity, since the mean frequency of each cluster could then be set to a certain

value.

7.2 The simplest neurons on modular networks

We consider a network of N model neurons, with activities si = ±1. The topol-

ogy is given by the adjacency matrix âij = {1, 0}, each element representing

the existence or absence of a synapse from neuron j to neuron i (â need not

be symmetric). In this kind of model, each edge usually has a synaptic weight

associated, ωij ∈ R; however, we shall here consider these to have all the same

value: ωij = ω ∀i, j. Neurons are updated in parallel (Little dynamics) at each

time step, according to the stochastic transition rule

P (si → ±1) = ±1

2
tanh

(
hi

T

)
+

1

2
,

where the field of neuron i is defined as

hi = ω
N∑
j

âijsj

and T is a parameter we shall call temperature.

First of all, we shall consider the network defined by â to be made up

of M distinct modules. To achieve this, we can first construct M separate
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random directed networks, each with n = N/M nodes and mean degree (mean

number of neighbours) ⟨k⟩. Then we evaluate each edge and, with probability

λ, eliminate it, to be substituted for another edge between the original post-

synaptic neuron and a new pre-synaptic neuron chosen at random from among

any of those in other modules3. Note that this protocol does not alter the

number of pre-synaptic neighbours of each node, kin
i =

∑
j âij (although the

number of post-synaptic neurons, kout
i =

∑
j âji, can vary). The parameter λ

can be seen as a measure of modularity of the partition considered, since it

coincides with the expected value of the proportion of edges that link different

modules. In particular, λ = 0 defines a network of disconnected modules,

while λ = 1 − M−1 yields a random network in which this partition has no

modularity. If λ ∈ (1 − M−1, 1), the partition is less than randomly modular

– i.e., it is quasi-multipartite (or multipartite if λ = 1).

If the size of the modules is of the order of ⟨k⟩, the network will also be

highly clustered. Taking into account that the network is directed, let us

define the clustering coefficient Ci as the probability, given that there is a

synapse from neuron i to a neuron j and from another neuron l to i, that

there be a synapse from j to l: that is, that there exist a feedback loop

i → j → l → i. Then, assuming M ≫ 1, the expected value of the clustering

coefficient C ≡ ⟨Ci⟩ is

C & ⟨k⟩ − 1

n − 1
(1 − λ)3.

7.3 Cluster Reverberation

A memory pattern, in the form of a given configuration of activities, {ξi =

±1}, can be stored in this system with no need of prior learning. Imagine a

pattern such that the activities of all n neurons found in any module are the

same, i.e., ξi = ξµ(i), where the index µ(i) denotes the module that neuron i

belongs to. This can be thought of as a coarse graining of the standard idea of

memory patterns, in which each neuron represents one bit of information. In

our scheme, each module represents – and stores – one bit. The system can be

induced into this configuration via the application of an appropriate stimulus

(see Fig. 7.1): the field of each neuron will be altered for just one time step

3We do not allow self-edges (although these can occur in reality) since they can be
regarded as a form of cellular bistability.
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Figure 7.1: Diagram of a modular network composed of four five-neuron clus-

ters. The four circles enclosed by the dashed line represent the stimulus: each

is connected to a particular module, which adopts the input state (red or blue)

and retains it after the stimulus has disappeared via Cluster Reverberation.

according to

hi → hi + δξµ(i), ∀i,

where the factor δ is the intensity of the stimulus. This mechanism for dy-

namically storing information will work for values of parameters such that the

system is sensitive to the stimulus, acquiring the desired configuration, yet also

able to retain it for some interval of time thereafter.

The two main attractors of the system are si = 1 ∀i and si = −1 ∀i. These

are the configurations of minimum energy (see the next section for a more

detailed discussion on energy). However, the energy is locally minimised for

any configuration in which si = dµ(i) ∀i with dµ = ±1; that is, configurations

such that each module comprises either all active or all inactive neurons. These

are the configurations that we shall use to store information. We define the
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mean activity4 of each module,

mµ ≡ 1

n

n∑
i∈µ

si,

which is a mesoscopic variable, as well as the global mean activity,

m ≡ 1

N

N∑
i

si =
1

M

M∑
µ

mµ

(these magnitudes change with time, but, where possible, we shall avoid writ-

ing the time dependence explicitely for clarity). The extent to which the

network, at a given time, retains the pattern {ξi} with which it was stimulated

is measured with the overlap parameter

mstim ≡ 1

N

N∑
i

ξisi =
1

M

M∑
µ

ξµmµ.

Ideally, the system should be capable of reacting immediately to a stimulus by

adopting the right configuration, yet also be able to retain it for long enough

to use the information once the stimulus has disappeared. A measure of per-

formance for such a task is therefore

η ≡ 1

τ

t0+τ∑
t=t0+1

mstim(t),

where t0 is the time at which the stimulus is received and τ is the period of

time we are interested in (|η| ≤ 1) (Johnson et al., 2008). If the intensity

of the stimulus, δ, is very large, then the system will always adopt the right

pattern perfectly and η will only depend on how well it can then retain it.

In this case, the best network will be one that is made up of unconnected

modules. However, since the stimulus in a real brain can be expected to arrive

via a relatively small number of axons, either from another part of the brain or

directly from sensory cells, it is more realistic to assume that δ is of a similar

order as the input a typical neuron receives from its neighbours, ⟨h⟩ ∼ ω⟨k⟩.
Fig. 7.2 shows the mean performance obtained when the network is repeat-

edly stimulated with different randomly generated patterns. For low enough

values of the modularity λ and stimuli of intensity δ & ω⟨k⟩, the system can

4The mean activity in a neural network model is usually taken to represent the mean
firing rate measured in experiments (Torres and Varona, 2010).
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capture and successfully retain any pattern it is “shown” for some period of

time, even though this pattern was in no way previously learned. For less in-

tense stimuli (δ < ω⟨k⟩), performance is nonmonotonic with modularity: there

exists an optimal value of λ at which the system is sensitive to stimuli yet still

able to retain new patterns quite well.

It is worth noting that performance can also break down due to thermal

fluctuations. The two main attractors of the system (si = 1 ∀i and si = −1 ∀i)

suffer the typical second order phase transition of the Hopfield model (Hopfield,

1982), from a memory phase (one in which m = 0 is not stable and stable

solutions m ̸= 0 exist) to one with no memory (with m = 0 the only stable

solution), at the critical temperature (Johnson et al., 2008)

Tc = ω
⟨k2

in⟩
⟨k⟩

.

(Note that, in a directed network, ⟨kin⟩ = ⟨kout⟩ ≡ ⟨k⟩, although the other

moments can in general be different.) The metastable states we are interested

in, though, have a critical temperature

T ′
c = (1 − λ)Tc

(assuming that the mean activity of the network is m ≃ 0). That is, the

temperature at which the modules are no longer able to retain their individual

activity is in general lower than that at which the the solution m = 0 for the

whole network becomes stable.

7.4 Energy and topology

Each pair of nodes contributes a configurational energy eij = −ω 1
2
(âij+âji)sisj;

that is, if there is an edge from i to j and they have opposite activities, the

energy is increased in 1
2
ω, whereas it is decreased by the same amount if their

activities are the same. Given a configuration, we can obtain its associated

energy by summing over all pairs. We shall be interested in configurations with

x neurons that have s = +1 (and N − x with s = −1), chosen in such a way

that one module at most, say µ, has neurons in both states simultaneously.

Therefore, x = nρ + z, where ρ is the number of modules with all their neu-

rons in the positive state and z is the number of neurons with positive sign in

module µ. We can write m = (2x−1)/N and mµ = (2z−1)/n. The total con-

figurational energy of the system will be E =
∑

ij eij = 1
2
ω(L↑↓−⟨k⟩N), where

L↑↓ is the number of edges linking nodes with opposite activities. By simply
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Figure 7.2: Performance η against λ for networks of the sort described in the

main text with M = 160 modules of n = 10 neurons, ⟨k⟩ = 9; patterns are

shown with intensities δ = 8.5, 9 and 10, and T = 0.02 (lines – splines – are

drawn as a guide to the eye). Inset: typical time series of mstim (i.e., the

overlap with whichever pattern was last shown) for λ = 0.0, 0.25, and 0.5, and

δ = ⟨k⟩ = 9.

counting over edges, we can obtain the expected value of L↑↓ (which amounts

to a mean-field approximation because we are substituting the number of edges

between two neurons for its expected value), yielding:

E

ω⟨k⟩
= (1 − λ)

z(n − z)

n − 1

+
λn

N − n
{ρ[n − z + n(M − ρ − 1)] + (M − ρ − 1)(z + nρ)} − 1

2
N. (7.1)

Fig. 7.3 shows the mean-field configurational energy curves for various values

of the modularity on a small modular network. The local minima (metastable

states) are the configurations used to store patterns. It should be noted that

the mapping x → m is highly degenerate: there are CM
mM patterns with mean

activity m that all have the same energy.

7.5 Forgetting avalanches

In obtaining the energy we have assumed that the number of synapses rewired

from a given module is always ν = ⟨k⟩nλ. However, since each edge is evaluated
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Figure 7.3: Configurational energy of a network composed of M = 20 modules

of n = 10 neurons each, according to Eq. (7.1), for various values of the

rewiring probability λ. The minima correspond to situations such that all

neurons within any given module have the same sign.

with probability λ, ν will in fact vary somewhat from one module to another,

being approximately Poisson distributed with mean ⟨ν⟩ = ⟨k⟩nλ. The depth

of the energy well corresponding to a given module is then, neglecting all but

the first term in Eq. (7.1) and approximating n − 1 ≃ n,

∆E ≃ 1

4
ω(n⟨k⟩ − ν).

The typical escape time τ from an energy well of depth ∆E at temperature

T is τ ∼ e∆E/T (Levine and R.D., 2005). Using Stirling’s approximation in

the Poissonian distribution of ν and expressing it in terms of τ , we find that

the escape times are distributed according to

P (τ) ∼
(

1 − 4T

ωn⟨k⟩
ln τ

)− 3
2

τ−β(τ), (7.2)

where

β(τ) = 1 +
4T

ωn⟨k⟩

[
1 + ln

(
λn⟨k⟩

1 − 4T
ωn⟨k⟩ ln τ

)]
. (7.3)

Therefore, at low temperatures, P (τ) will behave approximately like a power-

law. The left panel of Fig. 7.4 shows the distribution of time intervals between

events in which the overlap mµ of at least one module µ changes sign. The

power-law-like behaviour is apparent, and justifies talking about forgetting

avalanches – since there are cascades of many forgetting events interspersed
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Figure 7.4: Left panel: distribution of escape times τ , as defined in the main

text, for λ = 0.25 and T = 2. Slope is for β = 1.35. Other parameters as in

Fig. 7.2. Symbols from MC simulations and line given by Eqs. (7.2) and (7.3).

Right panel: exponent β of the quasi-power-law distribution p(τ) as given by

Eq. (7.3) for temperatures T = 1 (red line), T = 2 (green line) and T = 3

(blue line).

with long periods of metastability. This is very similar to the behaviour ob-

served in other nonequilibrium settings in which power-law statistics arise from

the convolution of exponentials (Hurtado et al., 2008; Muñoz et al., 2010).

It is known from experimental psychology that forgetting in humans is

indeed well described by power-laws (Wixted and Ebbesen, 1991, 1997; Sik-

ström, 2002). The right panel of Fig. 7.4 shows the value of the exponent β(τ)

as a function of τ . Although for low temperatures it is almost constant over

many decades of τ – approximating a pure power-law – for any finite T there

will always be a τ such that the denominator in the logarithm of Eq. (7.3)

approaches zero and β diverges, signifying a truncation of the distribution.

7.6 Clustered networks

Although we have illustrated how the mechanism of Cluster Reverberation

works on a modular network, it is not actually necessary for the topology to

have this characteristic – only for the patterns to be in some way “coarse-

grained,” as described, and that each region of the network encoding one bit

have a small enough parameter λ, defined as the proportion of synapses to

other regions. For instance, for the famous Watts-Strogatz small-world model
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(Watts and Strogatz, 1998) – a ring of N nodes, each initially connected to its

k nearest neighbours before a proportion p of the edges are randomly rewired

– we have λ ≃ p (which is not surprising considering the resemblance between

this model and the modular network used above). More precisely, the expected

modularity of a randomly imposed box of n neurons is

λ = p − n − 1

N − 1
p +

1 − p

n

(
k

4
− 1

2

)
,

the second term on the right accounting for the edges rewired to the same box,

and the third to the edges not rewired but sufficiently close to the border to

connect with a different box.

Perhaps a more realistic model of clustered network would be a random

network embedded in d-dimensional Euclidean space. For this we shall use the

scheme laid out by Rozenfeld et al. (Rozenfeld et al., 2002), which consists

simply in allocating each node to a site on a d-torus and then, given a par-

ticular degree sequence, placing edges to the nearest nodes possible – thereby

attempting to minimise total edge length5. For a scale-free degree sequence

(i.e., a set {ki} drawn from a degree distribution p(k) ∼ k−γ) according to

some exponent γ, then, as shown in B, such a network has a modularity

λ ≃ 1

d(γ − 2) − 1

[
d(γ − 2)l−1 − l−d(γ−2)

]
, (7.4)

where l is the linear size of the boxes considered.

Fig. 7.5 compares this expression with the value obtained numerically after

averaging over many network realizations, and shows that it is fairly good –

considering the approximations used for its derivation. It is interesting that

even in this scenario, where the boxes of neurons which are to receive the

same stimulus are chosen at random with no consideration for the underlying

topology, these boxes need not have very many neurons for λ to be quite low

(as long as the degree distribution is not too heterogeneous).

Carrying out the same repeated stimulation test as on the modular net-

works in Fig. 7.2, we find a similar behaviour for the scale-free embedded

networks. This is shown in Fig. 7.6, where for high enough intensity of stim-

uli δ and scale-free exponent γ, performance can, as in the modular case, be

η ≃ 1. We should point out that for good performance on these networks we

require more neurons for each bit of information than on modular networks

5The authors also consider a cutoff distance, but we shall take this to be infinite here.
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Figure 7.5: Proportion of outgoing edges, λ, from boxes of linear size l against

exponent γ for scale-free networks embedded on 2D lattices. Lines from Eq.

(7.4) and symbols from simulations with ⟨k⟩ = 4 and N = 1600.
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Figure 7.6: Performance η against exponent γ for scale-free networks, embed-

ded on a 2D lattice, with patterns of M = 16 modules of n = 100 neurons

each, ⟨k⟩ = 4 and N = 1600; patterns are shown with intensities δ = 3.5, 4, 5

and 10, and T = 0.01 (lines – splines – are drawn as a guide to the eye). Inset:

typical time series for γ = 2, 3, and 4, with δ = 5.
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with the same λ (in Fig. 7.6 we use n = 100, as opposed to n = 10 in Fig.

7.2). However, that we should be able to obtain good results for such diverse

network topologies underlines that the mechanism of Cluster Reverberation

is robust and not dependent on some very specific architecture. In fact, we

have recently shown that similar metastable memory states can also occur on

networks which have random modularity and clustering, but a certain degree

of assortativity6 (de Franciscis et al., 2011).

7.7 Yes, but does it happen in the brain?

As we have shown, Cluster Reverberation is a mechanism available to neural

systems for robust short-term memory without synaptic learning. To the best

of our knowledge, this is the first mechanism proposed which has these charac-

teristics – essential for, say, sensory memory or certain working-memory tasks.

All that is needed is for the network topology to be highly clustered or modu-

lar, and for small groups of neurons to store one bit of information, as opposed

to the conventional view which assumes one bit per neuron. Considering the

enormous number of neurons in the brain, and the fact that real individual

neurons are probably too noisy to store information reliably, these hypotheses

do not seem farfetched. The mechanism is furthermore consistent both with

what is known about the topology of the brain, and with experiments which

have revealed power-law forgetting.

Since the purpose of this paper is only to describe the mechanism of Clus-

ter Reverberation, we have made use of the simplest possible model neurons –

namely, binary neurons with static, uniform synapses – for the sake of clarity

and generality. However, there is no reason to believe that the mechanism

would cease to function if more neuronal ingredients were to be incorporated.

In fact, cellular bistability, for instance, would increase performance, and the

two mechanisms could actually work in conjunction. Similarly, we have also

used binary patterns to store information. But it is to be expected that pat-

terns depending on any form of frequency coding, for instance, could also

be maintained with more sophisticated neurons – such that different modules

could be set to different mean frequencies.

Whether Cluster Reverberation would work for biological neural systems

6The assortativity of a network is here understood to mean the extent to which the
degrees of neighbouring nodes are correlated (Johnson et al., 2010b).
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could be put to the test by growing such modular networks in vitro, stimulating

appropriately, and observing the duration of the metastable states. In vivo

recordings of neural activity during short-term memory tasks, together with

a mapping of the underlying synaptic connections, could be used to ascertain

whether the brain does indeed make use of this mechanism – although for this

it must be borne in mind that the neurons forming a module need not find

themselves close together in metric space. We hope that experiments such as

these will be carried out and eventually reveal something more about the basis

of this puzzling emergent property of the brain’s known as thought.



Chapter 8

Concluding remarks

“As long as the brain is a mystery, the universe will remain a mystery,” claimed

Santiago Ramón y Cajal. Our very essence seems to reside somehow in the

workings of this organ, probably as a consequence of electro-chemical signalling

that goes on among its hundred billion or so constituent neurons. Will this

mystery ever be cleared up? We know of other objects that process informa-

tion in highly sophisticated ways – electronic computers. Faced with a sudden

blue screen, one may be forgiven for calling these devices incomprehensible and

capricious, even malevolent. But in fact most educated people understand, on

some level at least, what mechanisms and physical processes are behind the

complex behaviour displayed by computers, and do not consider the issue a

mystery. This is not to suggest that the analogy between brain and computer

should be taken any further than to illustrate how a great many elements, each

executing some fairly simple and obvious operation, can “cooperate” to yield

astonishingly complicated yet functional behaviour; and that one can grasp

how this occurs without having to know every detail. But we have not yet

reached this point as regards the brain. Much progress has been made con-

cerning aspects of physiology, while once unassailable mental disorders such

as phobias can now be easily cured by psychology. Yet as far as what mecha-

nisms relate these two levels of description goes, perhaps all we can safely say

for now is that synaptic plasticity is responsible for long-term memory. The

origins of even some well-defined and much studied cognitive abilities – such

as probabilistic reasoning or short-term memory – remain somewhat elusive,

while the nature of consciousness, say, is still truly a mystery. However, if

instead of developing computers ourselves we had been given them by an alien

species, we could still hope one day to unravel the mysteries of their magic. In

much the same manner, by searching for ways in which collections of neurons

95
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might perform tasks such as we know them to be capable of, we will some day

understand not only how our stomachs digest and our hearts pump, but also

how our brains think.

I cannot pretend that the work described here takes us more than, at best,

a tiny step of the way along this path. The brain is, among other things,

a network, and networks are a kind of mathematical object about which we

now know much more than just a few years ago. In fact, they are a central

element of what can arguably be called the most challenging frontier currently

facing human understanding about the world – the nature of complex systems.

So, from among the innumerable aspects likely to shape and determine the

way neurons cooperate, the research presented here focuses on the structure

of the underlying network. First of all it looks at how this structure can

develop. Chapter 3 addressed this by formalizing as a stochastic process a

situation governed by probabilistic events like synaptic growth and death. Such

simple individual behaviour was shown to be enough to explain many statistical

features of real neural systems. Furthermore, this Fokker-Planck description

relating microscopic, stochastic actions to a macroscopic evolution of properties

such as mean synaptic density, degree heterogeneity or assortativity may help

to gain insights into the biochemical processes taking place.

The rest of the thesis is mostly devoted to how aspects of a neural network’s

topology might influence or even determine its ability to carry out certain tasks

akin to those the brain undertakes. The fact that dynamical memory perfor-

mance ensuing from synaptic depression is favoured by a highly heterogeneous

degree distribution, laid out in Chapter 4, may help to explain why the brain

seems to display such a topology at several levels of description – perhaps

somehow maintaining itself close to a critical point. Similarly, the enhanced

robustness to noise found for positively correlated networks in Chapter 6 sug-

gests a functional advantage to a neural network being thus wired; a prediction

also in agreement with some experimental findings.

As far as unearthing the mechanisms underpinning how neurons can per-

form cognitive tasks goes, though, perhaps the most interesting idea proposed

is that of Cluster Reverberation, in Chapter 7, whereby thanks to modularity

and/or clustering a neural network is able to store information instantly, with-

out requiring biochemical changes in the synapses. Time will tell whether real

neural systems do indeed harness this mechanism to perform certain short-term

memory tasks.

A collateral but noteworthy aspect of this research is the potentiality for
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application elsewhere of some of the mathematical techniques developed. Most

of all, the method for studying correlated networks and dynamics thereon put

forward in Chapter 5 for use in Chapter 6 can be expected to find widespread

use. The answer to the question of why most networks are disassortative given

in Chapter 5, or the relation between degree-degree correlations and nestedness

described in Appendix C are examples of this.

Finally I must mention not just the answers I hope to have provided, or at

least hinted at, to some unsolved problems, but also the questions that have

been posed and challenges laid bare: Would a more detailed description of

brain development still be possible with Fokker-Planck equations? Are these

topological effects, found to be at work for the simplest neural models, indeed

so relevant for real neurons? Can Cluster Reverberation be performed in vitro?

The greatest function this thesis could perform would be to stimulate others

to look into these or related issues in more depth than here. But I also hope

it may serve to illustrate the sentiment, What matters how long the path to

the final unravelling of the mysteries is, as long as the going is fun?





Chapter 9

Conclusiones en español

“Mientras el cerebro sea un misterio, el universo continuará siendo un miste-

rio”, dijo una vez Santiago Ramón y Cajal. Parece que nuestra misma esencia

reside de alguna manera en el funcionamiento de este órgano, probablemente

como consecuencia de las señales electro-qúımicas entre sus aproximadamente

cien mil millones de neuronas. ¿Se resolverá algún d́ıa este misterio? Conoce-

mos otros objetos capaces de procesar información de manera altamente sofisti-

cada: los ordenadores electrónicos. Confrontados con un pantallazo azul, se

nos podŕıa perdonar el tildar este tipo de aparatos de incomprensibles y capri-

chosos, por no decir malévolos. Pero en realidad la mayor parte de la gente

entiende, al menos en algún nivel, cuáles son los mecanismos y procesos f́ısicos

que subyacen el comportamiento complejo del que hacen gala los ordenadores,

y no consideran que el tema sea un misterio. No es que la analoǵıa entre

cerebro y ordenador deba ser llevado más lejos que para ilustrar cómo muchos

elementos, cada uno ejecutando alguna operación relativamente simple y obvia,

pueden “cooperar” y mostrar un comportamiento colectivo asombrosamente

complicado, pero funcional; y que se puede comprender cómo ocurre esto sin

necesidad de conocer hasta el último detalle. Aún no hemos llegado a poder

responder a esta pregunta en lo que respecta al cerebro. Hemos ampliado

enormemente nuestro conocimiento de aspectos fisiológicos, y trastornos men-

tales antaño incurables, como las fobias, son fácilmente tratadas hoy en d́ıa

por la psicoloǵıa. En cuanto a los mecanismos que relacionan estos dos niveles

de descripción, posiblemente lo único que podamos decir a ciencia cierta es que

la plasticidad sináptica está detrás de la memoria a largo plazo. Los oŕıgenes

incluso de algunas habilidades cognitivas bien definidas y extensamente estu-

diadas, como el razonamiento probabiĺıstico o la memoria a corto plazo, están

aún por descifrar completamente; mientras que, por ejemplo, la naturaleza de
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la consciencia es verdaderamente aún un misterio. Sin embargo, si en lugar de

haber desarrollado los ordenadores nosotros mismos los hubiésemos recibido de

una especie alieńıgena, aún aśı podŕıamos esperar algún d́ıa desenmarañar los

misterios de su magia. Del mismo modo, buscando maneras de que conjuntos

de neuronas puedan realizar el tipo de tareas de las que las sabemos capaces,

algún d́ıa entenderemos no sólo cómo nuestros estómagos digieren y nuestros

corazones laten, sino también cómo nuestros cerebros piensan.

Este trabajo, en el mejor de los casos, nos avanza un paso infinitesimal por

este camino. El cerebro es, entre otras muchas cosas, una red, y las redes son

objetos matemáticos sobre los que sabemos hoy mucho más que hace tan sólo

unos años. De hecho, son un elemento fundamental para uno de los mayores re-

tos con los que se enfrenta actualmente el conocimiento humano: la naturaleza

de los sistemas complejos. Aśı que, de entre los innumerables aspectos suscepti-

bles de modificar y determinar cómo las neuronas cooperan, esta investigación

se centra en la estructura de la red subyacente. Primero analiza cómo dicha

estructura puede desarrollarse. El Caṕıtulo 3 enfoca esto formalizando medi-

ante la teoŕıa de los procesos estocásticos una situación gobernada por eventos

probabiĺısticos tales como el crecimiento y la muerte sinápticas. Se demuestra

que este tipo de comportamiento individual es suficiente para explicar muchas

propiedades estad́ısticas de las redes de cerebros reales. Por otra parte, este

marco teórico puede ser reducido a una descripción en términos de ecuaciones

de Fokker-Planck, que relacionan acciones microscópicas estocásticas con la

evolución macroscṕica de propiedades como la densidad sináptica media, la

heterogeneidad de la distribución de grados o la asortatividad, que quizás nos

permita extraer información relevante acerca de los procesos bioqúımicos in-

volucrados.

La mayor parte del resto de la tesis trata de cómo aspectos de la topoloǵıa

de una red neuronal pueden influenciar o incluso determinar su habilidad para

ejecutar ciertas tareas cognitivas como las que se describen en un cerebro o

medio neuronal real. Por ejemplo, el hecho de que, en cuanto a la memoria

dinámica que emerge gracias a la depresión sináptica, el rendimiento es mayor

para una distribución de grados altamente heterogénea, como demuestra el

Caṕıtulo 4, podŕıa ayudar a explicar por qué el cerebro parece mostrar una

topoloǵıa de este tipo en varios niveles de descripción, quizás incluso man-

teniéndo su actividad, de alguna manera todav́ıa no comprendida del todo,

cerca de un punto cŕıtico. De igual modo, la mayor robustez durante los pro-

cesos cognitivos en presencia de ruido en el caso de redes con correlaciones



101

positivas como se ha descrito en el Caṕıtulo 6 sugiere que existe una ventaja

funcional para una red neuronal en adoptar esta propiedad; una predicción

que también encaja con algunos hallazgos experimentales.

En lo que se refiere a desentrañar los mecanismos que permiten a las

neuronas realizar colectivamente tareas cognitivas, quizás la idea más intere-

sante aqúı propuesta es la de Cluster Reverberation (Reverberación de Grupo),

en el Caṕıtulo 7, según la cual, gracias a la modularidad y/o el grado de

“agrupamiento”, una red neuronal es capaz de almacenar información in-

stantáneamente, sin requerir para ello cambios bioqúımicos de potenciación o

depresión a largo plazo en las sinapsis. El tiempo dirá si el cerebro aprovecha

realmente este mecanismo para realizar ciertas tareas de memoria de corto

plazo.

Un aspecto colateral pero digno de mención de este trabajo es el de la

potencialidad de algunas de las técnicas matemáticas desarrolladas de ser apli-

cadas para otras situaciones de interés. Sobre todo, es de esperar que el método

para estudiar redes correlacionadas, y dinámicas sobre ellas, propuesto en el

Caṕıtulo 5 y utilizado en el Caṕıtulo 6, sea útil para una amplia gama de prob-

lemas. La respuesta, en el Caṕıtulo 5, a la pregunta de por qué la mayoŕıa de

las redes son disasortativas, o la relación entre correlaciones entre los nodos y

el “anidamiento” descrita en el Apéndice C son ejemplos de aplicaciones.

Finalmente, hay que mencionar no sólo las respuestas que se han intentado

dar, o al menos sugerir, con esta tesis para algunos problemas sin resolver,

sino también las preguntas y los nuevos retos que han surgido: por ejemplo,

¿seŕıa posible, también con ecuaciones de Fokker-Planck, una descripción más

detallada del desarrollo cerebral? ¿Son estos efectos topológicos, descritos para

los modelos neuronales más sencillos, realmente tan relevantes para neuronas

de verdad? ¿Puede el mecanismo de Cluster Reverberation ocurrir in vitro? En

definitiva, la mayor función que pudiera cumplir esta tesis seŕıa la de estimular

a otra/os para que indaguen en estos y otros temas más profundamente que

aqúı. Pero quizás también sirva para ilustrar el siguiente sentimiento: ¿qué

más da cuán largo sea el camino hacia el desenmarañamiento último de los

misterios, siempre que el trayecto sea divertido?





Appendix A

Nonlinear preferential rewiring

in fixed-size networks as a

diffusion process

We present an evolving network model in which the total numbers of nodes

and edges are conserved, but in which edges are continuously rewired according

to nonlinear preferential detachment and reattachment. Assuming power-law

kernels with exponents α and β, the stationary states the degree distribu-

tions evolve towards exhibit a second order phase transition – from relatively

homogeneous to highly heterogeneous (with the emergence of starlike struc-

tures) at α = β. Temporal evolution of the distribution in this critical regime

is shown to follow a nonlinear diffusion equation, arriving at either pure or

mixed power-laws, of exponents −α and 1 − α.

Complex systems may often be described as a set of nodes with edges

connecting some of them – the neighbours – (see, for instance, Refs.(Boccaletti

et al., 2006; Arenas et al., 2008a; Marro et al., 2008)). The number of edges

a particular node has is called its degree, k. The study of such large networks

is usually made simpler by considering statistical properties, e.g., the degree

distribution, p(k) (probability of finding a node with a particular degree).

It turns out that a high proportion of real-world networks follow power-law

degree distributions, p(k) ∼ k−γ – referred to as scale-free due to their lack

of a characteristic size. Also, many of them have their edges placed among

the nodes apparently in a random way – i.e., there is no correlation between

the degree of a node and any other of its properties, such as the degrees

of its neighbours. Barabási and Albert (Barabási and Albert, 1999) applied

the mechanism of preferential attachment to an evolving network model and
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as a diffusion process

showed how this resulted in the degree distributions becoming scale-free for

long enough times. For this to work, attachment had to be linear – i.e., the

probability a node with degree k has of receiving a new edge is π(k) ∼ k + q.

This results in scale-free stationary degree distributions with an exponent γ =

3 − q.

Preferential attachment seems to be behind the emergence of many real-

world, continuously growing networks. However, not all networks in which

some nodes at times gain (or loose) new edges have a continuously growing

number of nodes. For example, a given group of people may form an evolv-

ing social network (Kossinets and Watts, 2006) in which the edges represent

friendship. Preferential attachment may be relevant here – the more people

you know, the more likely it is that you will be introduced to someone new –

but probabilities are not expected to depend linearly on degree. For instance,

there may be saturations (highly connected people might become less acces-

sible), threshold effects (hermits may be prone to antisocial tendencies), and

other non-linearities. The brain may also be a relevant case. Once formed, the

number of neurons does not seem to continually augment, and yet its struc-

tural topology is dynamic (Klintsova and Greenough, 1999). Synaptic growth

and dendritic arborization have been shown to increase with electric stimula-

tion (Lee et al., 1980; Roo et al., 2008) – and, in general, the more connected

a neuron is, the more current it receives from the sum of its neighbours.

Barabási and Albert showed that both (linear) preferential attachment and

an ever-growing number of nodes are needed for scaling to emerge in their

model. In a fixed population, their mechanism would result in a fully-connected

network. However, this is not normally observed in real systems. Rather, just

as some new edges sprout, others disappear – less used synapses suffer atro-

phy, unstimulating friendships wither. Often, the numbers of both nodes and

edges remain roughly constant. The same authors did therefore extend their

model so as to include the effects of preferential rewiring (which could be ap-

plied to fixed-size networks), although again probabilities depended linearly on

node degree (Albert and Barabási, 2000). Another mechanism which (roughly)

maintains constant the numbers of nodes and edges is node fusing (Thurner

et al., 2007), once more according to linear probabilities. As to nonlinear pref-

erential attachment, the (growing) BA model was extended to take power-law

probabilities into account (Krapivsky et al., 2000), although the solutions are

only scale free for the linear case.

In this note we present an evolving network model with preferential rewiring
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according to nonlinear (power-law) probabilities. The number of nodes and

edges is conserved but the topology evolves, arriving eventually at a macro-

scopically (nonequilibrium) stationary state – as described by global properties

such as the degree distribution. Depending on the exponents chosen for the

rewiring probabilities, the final state can be either fairly homogeneous, with

a typical size, or highly heterogeneous, with the emergence of starlike struc-

tures. In the critical case marking the transition between these two regimes,

the degree distribution is shown to follow a nonlinear diffusion equation. This

describes a tendency towards stationary states that are characterized either by

scale-free or by mixed scale-free distributions, depending on parameters.

Our model consists of a random network with N nodes of respective de-

gree ki, i = 1, 2, ..., N, and 1
2
N ⟨k⟩ edges. Initially, the degrees have a given

distribution p(k, t = 0). At each time step, one node is chosen with a proba-

bility which is a function of its degree, ρ(ki). One of its edges is then chosen

randomly and removed from it, to be reconnected to another node j chosen

according to a probability π(kj). That is, an edge is broken and another one is

created, and the total number of edges, as well as the total number of nodes,

is conserved. The functions π(k) and ρ(k) are arbitrary, but we shall explic-

itly illustrate here π(ki) ∼ kα
i and ρ(ki) ∼ kβ

i that capture the essence of a

wide class of nonlinear monotonous response functions and are easy to handle

analytically.

The probabilities π and ρ a given node has, at each time step, of increasing

or decreasing its degree can be interpreted as transition probabilities between

states. The expected value of the increment in a given p(k, t) at each time

step, ∆p(k, t), may then be written as

∂p(k, t)

∂t
= (k − 1)α k̄−1

α p(k − 1, t)

+ (k + 1)β k̄−1
β p(k + 1, t) (A.1)

−
(
kα k̄−1

α + kβ k̄−1
β

)
p(k, t),

where k̄a = k̄a (t) =
∑

k kap(k, t). If it exists, any stationary solution must

satisfy the condition pst(k + 1) (k + 1)β k̄st
α = pst(k) kα k̄st

β which, for k ≫ 1,

implies that

∂pst(k)

∂k
=

(
k̄st

α

k̄st
β

kα

(k + 1)β
− 1

)
pst(k). (A.2)

Therefore, the distribution will have an extremum at ke =
(
k̄st

β /k̄st
α

) 1
α−β (where

we have approximated ke ≃ ke + 1). If α < β, this will be a maximum,
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signalling the peak of the distribution. On the other hand, if α > β, ke will

correspond to a minimum. Therefore, most of the distribution will be broken

in two parts, one for k < ke and another for k > ke. The critical case for

α = β will correspond to a monotonously decreasing stationary distribution,

but such that limk→∞∂pst(k)/∂k = 0. In fact, Eq. (A.1) is for this situation

(α = β) the discretized version of a nonlinear diffusion equation,

∂p(k, τ)

∂τ
=

∂2

∂k2
[kαp(k, τ)], (A.3)

after dynamically modifying the time scale according to τ = t/k̄α (t). Ignoring,

for the moment, border effects, the solutions of this equation are of the form

pst(k) ∼ Ak−α + Bk−α+1, (A.4)

with A and B constants. If α > 2, then given A we can always find a B which

allows pst(k) to be normalized in the thermodynamic limit 1. For example,

if the lower limit is k ≥ 1, then B = (α − 2) [1 − A/(α − 1)]. However, if

1 < α ≤ 2, then only A can remain non-zero, and pst(k) will be a pure power

law. For α ≤ 1, both constants must tend to zero as N → ∞. In finite

networks, no node can have a degree larger than N − 1 or lower than 0. In

fact, one would usually wish to impose a minimum nonzero degree, e.g. k ≥ 1.

The temporal evolution of the degree distribution is illustrated in Fig. A.1.

This shows the result of integrating Eq. (A.1) for k ≥ 1, different times, β = 1,

and three different values of α, along with the respective values obtained from

Monte Carlo simulations.

The main result may be summarized as follows. For α < β, the network

will evolve to have a characteristic size, centred around ⟨k⟩. At the critical

case α = β, all sizes appear, according either to a pure or a composite power

law, as detailed above.

If we impose, say, k ≥ 1, then starlike structures will emerge, with a great

many nodes connected to just a few hubs 2.

Figure A.2 illustrates the second order phase transition undergone by the

variance of the final (stationary) degree distribution, depending on the expo-

nent α, where β is set to unity. It should be mentioned that this particular

1Although all moments of k will diverge unless B = 0.
2There is a finite-size effect not taken into account by the theory – but relevant when

α > β – which provides a natural lower cutoff for pst(k): if there are, say, m nodes which
are connected to the whole network, then the minimum degree a node can have is m.
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Figure A.1: Degree distribution p(k, t) at four different stages of evolution:

t = 102 [(yellow) squares], 103 [(blue) circles], 104 [(red) triangles)] and 105

MCS [(black) diamonds]. From top to bottom panels, subcritical (α = 0.5),

critical (α = 1) and supercritical (α = 1.5) rewiring exponents. Symbols from

MC simulations and corresponding solid lines from numerical integration of

Eq. (A.1). β = 1, ⟨k⟩ = 10 and N = 1000 in all cases.

case, β = 1, corresponds to edges being chosen at random for disconnection,

since the probability of a random edge belonging to node i is proportional to

ki.

This topological phase transition is similar to the ones that have been
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Figure A.2: Adjusted variance σ2/⟨k⟩2 of the degree distribution after 2× 105

MCS against α, as obtained from MC simulations, for system sizes N = 800

[(yellow) squares], 1200 [(blue) circles], 1600 [(red) triangles] and 2000 [(black)

diamonds]. Top left inset shows final degree distributions for α = 0.5 [light

gray (blue)], 1 [dark gray (red)] and 1.5 (black), with N = 1000. Bottom right

inset shows typical time series of σ2/⟨k⟩2 for the same three values of α and

N = 1200. In all cases, β = 1 and ⟨k⟩ = 10.

described in equilibrium network ensembles defined via an energy function,

in the so-called synchronic approach to network analysis (Farkas et al., 2004;

Park and Newman, 2004; Burda et al., 2004; Derényi et al., 2004). However,

our (nonequilibrium) model does not come within the scope of this body of

work, since the rewiring rates cannot, in general, be derived from a potential.

Furthermore, we are here concerned with the time evolution rather than the

stationary states, making our approach diachronic.

Summing up, in spite of its simplicity, our model captures the essence of

many real-world networks which evolve while leaving the total numbers of

nodes and edges roughly constant. The grade of heterogeneity of the station-

ary distribution obtained is seen to depend crucially on the relation between

the exponents modelling the probabilities a node has of obtaining or loos-

ing a new edge. It is worth mentioning that the heterogeneity of the degree

distribution of a random network has been found to determine many rele-

vant behaviours and magnitudes such as its clustering coefficient and mean

minimum path (Newman, 2003c), critical values related to the dynamics of
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excitable networks (Johnson et al., 2008), or the synchronizability for systems

of coupled oscillators (since this depends on the spectral gap of the Laplacian

matrix) (Barahona and Pecora, 2002).

The above shows how scale-free distributions, with a range of exponents,

may emerge for nonlinear rewiring, although only in the critical situation in

which the probabilities of gaining or loosing edges are the same. We believe

that this non-trivial relation between the microscopic rewiring actions (gov-

erned in our case by parameters α and β) and the emergent macroscopic degree

distributions could shed light on a class of biological, social and communica-

tions networks.





Appendix B

Effective modularity of highly

clustered networks

The number of nodes within a radius r is n(r) = Adr
d, with Ad a constant.

We shall therefore assume a node with degree k to have edges to all nodes

up to a distance r(k) = (k/Ad)
1/d, and none beyond (note that this is not

necessarily always feasible in practice). To estimate λ, we shall first calculate

the probability that a randomly chosen edge have length x. The chance that

the edge belong to a node with degree k is π(k) ∼ kp(k) (where p(k) is the

degree distribution). The proportion of edges that have length x among those

belonging to a node with degree k is ν(x|k) = dAdx
d−1/k if Adx

d < k, and 0

otherwise. Considering, for example, scale-free networks (as in Ref. (Rozenfeld

et al., 2002)), so that the degree distribution is p(k) ∼ k−γ in some interval

k ∈ [k0, kmax] (Barabási and Albert, 1999), and integrating over p(k), we have

the distribution of lengths,

P (x) = (Const.)

∫ kmax

max(k0,Axd)

π(k)ν(k|x)dk = d(γ − 2)x−[d(γ−2)+1],

where we have assumed, for simplicity, that the network is sufficiently sparse

that max(k0, Axd) = Axd, ∀x ≥ 1, and where we have normalised for the

interval 1 ≤ x < ∞; strictly, x ≤ (kmax/A)1/d, but we shall also ignore this

effect. Next we need the probability that an edge of length x fall between two

compartments of linear size l. This depends on the geometry of the situation

as well as dimensionality; however, a first approximation which is independent

of such considerations is

Pout(x) = min
(
1,

x

l

)
.
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We can now estimate the modularity λ as

λ =

∫ ∞

1

Pout(x)P (x)dx =
1

d(γ − 2) − 1

[
d(γ − 2)l−1 − l−d(γ−2)

]
.

Fig. 7.5 shows how λ depends on γ for d = 2 and various box sizes.



Appendix C

Nestedness of networks

The property of nestedness has for some time aroused a fair amount of interest

as regards ecological networks – especially since a high nestedness in mutu-

alistic systems has been shown to enhance biodiversity. However, because it

is usually estimated with software, no analytical work has been done relating

nestedness with other network characteristics, and consequently comparisons

of experimental data with null-models can only be done computationally. We

suggest a slightly refined version of the measure recently defined by Bastolla et

al. and go on to study the effect of the degree distribution and degree correla-

tions (assortativity). Our work provides a benchmark against which empirical

networks can be contrasted.

C.1 Introduction

The intense study that complex networks have undergone over the past decade

or so has shown how important topological features can be for properties of

complex systems, such as dynamical behaviour, spreading of information, re-

silience to attacks, etc. (Newman, 2003c; Boccaletti et al., 2006). A paradig-

matic case is that of ecosystems. The solution to May’s paradox (May, 1973)

– the fact that large ecosystems seem to be especially stable, when theory

predicts the contrary – is still not clear, but it is widely suspected that there

is some structural feature of ecological networks which as yet eludes us. One

aspect of such networks, which has been studied for some time by ecologists

and may be related to this problem, is called nestedness. Loosly speaking, a

network – say of species and islands, linked whenever the former inhabit the

latter – is said to be highly nested if the species which exist on scarcely popu-

lated islands tend always to be found also on those islands inhabited by many

113
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Figure C.1: Maximally packed matrix representing a network of plants and

islands off Perth (Abbott and Black, 1980) (because the network is bipartite,

the adjacency matrix is composed of four blocks: two identical to this ma-

trix, the other two composed of zeros). Data, image and line obtained from

NESTEDNESS CALCULATOR, which returns a “temperature” of T = 0.69o

for this particular network.

different species. This can be most easily seen by graphically representing a

matrix such that animals are columns and islands are files, with elements equal

to one whenever two nodes are linked and zero if not. If, after ordering each

kind of node by degree (number of neighbours), all the ones can be quite neatly

packed into one corner, the network is considered highly nested. This is done

in Fig. C.1 for a network of plants inhabiting islands off Perth. This rather

vague concept is usually measured with software for the purpose. For Fig.

C.1, we have used NESTEDNESS CALCULATOR, which estimates a curve

of equal density of ones and zeros, calculates how many ones and zeros are on

the “wrong” side and by how much, and returns a number between 0 and 100

called “temperature” by analogy with some system such as a subliming solid.

A low temperature indicates high nestedness. To determine how significantly

nested a given network is, the usual procedure is to generate equivalent ran-

dom networks computationally (with sone constraint such as the number of

edges or the degree of each node being conserved) and estimate how likely it

is that such a network be “colder” than that of the data.

Bastolla et al. (Bastolla et al., 2009) have recently shown how symbiotic

interactions can reduce the effective competition between two species, say of

insect, via common symbiotic hosts – such as plants they pollinate. These

authors define a measure to take into account the average number of shared

partners in these mutualistic networks, and call it “nestedness” because it

would seem to be related to the concept referred to above. They go on to show
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evidence of how the nestedness of empirical mutualistic networks is correlated

with the biodiversity of the corresponding ecosystems. This beneficial effect

“enemy” nodes can gain from sharing “friendly” partners is not confined to

ecosystems. It is expected also to play a role, for instance, in financial networks

or other economic systems (Sugihara and Ye, 2009). The principle is simple.

Say nodes A and B are in competition with each other. An increase in A will

be to B’s detriment, and viceversa; but if both A and B engage in a symbiotic

relationship with node C, then A’s thriving will stimulate C, which in turn will

be helpful to B. Thus, the effective competition between A and B is reduced,

and the whole system becomes more stable and capable of sustaining more

nodes (Domı́nguez-Chibet́ın et al., 2011).

In Ref. (Johnson and Muñoz) we take up this idea of shared neighbours

(though characterised with a slightly different measure, for reasons we shall

explain in Section C.2) and study analytically the effect of other topological

properties, such as the degree distribution and degree-degree correlations. This

allows us to contrast empirical data with null-models and thus test for statis-

tical significance with no need of computer randomisations. We also comment

on how mutual-neighbour structure could develop in systems of interdependent

networks (such as competition and symbiosis) so as to minimise the risk of a

“cascade of failures” (Buldyrev et al., 2010). Although we are not here con-

cerned specifically with neural systems, a description of this work is included

as an appendix since it serves as an example application of the method put

forward in Ref. (Johnson et al., 2010b) and presented in Chapter 5.

C.2 Definition

Consider a network with N nodes defined by the adjacency matrix â: the

element âij is equal to the number on links, or edges, from node j to node

i (typically considered to be either one or zero). If â is symmetric, then

the network is undirected and each node i can be characterised by a degree

ki =
∑

j âij. (If it is directed, i has both an in degree, kin
i =

∑
j âij, and an out

degree, kout
i =

∑
j âji; we shall focus here on undirected networks, although

most of the results could be easily extended to directed ones.).

Bastolla et al. (Bastolla et al., 2009) have shown that the effective compe-

tition between two species (say two species of insect) can be reduced if they

have common neighbours with which they are in symbiosis (for instance, if

they both pollinate the same plant). Therefore, in mutualistic networks (net-
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works of symbiotic interactions) it is beneficial to the species at two nodes i

and j for the number of shared symbiotic partners, nij =
∑

l âilâlj = (â2)ij, to

be high. Going on this, and assuming the network is undirected, the authors

suggest taking into account the following measure:

ηB =

∑
i<j n̂ij∑

i<j min(ki, kj)
, (C.1)

which they call nestedness because it would seem to be highly correlated with

the measures returned by nestedness software. Note that, although the authors

were considering only bipartite graphs, this characteristic is not imposed in the

above definition. In this work, we shall take up the idea of the importance of

nij, but use a slightly different measure of nestedness, for several reasons. One

is that ηB has a serious shortcoming. If we commute the sums1 in the numer-

ator of Eq. (C.1), we find that the result only depends on the heterogeneity of

the degree distribution:
∑

ij n̂ij =
∑

l

∑
i âil

∑
j âlj = N⟨k2⟩. Also, although

the maximum value n̂ij can take is min(ki, kj), this is not necessarily the best

normalisation factor, since the expected number of paths of length 2 connect-

ing nodes i and j depends on both ki and kj (as we show explicitely in Section

C.3). Furthermore, it can sometimes be convenient to have a local measure of

nestedness. For these reasons, we shall use

ηij ≡
nij

kikj

=
(â2)ij

kikj

, (C.2)

which is defined for every pair of nodes (i, j). This allows for the consideration

of a nestedness per node, ηi = N−1
∑

j ηij, or of the global measure

η =
1

N2

∑
ij

ηij. (C.3)

C.3 The effect of the degree distribution

Most networks have quite broad degree distributions p(k), most notably the

fairly ubiquitous scale-free networks, for which they follow power-laws, p(k) ∼
k−γ. Since this heterogeneity tends to have an importante influence on any

network measure, it will be useful to take this effect into account analytically.

As is standard, the null-model we shall use to do this is the configurational

1In an undirected network,
∑

i<j = 1
2

∑
ij ; we shall always sum over all i and j, since it

is easier to generalise to directed networks and often avoids writing factors 2.
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model (Newman, 2003c): the set of random networks wired according to the

constraints that a given degree sequence (k1, ..., kN) is respected, and also that

there be no degree-degree correlations. The expected value of an element of

the adjacency matrix for networks belonging to this ensemble is

âij ≡ ϵ̂c
ij =

kikj

⟨k⟩N
. (C.4)

We shall use a line, (·), to represent expected values given certain constraints,

and angles, ⟨·⟩, for averages over nodes of a given network2. For the case of

the adjacency matrix, we use the notation ϵ̂c
ij = âij for clarity and coherence

with previous work. Plugging Eq. (C.4) into Eq. (C.2), we have the expected

value in the configuration ensemble,

ηij =
⟨k2⟩
⟨k⟩2N

≡ ηconf . (C.5)

Since ηc is independent of i and j, it coincides with the expected value for the

global measure, η = ηconf – a fact that justifies the normalisation chosen in

Eq. (C.2). It is obvious from Eq. (C.5) that degree heterogeneity will have

an important effect on η. Therefore, if we are to capture aspects of network

structure other than those directly induced by the degree distribution, it will

in general be useful to consider the nestedness normalised to this expected

value,

η̃ ≡ η

ηconf

=
⟨k⟩2

⟨k2⟩N
∑
ij

(â2)ij

kikj

. (C.6)

Although η̃ is unbounded, it has the advantage that it is equal to unity for

any uncorrelated random network, independently of its degree heterogeneity,

thereby making it possible to detect non-trivial structure in a given empirical

network without the need for computational randomisations.

C.4 Nestedness and assortativity

In the configuration ensemble, the expected value of the mean degree of the

neighbours of a given node is knn,i = k−1
i

∑
j ϵ̂c

ijkj = ⟨k2⟩/⟨k⟩, which is indepen-

dent of ki. However, real networks usually display degree-degree correlations,

with the result that knn,i = knn(ki). If knn(k) increases (decreases) with k, the

2In this case, for instance, the network considered for ⟨k⟩ is any of the members of the
ensemble, since they all have the same mean degree by definition.
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network is assortative (disassortative). A measure of this phenomenon is Pear-

son’s coefficient applied to the edges (Newman, 2003c, 2002, 2003a; Boccaletti

et al., 2006): r = ([klk
′
l] − [kl]

2)/([k2
l ] − [kl]

2), where kl and k′
l are the degrees

of each of the two nodes belonging to edge l, and [·] ≡ (⟨k⟩N)−1
∑

l(·) is an

average over edges. Writing
∑

l(·) =
∑

ij âij(·), r can be expressed as

r =
⟨k⟩⟨k2knn(k)⟩ − ⟨k2⟩2

⟨k⟩⟨k3⟩ − ⟨k2⟩2
. (C.7)

The ensemble of all networks with a given degree sequence (k1, ...kN) con-

tains a subset for all members of which knn(k) is constant (the configuration

ensemble), but also subsets displaying other functions knn(k).

In Chapter 5 (Johnson et al., 2010b) we showed that there is a one-to-one

mapping between any mean-nearest-neighbour function knn(k) and its corre-

sponding mean-adjacency-matrix ϵ̂, which is as follows: writing knn(k) as

knn(k) =
⟨k2⟩
⟨k⟩

+

∫
dνf(ν)σν+1

[
kν−1

⟨kν⟩
− 1

k

]
(C.8)

with σν+1 ≡ ⟨kν+1⟩ − ⟨k⟩⟨kν⟩ (which can always be done), the corresponding

matrix ϵ̂ takes the form

ϵ̂ij =
kikj

⟨k⟩N
+

∫
dν

f(ν)

N

[
(kikj)

ν

⟨kν⟩
− kν

i − kν
j + ⟨kν⟩

]
. (C.9)

In many empirical networks, knn(k) has the form knn(k) = A + Bkβ, with

A,B > 0 (Boccaletti et al., 2006; Pastor-Satorras et al., 2001) – the mixing

being assortative (disassortative) if β is positive (negative). Such a case is

fitted by Eq. (C.8) if f(ν) = C[δ(ν − β − 1)σ2/σβ+2 − δ(ν − 1)], with C a

positive constant, since this choice yields

knn(k) =
⟨k2⟩
⟨k⟩

+ Cσ2

[
kβ

⟨kβ+1⟩
− 1

⟨k⟩

]
. (C.10)

After plugging Eq. (C.10) into Eq. (C.7), one obtains:

r =
Cσ2

⟨kβ+1⟩

(
⟨k⟩⟨kβ+2⟩ − ⟨k2⟩⟨kβ+1⟩

⟨k⟩⟨k3⟩ − ⟨k2⟩2

)
. (C.11)

It turns out that the configurations most likely to arise naturally (those

with maximum entropy) usually have C ≃ 1 (Johnson et al., 2010b) (c.f.

Chapter 5). Therefore, and for the sake of analytical tractability, we shall do
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as in Chapter 6 and consider this particular case3 – that is, we shall use

ϵ̂ij =
1

N

{
σ2

σβ+2

[
(kiki)

β+1

⟨kβ+1⟩
− kβ+1

i − kβ+1
j + ⟨kβ+1⟩

]
+ ki + kj − ⟨k⟩

}
.

(C.12)

Substituting the adjacency matrix for this expression in the definition of η̃ (Eq.

(C.6)), we obtain its expected value as a function of the remaining parameter

β:

η̃β =

⟨k⟩2

⟨k2⟩

[
1 + (σ2 − α2

βρβ)

(
2
⟨kβ⟩⟨k−1⟩
⟨kβ+1⟩

− ⟨k−1⟩2
)

+ α2
βρβ

(
⟨kβ⟩
⟨kβ+1⟩

)2
]

, (C.13)

where αβ ≡ σ2/σβ+2 and ρβ ≡ ⟨k2(β+1)⟩ − ⟨k⟩2(β+1). Note that η̃0 = 1.

Fig. C.2 shows the value of η̃β given by Eq. (C.13) against the assor-

tativity r for various scale-free networks. Nestedness is seen to grow very

fast with increasing disassortativity (decreasing negative r), while in general

slightly assortative networks are less nested than neutral ones. However, highly

heterogeneous networks (γ → 2) show an increase in η̃β for large positive r.

Fig. C.3 shows a plot of nestedness against assortativity for the selection of

empirical networks listed in Table C.4. Although these networks are highly

disparate as regards size, density, degree distribution, etc., it is apparent from

the similarity to Fig. C.2 that the main contribution to η̃β comes indeed from

the assortativity.

C.5 Bipartite networks

Mutualistic networks are usually bipartite: two sets of nodes exist such that

all edges are between nodes in one set and those of another. The ones con-

sidered in Ref. (Bastolla et al., 2009), for instance, are composed of animals

and plants which interact in symbiotic relations of feeding-pollination; these

interactions only take place between animals and plants. Let us therefore con-

sider a bipartite network and call the sets Γ1 and Γ2, with n1 and n2 nodes,

respectively (n1 + n2 = N). Using the notation ⟨·⟩i for averages over set Γi,

the total number of edges is ⟨k⟩1n2 = ⟨k⟩2n1 = 1
2
⟨k⟩N . Assuming that the

network is defined by the configuration ensemble, though with the additional

3Note that C = 1 corresponds to removing the linear term, proportional to kikj , in Eq.
(C.9), and leaving the leading non-linearity, (kikj)β+1, as the dominant one.
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Figure C.2: Nestedness against assortativity (as measured by Pearson’s cor-

relation coefficient) for scale-free networks as given by Eq. (C.13). ⟨k⟩ = 10,

N = 1000.

 0.5

 0.75

 1

 1.25

 1.5

 1.75

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

η

r

 0.5

 0.75

 1

 1.25

 1.5

 1.75

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

η

r

 0.5

 0.75

 1

 1.25

 1.5

 1.75

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

η

r

Figure C.3: Nestedness against assortativity (as measured by Pearson’s cor-

relation coefficient) for data on a variety of networks. Blue squares are food

webs (Table C.4) and red circles are networks of all other types (Table C.4).

constraint of being bipartite, the probability of node l being connected to node

i is

ϵ̂il = 2
kikl

⟨k⟩N
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Food web r ν ⟨k⟩ N σ/⟨k⟩

Little Rock lake -0.343 1.219 20.4 92 0.73

Ythan Estuary (w/p) -0.249 1.323 8.9 82 0.93

Stony Stream -0.201 1.163 14.7 109 0.75

Canton Creek -0.196 1.171 13.5 102 0.69

Skipwith Pond -0.194 0.891 14.2 25 0.37

El Verde -0.183 1.088 18.4 155 0.88

Caribbean Reef (small) -0.172 1.000 19.7 50 0.49

St. Martin Island -0.165 1.071 9.3 42 0.56

UK Grassland -0.125 0.907 2.8 61 0.82

Chesapeake Bay -0.123 0.801 4.1 31 0.60

NE US Shelf -0.088 0.971 34.3 79 0.45

Coachella Valley 0.043 0.857 14.6 29 0.41

St. Mark’s Estuary 0.118 0.816 8.5 48 0.55

Table C.1: Food webs appearing in Fig. C.3 (listed from least to most assorta-

tive) : r is the assortativity and ν the nestedness. The origins of all data cited

in Ref. (Dunne et al., 2004), and kindly provided to us by Jennifer Dunne.

if they belong to different sets, and zero if they are in the same one. Proceeding

as before, we find that the expected value of the nestedness for a bipartite

network is

ηbip =
1

N2

[ ∑
i,j∈Γ1

1

kikj

∑
l∈Γ2

kikl

⟨k⟩1n2

klkj

⟨k⟩2n1

+
∑

i,j∈Γ2

1

kikj

∑
l∈Γ1

kikl

⟨k⟩1n2

klkj

⟨k⟩2n1

]
=

n1⟨k2⟩2 + n2⟨k2⟩1
⟨k⟩1⟨k⟩2(n1 + n2)2

. (C.14)

Interestingly, if n1 = n2, the fact that the network is bipartite has no effect on

the nestedness: ηbip = ηconf .

C.6 Overlapping networks

If the adjacency matrix â describes a mutualistic network, the benefit to its

being nested resides in a counteraction of the competition matrix ĉ, which

takes into account the extent to which one species is detrimental to another
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Network r ν ⟨k⟩ N σ/⟨k⟩ Ref.

Political blogs -0.221 1.496 22.4 1490 1.62 (Adamic and Glance, 2005)

Metabolic -0.220 1.688 9.0 453 1.87 (Duch and Arenas, 2005)

Political books -0.138 0.996 8.4 104 0.65 (Krebs)

Adjectives and nouns -0.125 1.057 7.6 111 0.89 (Newman, 2006)

Dolphins -0.063 0.922 5.1 61 0.58 (Lusseau et al., 2003)

Power grid 0.003 0.834 2.7 4940 0.67 (Watts and Strogatz, 1998)

Neural 0.005 0.907 5.9 306 0.81 (Watts and Strogatz, 1998)

Jazz musicians 0.020 0.924 27.6 198 0.63 (P.Gleiser and Danon, 2003)

Email 0.078 0.923 9.6 1133 0.97 (Guimerà et al., 2003)

American football 0.133 0.904 10.6 114 0.08 (Girvan and Newman, 2002)

PGP 0.239 0.867 4.6 10680 1.77 (Bogñá et al., 2004)

High-energy arXiv 0.294 0.533 3.8 8360 1.14 (Newman, 2001)

Net-science arXiv 0.462 0.443 3.45 1588 1.00 (Newman, 2006)

Table C.2: Empirical networks appearing in Fig. C.3 (listed from least to most

assortative) : r is the assortativity and ν the nestedness. All data available on

the personal Web pages of Álex Arenas, Mark Newman and Duncan Watts.

due to predation, sharing of resources, etc. From this point of view, it may be

interesting to study to what extent matrices ĉ and â2 overlap (note that both

networks have the same nodes, but different edges). Presumably, if ecological

networks are assembled in such a way that effective competition is minimised,

this overlap should be higher than randomly expected. On the other hand, a

certain degree of overlap may also arise from the fact that species interacting

symbiotically with the same host are perhaps more than averagely likely to

be phylogenetically close and/or phenotypically similar, leading (as Darwin

noted) to a higher competition element.

In any case, a measure of this overlap is

r ≡ 1

⟨k⟩cN
∑
ij

ĉij(â
2)ij, (C.15)

where ⟨·⟩c represents an average over the competion network; similarly, ⟨·⟩a
will stand for an average over the mutualistic network. If the two networks
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are mutually uncorrelated4 – i.e., if the existence of an edge in one provides no

information as to whether there is a corresponding one in the other – we can

write

r ≃ 1

⟨k⟩cN
∑
ij

ĉij
1

N2

∑
ij

(â2)ij ≡ runc. (C.16)

Using
∑

ij(â
2)ij = ⟨k2⟩aN , and assuming that ĉ is normalised so that

∑
ij ĉij =

⟨k⟩cN , we have5

runc ≃
⟨k2⟩a
N

, (C.17)

which only depends on the heterogeneity of the degree distribution of the

mutualistic network. Again, it may be useful to consider the overlap normalised

to this value,

r̃ ≡ r

runc

=
1

⟨k⟩c⟨k2⟩a

∑
ij

ĉij(â
2)ij. (C.18)

This measure will equal unity when there is no statistical relation between

the competition matrix and the mutualistic one, but can be expected to be

greater if indeed such an overlap were contributing to a reduction in effective

competition.

It has recently been shown that interconnected networks are prone to dan-

gerous “cascades of failures” (Buldyrev et al., 2010). It seems that the northen

half of Italy was once left temporarily with no electric supply due to failures in

the power-grid closing down dependent internet servers, which in turn further

disrupted the grid, until many nodes of both networks were rendered dysfunc-

tional. If two inter-dependent networks were to coincide perfectly (r = 1), the

resilience of the system to node removal would be the same as that of just one

network; however, lower overlap leads to increased vulnerability to such cas-

cades of failures. Since the extinction of a species can result in its host species

also going extinct, such cascades of failures may be a threat to mutualistic

systems. In such a case, it would seem that a high overlap r, as defined here,

between the competition matrix and the mutualistic one would minimise this

possibility. It would be interesting to test this experimentally.

4Note that we are saying nothing of the internal correlations that each network may
display.

5The competition matrix will in general be weighted, as could be the mutualistic one; we
shall treat both as though they were not, but using weighted networks would only influence
results by a normalisation factor.



124 Chapter C. Nestedness of networks

C.7 Discussion

Whether or not the topological feature here described should be considered a

measure of nestedness as it is usually understood in ecology is not clear. What

is certain is that interactions between dynamical elements that are mediated

by third parties, or common neighbours, can be relevant in a wide variety of

settings. We have mentioned the paradigmatical case of ecosystems as well

as financial and communications networks. But other examples spring easily

to mind. For instance, two excitatory neighbouring neurons might have their

mutual effect dampened if they share inhibitory neighbours. Genetic networks

are riddled with motifs such that switches activate or inactivate each other

indirectly, via common neighbours. As we have shown, there are nontrivial

relationships between nestedness, as it is here defined, and other topological

features. If it turns out that this network property is indeed relevant for many

complex systems, then we hope the null models we have laid out and analysed

will prove useful in assessing its functional significance.



Appendix D

Publications derived from the

thesis

D.1 Journals and book chapters (the most rel-

evant ones marked with an asterisk)

1. * Cluster Reverberation: A mechanism for robust short-term memory

without synaptic learning, S. Johnson, J. Marro, and JJ. Torres, submit-

ted, arXiv:1007.3122

2. * Enhancing neural-network performance via assortativity, S. de Fran-

ciscis, S. Johnson, and J.J. Torres, Physical Review E 83, 036114 (2011)

3. Why are so many networks disassortative? S. Johnson, J.J. Torres, J.

Marro, and M.A. Muñoz, AIP Conf. Proc. 1332, 249–50 (2011)

4. Shannon entropy and degree-degree correlations in complex networks, S.

Johnson, J.J. Torres, J. Marro, and M.A. Muñoz, “Nonlinear Systems

and Wavelet Analysis”, Ed. R. López-Ruiz, WSEAS Press, pp. 31–35

(2010)

5. * Entropic origin of disassortativity in complex networks, S. Johnson,

J.J. Torres, J. Marro, and M.A. Muñoz, Physical Review Letters 104,

108702 (2010)

6. * Evolving networks and the development of neural systems, S. Johnson,

J. Marro, and J.J. Torres, Journal of Statistical Mechanics (2010) P03003
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7. Excitable networks: Nonequilibrium criticality and optimum topology,

J.J. Torres, S. de Franciscis, S. Johnson, and J. Marro, International

Journal of Bifurcation and Chaos 20, 869–875 (2010)

8. Nonequilibrium behavior in neural networks: criticality and optimal per-

formance, J.J. Torres, S. Johnson, J.F. Mejias, S. de Franciscis, and J.

Marro, “Advances in Cognitive Neurodynamics (II)” Eds. R. Wang and

F. Gu, pp 597–603, Springer, 2011, ISBN: 978-90-481-9694-4, Proceed-

ings of Second International Conference on Cognitive Neurodynamics

(ICCN2009), Hangzhou 15-19 November 2009.

9. Development of neural network structure with biological mechanisms, S.

Johnson, J. Marro, J.F. Mejias, and J.J. Torres, Lecture Notes in Com-

puter Science 5517, 228–235 (2009)

10. Switching dynamics of neural systems in the presence of multiplicative

colored noise, J.F. Mejias, J.J. Torres, S. Johnson, and H.J. Kappen,

Lecture Notes in Computer Science 5517, 17–23 (2009)

11. * Nonlinear preferential rewiring in fixed-size networks as a diffusion

process, S. Johnson, J.J. Torres, and J. Marro, Physical Review E 79,

050104(R) (2009)

12. * Functional optimization in complex excitable networks, S. Johnson, J.J.

Torres, and J. Marro, EPL 83, 46006 (2008)

13. Excitable networks: Non-equilibrium criticality and optimum topology,

J.J. Torres, S. de Franciscis, S. Johnson, and J. Marro, “Modelling and

Computation on Complex Networks and Related Topics”, Eds. Criado,

Gonzalez-Vias, Mancini and Romance. Proceedings of the conference

”Net-Works 2008”, 185–192, ISBN:978-84-691-3819-9.

14. Topology-induced instabilities in neural nets with activity-dependent synapses,

S. Johnson, J. Marro, and J. J. Torres, “New Trends and Tools in Com-

plex Networks”, Eds. Criado, Pello and Romance. Proceedings of the

conference ”Net-Works 2007”, 59–71, ISBN:978-84-690-6890-8.

D.2 Abstracts

1. Network topology and dynamical task performance, S. Johnson, J. Marro,

and J.J. Torres, AIP Conf. Proc. 1091, 280 (2009)
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2. Constructive chaos in excitable networks with tuneable topologies, S. John-

son, J. Marro, and J.J. Torres, XV Congreso de Fsica Estadstica FisEs08,

104 (2008)

3. The effect of topology on neural networks with unstable memories, S.

Johnson, J. Marro, and J.J. Torres, AIP Conf. Proc. 887 261 (2006)

4. Relationship between the solar wind and the upper-frequency limit of

Saturn Kilometric Radiation, M.Y. Boudjada, P.H.M. Galopeau, H.O.

Rucker, A. Lecacheux, W.S. Kurth, D.A. Gurnett, U. Taubencshuss,

J.T. Steinberg, S. Johnson, and W. Vollerr, European Geosciences Union

(2006)
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R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas. Self-similar

community structure in a network of human interactions. Phys. Rev. E, 68:

065103(R), 2003.

D. Hebb. The Organization of Behavior. Wiley, New York, 1949.

S. Hilfiker, V. Pieribone, H.-T. Kao, A. Czernik, G. Augustine, and P. Green-

gard. Synapsins as regulators of neurotransmitter release. Phil. Trans. R.

Soc. London B, 354:269–79, 1999.

A. Hodgkin and A. Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. J. Physiol., 117:

500–44, 1952.

H. Holcman and M. Tsodyks. The emergence of Up and Down states in cortical

networks. PLoS Comput. Biol., 2:e23, 2006.

P. Holme and J. Zhao. Exploring the assortativity-clustering space of a net-

work’s degree sequence. Phys. Rev. E, 75:046111, 2007.

J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proc. Natl. Acad. Sci. USA, 79:2554–8, 1982.

P. Hurtado, J. Marro, and P. Garrido. Demagnetization via nucleation of the

nonequilibrium metastable phase in a model of disorder. J. Stat. Phys., 133:

29–58, 2008.

P. R. Huttenlocher and A. S. Dabholkar. Regional differences in the synap-

togensis in human cerebral cortex. The Journal of Comparative Neurology,

387:167–178, 1997.



136 REFERENCES

E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Ex-

citability and Bursting. MIT Press, Cambridge MA, 2007.

E. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106(4):

620–630, 1957.
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