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The entropic origin of disassortativity in complex networks
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Why are most empirical networks, with the prominent exception of social ones, generically degree-
degree anticorrelated, i.e. disassortative? With a view to answering this long-standing question,
we define a general class of degree-degree correlated networks and obtain the associated Shannon
entropy as a function of parameters. It turns out that the maximum entropy does not typically
correspond to uncorrelated networks, but to either assortative (correlated) or disassortative (an-
ticorrelated) ones. More specifically, for highly heterogeneous (scale-free) networks, the maximum
entropy principle usually leads to disassortativity, providing a parsimonious explanation to the ques-
tion above. Furthermore, by comparing the correlations measured in some real-world networks with
those yielding maximum entropy for the same degree sequence, we find a remarkable agreement in
various cases. Our approach provides a neutral model from which, in the absence of further knowl-
edge regarding network evolution, one can obtain the expected value of correlations. In cases in
which empirical observations deviate from the neutral predictions — as happens in social networks

— one can then infer that there are specific correlating mechanisms at work.

PACS numbers: 89.75.Fb, 89.75.Hc, 05.90.4+m

Complex networks, whether natural or artificial, have
non-trivial topologies which are usually studied by
analysing a variety of measures, such as the degree dis-
tribution, clustering, average paths, modularity, etc. @7
E] The mechanisms which lead to a particular structure
and their relation to functional constraints are often not
clear and constitute the subject of much debate E, B]
When nodes are endowed with some additional “prop-
erty,” a feature known as mizing or assortativity can
arise, whereby edges are not placed between nodes com-
pletely at random, but depending in some way on the
property in question. If similar (dissimilar) nodes tend
to wire together, the network is said to be assortative
(disassortative) 4.

An interesting situation is when the property taken
into account is the degree of each node — i.e., the num-
ber of neighboring nodes connected to it. It turns out
that a high proportion of empirical networks — whether
biological, technological, information-related or linguis-
tic — are disassortatively arranged (high-degree nodes, or
hubs, are preferentially linked to low-degree neighbors,
and viceversa) while social networks are usually assor-
tative. Such degree-degree correlations have important
consequences for network characteristics such as connect-
edness and robustness [4].

However, while assortativity in social networks can be
explained taking into account homophily M] or modular-
ity E], the widespread prevalence and extent of disassor-
tative mixing in most other networks remains somewhat
mysterious. Maslov et al. found that the restriction of
having at most one edge per pair of nodes induces some
disassortative correlations in heterogeneous networks ﬂa],
and Park and Newman showed how this analogue of
the Pauli exclusion principle leads to the edges following

Fermi statistics [7] (see also [§]). However, this restric-
tion is not sufficient to fully account for empirical data.
In general, when one attempts to consider computation-
ally all the networks with the same distribution as a given
empirical one, the mean assortativity is not necessarily
Zero E] But since some “randomization” mechanisms in-
duce positive correlations and others negative ones ﬂﬁ],
it is not clear how the phase space can be properly sam-
pled numerically.

In this letter, we show that there is a general reason,
consistent with empirical data, for the “natural” mix-
ing of most networks to be disassortative. Using an
information-theory approach we find that the configu-
ration which can be expected to come about in the ab-
sence of specific additional constraints turns out not to
be, in general, uncorrelated. In fact, for highly hetero-
geneous degree distributions such as those of the ubig-
uitous scale-free networks, we show that the expected
value of the mixing is usually disassortative: there are
simply more possible disassortative configurations than
assortative ones. This result provides a simple topolog-
ical answer to a long-standing question. Let us caution
that this does not imply that all scale-free networks are
disassortative, but only that, in the absence of further
information on the mechanisms behind their evolution,
this is the neutral expectation.

The topology of a network is entirely described by its
adjacency matrix a; the element a;; represents the num-
ber of edges linking node ¢ to node j (for undirected net-
works, @ is symmetric). Among all the possible micro-
scopically distinguishable configurations a set of L edges
can adopt when distributed among N nodes, it is often
convenient to consider the set of configurations which
have certain features in common — typically some macro-
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scopic magnitude, like the degree distribution. Such a
set of configurations defines an ensemble. In a seminal
series of papers Bianconi has determined the partition
functions of various ensembles of random networks and
derived their statistical-mechanics entropy [11]. This al-
lows the author to estimate the probability that a ran-
dom network with certain constraints has of belonging to
a particular ensemble, and thus assess the relative impor-
tance of different magnitudes and help discern the mech-
anisms responsible for a given real-world network. For
instance, she shows that scale-free networks arise natu-
rally when the total entropy is restricted to a small finite
value. Here we take a similar approach: we obtain the
Shannon information entropy encoded in the distribution
of edges. As we shall see, both methods yield the same
results [12], but for our purposes the Shannon entropy is
more tractable.

The Shannon entropy associated with a probability dis-
tribution py, is s = =Y pm In(py,), where the sum ex-
tends over all possible outcomes m. For a given pair
of nodes (7,j), pm can be considered to represent the
probability of there being m edges between i and j. For
simplicity, we shall focus here on networks such that a;;
can only take values 0 or 1, although the method is ap-
plicable to any number of edges allowed. In this case,
we have only two terms: p; = €&; and pg = 1 — €,
where é;; = E(ai;) is the expected value of the element
ai; given that the network belongs to the ensemble of
interest. The entropy associated with pair (,7) is then
— [ézg 1n(€”) + (1 - é”) 111(1 - éij)]7 while the total
entropy of the network is S = Zg Sij

Sij =

N
S == [&m(é) + (1 —&;)In(1 —&;)]. (1)

ij
Since we have not imposed symmetry of the adjacency
matrix, this expression is in general valid for directed
networks. For undirected networks, however, the sum is
only over ¢ < j, with the consequent reduction in entropy.
For the sake of illustration, we shall estimate the en-
tropy of the Internet at the autonomous system (AS)
level and compare it with the values obtained in [11]
assuming the network belongs to two different ensem-
bles: the fully random graph, or Erdds-Rényi (ER) en-
semble, and the configuration ensemble with a scale-
free degree dlstnbutlon p(k) ~ k ’Y) [2] and struc-
tural cutoff, k; < /(k)N, Vi |L1] is the mean de-
gree). In this example we assume the network to be
sparse enough to expand the term In(l — €;;) in Eq.
(@) and keep only linear terms. This reduces Eq. (D)

t0 Separse = — Y1y é;[In(é;5) — 1] + O(é%). In the ER
ensemble, each of N nodes has an equal probability of
receiving each of %(k)]\] undirected edges. So, writing
¢ER = (k)/N, we have Spr = —5 (k)N [In ((k)/N) —1].
The configuration ensemble, which imposes a given de-
gree sequence (k1, ...ky), is defined via the expected value

of the adjacency matrix: é; = kik;/((k)N) [2,[13]. This
value leads to S. = <k)N[ln(<k>N) 1]—2N (kIn k), where
() = N=13".(-) stands for an average over nodes.
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FIG. 1: (Color online) Evolution of the Internet at the AS

level. Empty (blue) squares and circles: entropy per node of
randomized networks in the fully random and in the configu-
ration ensembles, as obtained by Bianconi (hence the “B” su-
perscription) [11]. Filled (red) triangles and diamonds: Shan-
non entropy for an ER network and a scale-free one with
v = 2.3, respectively.

Fig. [ displays the entropy per node obtained in [11]
for the first two levels of approximation (ensembles) to
the Internet at the AS level, first taking into account
only the numbers of nodes N and edges L = (k) N, and
then also the degree sequence. Alongside these we plot
the Shannon entropy both for an ER random network,
(which coincides exactly with Bianconi’s expression), and
for a scale-free network with v = 2.3 (the slight disparity
arising from this exponent’s changing a little with time).

We shall now go on to analyse the effect of degree-
degree correlations on the entropy. In the configuration
ensemble, the expected value of the mean degree of the
neighbors of a given node is kpn; = k; E] ik
(k?)/(k), which is independent of k;. However, as men-
tioned above, real networks often display degree-degree
correlations, with the result that kn,; = knn(k;). If
knn(k) increases (decreases) with &, the network is assor-
tative (disassortative). A measure of this phenomenon
is Pearson’s coefficient applied to the edges [2-4]: r =
([kiky) — [k1)%)/([k?] — [k1)?), where k; and k) are the de-
grees of each of the two nodes belonging to edge I, and
[] = ((k)N)~1Y,() is an average over edges. Writing
2.1(1) = 2245 Gij(+), r can be expressed as

2 2\2
(k) (k%) — (k2)?

The ensemble of all networks with a given degree se-
quence (ki,...kx) contains a subset for all members of
which k., (k) is constant (the configuration ensemble),
but also subsets displaying other functions k. (k). We
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FIG. 2: (Color online) Shannon entropy of correlated scale-
free networks against parameter S (left panel) and against
Pearson’s coefficient r (right panel), for various values of
(increasing from bottom to top). (k) = 10, N = 10*.

can identify each one of these subsets (regions of phase
space) with an expected adjacency matrix ¢ which simul-
taneously satisfies the following conditions: i) 3, kjé;; =
Kiknn(ki), Vi, and ii) >_, é; = ki, Vi (for consistency).
An ansatz which fulfills these requirements is any matrix
of the form

N klkj f(l/) (klkj)y v v v
(3)

where v € R and the function f(v) is in general arbitrary,
although depending on the degree sequence it shall here
be restricted to values which maintain &; € [0,1], Vi, j.
This ansatz yields
<I€2> kufl 1

() = S+ [avsoron [T -1 @
(the first term being the result for the configuration
ensemble), where oy, = (K**1) — (k)(k). In practice,
one could adjust Eq. ) to fit any given function ky, (k)
and then wire up a network with the desired correlations:
it suffices to throw random numbers according to Eq.
@) with f(v) as obtained from the fit to Eq. () [14].
To prove the uniqueness of a matrix € obtained in this
way (i.e., that it is the only one compatible with a
given kyn(k)) assume that there exists another valid
matrix € # é. Writting €; — &; = h(ki, k;j) = hij, then
i) implies that >, kjhi; = 0, Vi, while ii) means that
Zj hij = O, Vi. It follows that hij = O, Vj

In many empirical networks, ky,(k) has the form
Enn(k) = A+ BkP, with A, B > 0 |3, [15] — the mixing
being assortative (disassortative) if 8 is positive (neg-
ative). Such a case is fitted by Eq. @) if f(v) =
Clo(v — B — 1)oz/opy2 — d(v — 1)], with C a positive
constant, since this choice yields

(k%) k8 1

After plugging Eq. (@) into Eq. (), one obtains:

_ Cop [(B)(EPR) — (R (RPHY)
"7 ( (k) (k) — (k2)2 ) '

(6)

Inserting Eq. @) in Eq. (), we can calculate the en-
tropy of correlated networks as a function of 8 and C —
or, by using Eq. (@), as a function of r. Particularizing
for scale-free networks, then given (k), N and -, there
is always a certain combination of parameters 8 and C
which maximizes the entropy; we shall call these §* and
C*. For v < 5/2 this point corresponds to C* = 1. For
higher ~, the entropy can be slightly higher for larger
C. However, for these values of 7, the assortativity r
of the point of maximum entropy obtained with C' = 1
differs very little from the one corresponding to 5* and
C* (data not shown). Therefore, for the sake of clarity
but with very little loss of accuracy, in the following we
shall generically set C' =1 and vary only g in our search
for the level of assortativity, r*, that maximizes the en-
tropy given (k), N and 7. Note that C' = 1 corresponds
to removing the linear term, proportional to k;k;, in Eq.
@), and leaving the leading non-linearity, (k;k;) 1, as
the dominant one.
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FIG. 3: (Color online) Lines from top to bottom: r at which
the entropy is maximized, r*, against « for random scale-free
networks with mean degrees (k) = %7 1, 2 and 4 times ko =
5.981, and N = Ny = 10697 nodes (ko and Ny correspond to
the values for the Internet at the AS level in 2001 [7], which
had » = 70 = —0.189). Symbols are the values obtained
in [7] as those expected solely due to the one-edge-per-pair
restriction (with ko, No and v = 2.1, 2.3 and 2.5). Inset: r*
against N for networks with fixed (k)/N (same values as the
main panel) and v = 2.5; the arrow indicates N = No.

Fig. displays the entropy curves for various scale-
free networks, both as functions of 8 and of r: depending
on the value of v, the point of maximum entropy can
be either assortative or disassortative. This can be seen
more clearly in Fig. B where r* is plotted against v
for scale-free networks with various mean degrees (k).
The values obtained by Park and Newman [7] as those



resulting from the one-edge-per-pair restriction are also
shown for comparison: notice that whereas this effect
alone cannot account for the Internet’s correlations for
any -, entropy considerations would suffice if v ~ 2.1.
As shown in the inset, the results are robust in the large
system-size limit (although see [16]).

Since most networks observed in the real world are
highly heterogeneous, with exponents in the range v €
(2,3), it is to be expected that these should display a
certain disassortativity — the more so the lower ~ and
the higher (k). In Fig. Ml we test this prediction on a
sample of empirical, scale-free networks quoted in New-
man’s review [2] (p. 182). For each case, we found the
value of r that maximizes S according to Eq. (), af-
ter inserting Eq. (@) with the quoted values of (k), N
and v. In this way, we obtained the expected assortativ-
ity for six networks, representing: a peer-to-peer (P2P)
network, metabolic reactions, the nd.edu domain, actor
collaborations, protein interactions, and the Internet (see
[2] and references therein). For the metabolic, Web do-
main and protein networks, the values predicted are in ex-
cellent agreement with the measured ones; therefore, no
specific anticorrelating mechanisms need to be invoked
to account for their disassortativity. In the other three
cases, however, the predictions are not accurate, so there
must be additional correlating mechanisms at work. In-
deed, it is known that small routers tend to connect to
large ones [15], so one would expect the Internet to be
more disassortative than predicted, as is the case [17] —
an effect that is less pronounced but still detectable in the
more egalitarian P2P network. Finally, as is typical of
social networks, the actor graph is significantly more as-
sortative than predicted, probably due to the homophily
mechanism whereby highly connected, big-name actors
tend to work together [4].
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FIG. 4: (Color online) Level of assortativity that maximizes
the entropy, r*, for various real-world, scale-free networks,
as predicted theoretically by Eq. (@) (solid symbols) and as
directly measured (empty symbols), against exponent +.

In summary, we have shown how the ensemble of net-

works with a given degree sequence can be partitioned
into regions of equally correlated networks and found,
using an information-theory approach, that the largest
(maximum entropy) region, for the case of scale-free net-
works, usually displays a certain disassortativity. There-
fore, in the absence of knowledge regarding the specific
evolutionary forces at work, this should be considered the
most likely state. Given the accuracy with which our ap-
proach can predict the degree of assortativity of certain
empirical networks with no a priori information thereon,
we suggest this as a neutral model to decide whether or
not particular experimental data require specific mecha-
nisms to account for observed degree-degree correlations.
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