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Abstract

Short-term memory in the brain cannot in general be explained the
way long-term memory can – as a gradual modification of synaptic weights
– since it takes place too quickly. Theories based on some form of cel-
lular bistability, however, do not seem able to account for the fact that
noisy neurons can collectively store information in a robust manner. We
show how a sufficiently clustered network of simple model neurons can be
instantly induced into metastable states capable of retaining information
for a short time (a few seconds). The mechanism is robust to different
network topologies and kinds of neural model. This could constitute a vi-
able means available to the brain for sensory and/or short-term memory
with no need of synaptic learning. Relevant phenomena described by neu-
robiology and psychology, such as local synchronization of synaptic inputs
and power-law statistics of forgetting avalanches, emerge naturally from
this mechanism, and we suggest possible experiments to test its viability
in more biological settings.

Keywords: Working memory; sensory memory; power-law forgetting; local
synchronization in neural networks.

Author summary

Whenever an image is flashed briefly before your eyes, or you hear a sudden
sound, you are usually able to recall the information presented for a few seconds
thereafter. In fact, it is most vivid at first but fades gradually. According to our
current understanding of neural networks, memories are stored by strengthening
and weakening the appropriate connections (synapses) between neurons. But
these biochemical processes take place on a timescale of minutes. Therefore,
when it came to understanding such short-term memory tasks, it seemed that
either each neuron had an individual memory that could work fast enough (not
very robust), or we could only actually remember things that had been stored in
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our brains previously (not very credible). Here we suggest a simple mechanism
– Cluster Reverberation – whereby neurons with no individual memory can
nonetheless store completely novel information almost instantly and maintain it
for a few seconds, thanks to a preponderance of local connections in the network.
If the brain were indeed using this mechanism, it might explain the statistics of
forgetting as well as some recent neurobiological findings.

Introduction

Slow but sure, or fast and fleeting?

Memory – the storage and retrieval of information by the brain – is probably
nowadays one of the best understood of all the collective phenomena to emerge
in that most complex of systems. Thanks to a gradual modification of synap-
tic weights (the interaction strengths with which neurons signal to one other)
particular patterns of firing and non-firing cells become energetically favourable
and so systems evolve towards these attractors according to a mechanism known
as Associative Memory [1, 2, 3, 4]. In nature, these synaptic modifications occur
via the biochemical processes of long-term potentiation (LTP) and depression
(LTD) [5, 6]. However, some memory processes take place on timescales of sec-
onds or less and in many instances cannot be accounted for by LTP and LTD
[7], since these require at least minutes to be effected [8, 9]. For example, visual
stimuli are recalled in great detail for up to about one second after exposure
(iconic memory); similarly, acoustic information seems to linger for three or
four seconds (echoic memory) [10, 11]. In fact, it appears that the brain actu-
ally holds and continually updates a kind of buffer in which sensory information
regarding its surroundings is maintained (sensory memory) [12]. This is eas-
ily observed by simply closing one’s eyes and recalling what was last seen, or
thinking about a sound after it has finished. Another instance is the capability
referred to as working memory [7, 13]: just as a computer requires RAM for its
calculations despite having a hard drive for long-term storage, the brain must
continually store and delete information to perform almost any cognitive task.
We shall here use short-term memory to describe the brain’s ability to store
information on a timescale of seconds or less.

Evidence that short-term memory is related to sensory information while
long-term memory is more conceptual can be found in psychology. For instance,
a sequence of similar sounding letters is more difficult to retain for a short time
than one of phonetically distinct ones, while this has no bearing on long-term
memory, for which semantics seems to play the main role [14, 15]; and the way
many of us think about certain concepts, such as chess, geometry or music,
is apparently quite sensorial: we imagine positions, surfaces or notes as they
would look or sound. Most theories of short-term memory – which almost
always focus on working memory – make use of some form of previously stored
information (i.e., of synaptic learning) and so can account for labelling tasks,
such as remembering a particular series of digits or a known word,1 but not
for the instant recall of novel information [17, 18, 19]. An interesting exception

1This method can also be used to represent a continuous variable, such as the value of an
angle or the length of an object, because concepts such as angle and length are in some sense
already “known” at the time of the stimulus [16].
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is the mechanism proposed by Chialvo et al. [20] which allows for arbitrary
patterns of activity to be temporarily retained thanks to the refractory times of
neurons.

Attempts to deal with novel information have been made by proposing mech-
anisms of cellular bistability: neurons are assumed to retain the state they
are placed in (such as firing or not firing) for some period of time thereafter
[21, 22, 23]. Although there may indeed be subcellular processes leading to a
certain bistability, the main problem with short-term memory depending exclu-
sively on such a mechanism is that if each neuron must act independently of
the rest the patterns will not be robust to random fluctuations [7] – and the
behaviour of individual neurons is known to be quite noisy [24]. It is worth
pointing out that one of the strengths of Associative Memory is that the be-
haviour of a given neuron depends on many neighbours and not just on itself,
which means that robust global recall can emerge despite random fluctuations
at an individual level.

Harnessing network structure

Something that, at least until recently, most neural-network models have failed
to take into account is the structure of the network – its topology – it often being
assumed that synapses are placed among the neurons completely at random,
or even that all neurons are connected to all the rest. Although relatively
little is yet known about the architecture of the brain at the level of neurons
and synapses, experiments have shown that it is heterogeneous (some neurons
have very many more synapses than others), clustered (two neurons have a
higher chance of being connected if they share neighbours than if not) and
highly modular (there are groups, or modules, with neurons forming synapses
preferentially to those in the same module) [25, 26]. We show here that it suffices
to use a more realistic network topology, in particular one that is modular and/or
clustered, for a randomly chosen pattern of activity the system is placed in to
be metastable. This means that novel information can be instantly stored and
retained for a short period of time in the absence of both synaptic learning and
cellular bistability. The only requisite is that the patterns be coarse grained
versions of the usual patterns – that is, whereas it is often assumed that each
neuron in some way represents one bit of information, we shall allocate a bit to
a small group or neurons. (This does not, of course, mean that memories are
expected to be encoded as bitmaps. In fact, we are not making any assumptions
regarding neural coding.)

The mechanism, which we call Cluster Reverberation (CR), is very simple.
If neurons in a group are more densely connected to each other than to the rest
of the network, either because they form a module or because the network is
significantly clustered, they will tend to retain the activity of the group: when
they are all initially firing, they each continue to receive many action poten-
tials and so go on firing, whereas if they start off silent, there is not usually
enough input current from the outside to set them off. (This is similar to the
‘re-entrant’ activity exhibited by excitable elements [27].) The fact that each
neuron’s state depends on its neighbours confers to the mechanism a certain
robustness to random fluctuations. This robustness is particularly important
for biological neurons, which as mentioned are quite noisy. Furthermore, not
only does the limited duration of short-term memory states emerge naturally
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from this mechanism (even in the absence of interference from new stimuli) but
this natural forgetting follows power-law statistics, as has been observed exper-
imentally [28, 29, 30]. It is also coherent with recent observations of locally
synchronized neural activity in vivo [31], and of clustering in both synaptic in-
puts [32] and plasticity [33] during development. The viability of this mechanism
in a more realistic setting could perhaps be put to the test by growing modular
and/or clustered networks in vitro and carrying out similar experiments as we
do here in simulation [34, 35] (see Discussion).

Results

The simplest neurons on modular networks

Consider a network of N model neurons, with activities si = ±1. The topology
is given by the adjacency matrix âij = {1, 0}, each element representing the
existence or absence of a synapse from neuron j to neuron i (â need not be
symmetric). In this kind of model – a network of what are often referred to as
Amari-Hopfield neurons – each edge usually has a synaptic weight associated,
ωij ∈ R, which serves to store information [1, 2, 3, 4]. However, since our
objective is to show how this can be achieved without synaptic learning, we
shall here consider these to have all the same value: ωij = ω > 0 ∀i, j. Neurons
are updated in parallel (Little dynamics) at each time step, according to the
stochastic transition rule

P (si → ±1) =
1

2

[

± tanh

(

hi

T

)

+ 1

]

, (1)

where hi = ω
∑

j âijsj is the field at neuron i, and T is a stochasticity parameter
called temperature. This dynamics can be derived by considering coupled binary
elements in a thermal bath, the transition rule stemming from energy differences
between states [3, 4, 36].

We shall consider the network defined by â to be made up of M distinct
modules. To achieve this, we can first construct M separate random directed
networks, each with n = N/M nodes and mean degree (mean number of neigh-
bours) 〈k〉. Then we evaluate each edge âij = 1 and, with probability λ, elim-
inate it (âij → 0), to be substituted for another edge between the original
(postsynaptic) neuron i and a new (presynaptic) neuron l chosen at random
from among any of those in other modules (âil → 1). We do not allow self-edges
(although they can occur in reality) since these could be regarded as equiv-
alent to a form of cellular bistability. Note that this protocol does not alter
the number of presynaptic neighbours of each node, kini =

∑

j âij , although

the number of postsynaptic neurons, kouti =
∑

j âji, can vary. The parameter
λ can be seen as a measure of modularity of the partition considered, since it
coincides with the expected value of the proportion of edges that link different
modules [37]. In particular, λ = 0 defines a network of disconnected modules,
while λ = 1 − M−1 yields a random network in which this partition has no
modularity. If λ ∈ (1−M−1, 1), the partition is less than randomly modular –
i.e., it is quasi-multipartite (or multipartite if λ = 1).
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Cluster Reverberation

A memory pattern, in the form of a given configuration of activities, {ξi = ±1},
can be stored in this system with no need of prior learning. (The system will
recall the pattern perfectly when si = ξi, ∀i.) Imagine a pattern such that the
activities of all n neurons found in any module are the same – i.e., ξi = ξµ(i),
where the index µ(i) denotes the module that neuron i belongs to. The system
can be induced into this configuration through the application of an appropriate
stimulus: the field of each neuron will be altered for just one time step according
to

hi → hi + δξµ(i), ∀i,
where the factor δ is the intensity of the stimulus (see Fig. 1). This mechanism
for dynamically storing information will work for values of parameters such that
the system is sensitive to the stimulus, acquiring the desired configuration, yet
also able to retain it for some interval of time thereafter (a similar setting is
considered, for instance, in Ref. [38]).

Figure 1: Diagram of a modular network composed of four five-neuron clusters.
The four circles enclosed by the dashed line represent the stimulus: each is
connected to a particular module, which adopts the input state (red or blue) and
retains it after the stimulus has disappeared thanks to Cluster Reverberation.

The two configurations of minimum energy of the system are si = 1 ∀i and
si = −1 ∀i (see the next section for a more detailed discussion on energy).
However, the energy is locally minimized for any configuration in which each
module comprises either all active or all inactive neurons (that is, for configu-
rations si = dµ(i) ∀i, with dµ(i) = ±1 a binary variable specific to the whole
module µ(i) that neuron i belongs to). These are the configurations that we
shall use to store information. We define the mean activity of each module,
mµ ≡ 〈si〉i∈µ, which is a mesoscopic variable, as well as the global mean ac-
tivity, m ≡ 〈si〉∀i (these magnitudes change with time, but, where possible, we
shall avoid writing the time dependence explicitly for clarity; 〈·〉x stands for an
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average over x). The mean activity in a neural network model is usually taken
to represent the mean firing rate measured in experiments [39]. The extent to
which the network, at a given time, retains the pattern {ξi} with which it was
stimulated is measured with the overlap parameter mstim ≡ 〈ξisi〉i = 〈ξµmµ〉µ.
Ideally, the system should be capable of reacting immediately to a stimulus by
adopting the right configuration, yet also be able to retain it for long enough
to use the information once the stimulus has disappeared. A measure of perfor-
mance for such a task is therefore

η ≡ 1

τ

t0+τ
∑

t=t0+1

mstim(t),

where t0 is the time at which the stimulus is received and τ is the period of time
we are interested in (|η| ≤ 1) [38]. If the intensity of the stimulus, δ, is very
large, then the system will always adopt the right pattern perfectly and η will
only depend on how well it can then retain it. In this case, the best network will
be one that is made up of mutually disconnected modules (λ = 0). However,
since the stimulus in a real brain can be expected to arrive via a relatively small
number of axons, either from another part of the brain or directly from sensory
cells, it might be more realistic to assume that δ is of a similar order as the
input a typical neuron receives from its neighbours, 〈h〉 ∼ ω〈k〉.

Figure 2 shows the mean performance obtained in Monte Carlo (MC) simula-
tions when the network is repeatedly stimulated with different randomly gener-
ated patterns. For low enough values of λ and stimuli of intensity δ & ω〈k〉, the
system can capture and successfully retain any pattern it is “shown” for some
period of time, even though this pattern was in no way previously learned. For
less intense stimuli (δ < ω〈k〉), performance is nonmonotonic with modularity:
there exists an optimal value of λ at which the system is sensitive to stimuli yet
still able to retain new patterns quite well.

Just as some degree of structural (quenched) noise, given by λ, can improve
performance by increasing sensitivity, so too the dynamical (annealed) noise set
by T can have a similar effect. This apparent stochastic resonance is analysed
in Analysis: The effect of noise.

Energy and topology

Each pair of neurons contributes a configurational energy eij = − 1
2ω(âij +

âji)sisj [4]; that is, if there is an edge from i to j and they have opposite
activities, the energy is increased in 1

2ω, whereas it is decreased by the same
amount if their activities are equal. Given a configuration, we can obtain its
associated energy by summing over all pairs. To study how the system relaxes
from the metastable states (i.e., how it “forgets” the information stored) we shall
be interested in configurations with x neurons that have s = +1 (and N − x
neurons with s = −1), chosen in such a way that one module at most, say µ,
has neurons in both states simultaneously. Therefore, x = nρ + z, where ρ is
the number of modules with all their neurons in the positive state and z is the
number of neurons with positive sign in module µ. We can writem = (2x−1)/N
and mµ = (2z − 1)/n. The total configurational energy of the system will be

E =
∑

ij

eij =
1

2
ω(L↑↓ − 〈k〉N),
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Figure 2: Performance η against λ for networks of the sort described in the main
text with M = 160 modules of n = 10 neurons each, 〈k〉 = 9, obtained from
Monte Carlo (MC) simulations; patterns are shown with intensities δ = 8.5, 9
and 10, and performance is computed evey 200 time steps, preceding the next
random stimulus; T = 0.02 (error bars represent standard deviations; lines –
splines – are drawn as a guide to the eye). Inset: typical time series of mstim

(i.e., the overlap with whichever pattern was last shown) for λ = 0.5 (bad
performance), 0 (intermediate), and 0.25 (optimal); with δ = ω〈k〉 = 9.

where L↑↓ is the number of edges linking nodes with opposite activities. By
simply counting over expected numbers of edges, we can obtain the expected
value of L↑↓ (which amounts to a mean-field approximation), yielding:

E

ω〈k〉 +
N

2
=

λn

N − n
{ρ[n− z + n(M − ρ− 1)] (2)

+(M − ρ− 1)(z + nρ)}+ (1− λ)
z(n− z)

n− 1
.

Figure 3 shows the mean-field configurational energy curves for various values
of the modularity on a small modular network. The local minima (metastable
states) are the configurations used to store patterns. It should be noted that
the mapping x → m is highly degenerate: there are CM

mM patterns with mean
activity m that all have the same energy.

Forgetting avalanches

In obtaining the energy we have assumed that the number of synapses rewired
from a given module is always equal to its expected value: ν = 〈k〉nλ. However,
since each edge is evaluated with probability λ, ν will in fact vary somewhat
from one module to another, being approximately Poisson distributed with mean
〈ν〉 = 〈k〉nλ. The depth of the energy well corresponding to a given module is
then, neglecting all but the last term in Eq. (2) and approximating n− 1 ≃ n,
∆E ≃ 1

4ω(n〈k〉 − ν). The typical escape time τ from an energy well of depth
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Figure 3: Configurational energy of a network made up of M = 5 modules of
n = 10 neurons each, according to Eq. (2), for various values of λ (increasing
from bottom to top). The minima correspond to situations such that all neurons
within any given module have the same sign.

∆E at temperature T is τ ∼ e∆E/T [40]. Using Stirling’s approximation [n! ∼√
2πn(n/e)n] in the Poisson distribution over ν and expressing it in terms of τ ,

we find that the escape times are distributed according to

P (τ) ∼
(

1− 4T

ωn〈k〉 ln τ
)− 3

2

τ−β(τ), (3)

where

β(τ) = 1 +
4T

ωn〈k〉

[

1 + ln

(

λn〈k〉
1− 4T

ωn〈k〉 ln τ

)]

. (4)

Therefore, at low temperatures, P (τ) will behave approximately like a power
law. Note also that the size of the network, N , does not appear in Eqs. (3) and
(4). Rather, T scales with n, which could be small even in the thermodynamic
limit (N → ∞).

The left panel of Fig. 4 shows the distribution of time intervals between
events in which the overlap mµ of at least one module µ changes sign. The
power-law-like behaviour is apparent, and justifies talking about forgetting avalanches
– since there are cascades of many forgetting events interspersed with long pe-
riods of metastability. This is very similar to the behaviour observed in other
nonequilibrium settings in which power-law statistics arise from the convolution
of exponentials, such as demagnetization processes [41] or Griffiths phases on
networks [42].

It is known from experimental psychology that forgetting in humans is indeed
quite well described by power laws [28, 29, 30] – although most experiments to
date seem to refer to slightly longer timescales than we are interested in here.
The right panel of Fig. 4 shows the value of the exponent β(τ) as a function of
τ . Although for low temperatures it is almost constant over many decades of τ
– approximating a pure power law – for any finite T there will always be a τ
such that the denominator in the logarithm of Eq. (4) approaches zero and β
diverges, signifying a truncation of the distribution.
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Figure 4: Left panel: distribution of escape times τ , as defined in the main
text, for λ = 0.25 and T = 2, from MC simulations. Slope is for β = 1.35.
Other parameters as in Fig. 2. Right panel: exponent β of the quasi-power-law
distribution p(τ) as given by Eq. (4) for temperatures T = 1, 2 and 3 (from
bottom to top).

Note that we have considered the information stored in a pattern to be lost
once the system evolves to any other energy minimum. However, this new pat-
tern will be highly correlated with the original one, and it might be reasonable
to assume that the system has to escape from a large number of energy minima,
L, before the information can be considered to have been entirely forgotten. The
time for this is τsum =

∑L
i=0 τi, where τi are independently drawn from Eq (3).

If L is sufficiently large, the distribution of times τsum will tend to a Lévy dis-
tribution [43]. In practice, these different broad-tailed distributions [power-law,
Lévy, or as given by Eq. (3)] are likely to be indistinguishable experimentally
unless it is possible to observe over many orders of magnitude.

Clustered networks

Although we have illustrated how the mechanism of Cluster Reverberation works
on a modular network, it is not actually necessary for the topology to have this
characteristic – only for the patterns to be in some way “coarse-grained,” as
described, and that each region of the network encoding one bit have a small
enough parameter λ, defined as the proportion of synapses to other regions. For
instance, for the famous Watts-Strogatz small-world model [44] – a ring of N
nodes, each initially connected to its k nearest neighbours before a proportion
p of the edges are randomly rewired – we have λ ≃ p (which is not surprising
considering the resemblance between this model and the modular network used
above). More precisely, the expected modularity of a randomly imposed box of
n neurons is

λ = p− n− 1

N − 1
p+

1− p

n

(

k

4
− 1

2

)

,

the second term on the right accounting for the edges rewired to the same box,
and the third to the edges not rewired but sufficiently close to the border to
connect with a different box.

Perhaps a more realistic model of clustered network would be a random
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network embedded in d-dimensional Euclidean space. For this we shall use the
scheme laid out by Rozenfeld et al. [45], which consists simply in allocating
each node to a site on a d-torus and then, given a particular degree sequence,
placing edges to the nearest nodes possible – thereby attempting to minimize
total edge length. For a scale-free degree sequence (i.e., a set {ki} drawn from a
degree distribution p(k) ∼ k−γ) according to some exponent γ, then, as shown
in Analysis: Effective modularity of clustered networks, such a network has a
modularity

λ ≃ 1

d(γ − 2)− 1

[

d(γ − 2)l−1 − l−d(γ−2)
]

, (5)

where l is the linear size of the boxes considered. It is interesting that even in
this scenario, where the boxes of neurons which are to receive the same stimulus
are chosen at random with no consideration for the underlying topology, these
boxes need not have very many neurons for λ to be quite low (as long as the
degree distribution is not too heterogeneous).
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Figure 5: Performance η against exponent γ for scale-free networks, embedded
on a 2D lattice, with patterns of M = 16 modules of n = 100 neurons each,
〈k〉 = 4 and N = 1600; patterns are shown with intensities δ = 3.5, 4, 5 and
10, and T = 0.01 (error bars represent standard deviations; lines – splines – are
drawn as a guide to the eye). Inset: typical time series for γ = 2, 3, and 4, with
δ = 5.

Carrying out the same repeated stimulation test as on the modular networks
in Fig. 2, we find a similar behaviour for the scale-free embedded networks. This
is shown in Fig. 5, where for high enough intensity of stimuli δ and scale-free
exponent γ, performance can, as in the modular case, be η ≃ 1. We should
point out that for good performance on these networks we require more neurons
for each bit of information than on modular networks with the same λ (in Fig.
5 we use n = 100, as opposed to n = 10 in Fig. 2). However, that we should be
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able to obtain good results for such diverse network topologies underlines that
the mechanism of Cluster Reverberation is robust and not dependent on some
very specific architecture.

Spiking neurons

In the usual spirit of determining the minimal ingredients for a mechanism to
function we have, up until now, used the simplest model neurons able to ex-
hibit CR. This approach makes for a good illustration of the main idea and
allows for a certain amount of analytical understanding of the underlying phe-
nomena. However, before CR can be considered as a plausible candidate for
helping to explain short-term memory, we must check that it is compatible with
more realistic neural models. For this we examine the behaviour of the popular
Integrate-and-Fire (IF) model neurons – often referred to as spiking neurons –
in the same kind of setting as described above for the simpler Amari-Hopfield
neurons. In the IF model, each neuron is characterized at time t by a membrane

potential V (t), described by the differential equation

τm
dV (t)

dt
= −V (t) +RmIin(t), (6)

where τm and Rm are, respectively, the membrane time constant and resistance,
and Iin(t) = Isyn(t)+Ist(t)+Iext(t); the term Isyn(t) =

∑

j I
j
syn(t) is the synap-

tic current generated by the arrival of Action Potentials (AP) from the neuron’s
presynaptic neighbours, Ist(t) is the current generated by the presentation of
a particular external stimulus to the network and Iext(t) = I0 +

√
τmDξ(t) is

an additional noisy external current. Here I0 and D are constants and ξ(t) is
a Gaussian noise of mean 〈ξ(t)〉 = 0 and autocorrelation 〈ξ(t)ξ(t′)〉 = δ(t− t′).
Each synaptic contribution to the total synaptic current is modelled as Ijsyn(t) =
Ayj(t), where yj(t) represents the fraction of neurotransmitters in the synaptic
cleft, which follows the dynamics [46]

dyj(t)

dt
= −yj(t)

τin
+ Uδ(t− tjsp). (7)

Here, tjsp is the time at which an AP arrives at synapse j, inducing the re-
lease of a fraction U of neurotransmitters, and τin is the typical time-scale for
neurotransmitter inactivation. Whenever V surpasses a given threshold θ, the
neuron fires an AP to all its postsynaptic neighbours and V is reset to zero,
then undergoing a refractory time τref before again becoming susceptible to in-
put. Because the parameters and variables of this model represent measurable
physiological quantities, it is possible to use it to make quantitative – albeit
tentative – predictions about the timescales on which CR might be expected to
be effective in a real neural system.

Figure 6 is a raster plot of a modular network of IF neurons. The system
performs a short-term memory task akin to the one previously described for the
Amari-Hopfield neural network: the neurons belonging to clusters that corre-
spond to ones in a random pattern are stimulated, for 10 ms, with an intensity
Istim, while the the remaining neurons receive an opposite stimulus, −Istim.
We then allow the system to evolve for 500 ms, before choosing a new random
pattern and stimulating again. In such tests, the neurons in positively stimu-
lated clusters usually begin to oscillate in synchrony, while the rest remain silent

11



Figure 6: Raster plot, obtained from MC simulations, of a network of 1000
integrate-and-fire (IF) neurons wired up (as described in the main text) in
groups of 50, with a rewiring probability λ = 0.02. Every 500 ms, a new
pattern is shown for 10 ms with an intensity Istim = 500 pA (plotted in blue).
Parameters for the neurons are A = 42.5 pA, θ = 8 mV, τref = 5 ms, τin = 3
ms, U = 0.02, Rm = 0.1 GΩ and τm = 10 ms, which are all within the physio-
logical range; and the external noisy current is modelled with I0 = 15 pA and
D = 10 pA ms−1/2.

(save for occasional individual APs caused by noise). However, since this is a
metastable state, with time active clusters can suddenly go mostly silent, or the
neurons in silent clusters begin spontaneously to fire in synchrony. Thus, the
information is gradually lost, as in the case with simpler neurons.

To gauge how well the system is performing the task, we look at each cluster
µ for the last 100 ms before the next stimulus and assign a value mµ = 1 to
its mean activity if it is active, and mµ = −1 if it is silent. We then define the
performance as:

η =
1

M

∑

µ

mµξµ. (8)

In Fig. 7 we show the values of η obtained in MC simulations against λ. Using
different values of Istim we observe a similar behaviour to that of Fig. 2. In
particular, for Istim ≃ 100 pA, we have the interesting nonmonotonic behaviour
in which performance benefits from a certain degree of rewiring. While, for the
sake of illustration, in Fig. 6 we only show the evolution of the system for 500 ms
after stimulation, in Fig. 7 we wait for five seconds. Although the model is too
simple, and the network too small, to make quantitative predictions about the
brain, it is nevertheless promising that with physiologically realistic parameters
we observe high performance (η ≃ 1) over several seconds, since this is the

12



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

Istim=98

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

Istim=98
Istim=100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

P
er

fo
rm

an
ce

 η

Rewiring prob. λ

Istim=98
Istim=100
Istim=200

Figure 7: Performance η against rewiring λ for modular networks of IF neurons,
as obtained from MC simulations. The network is periodically stimulated with a
new random pattern for 10 ms with an intensity Istim = 98 pA (green squares),
100 pA (red circles) and 200 pA (blue triangles) (error bars represent standard
deviations; lines – splines – are drawn as a guide to the eye). The system evolves
in the absence of stimuli for 5000 ms and performance, η, is computed according
to Eq. (8). (An interval of 5 seconds corresponds roughly to the timescale on
which short-term memory operates in the brain.) Other parameters are as in
Fig. 6.

timescale on which short-term memory operates in humans.

Discussion

Cluster Reverberation may be a means available to neural systems for perform-
ing certain short-term tasks, such as sensory memory or working memory. To
the best of our knowledge, it is the first mechanism proposed to use network
properties with no need of synaptic learning. All that is required is for the
underlying network to be highly clustered or modular, and for small groups of
neurons in some sense to store one bit of information, as opposed to a con-
ventional view which assumes one bit per neuron. Considering the enormous
number of neurons in the brain, and the fact that real neurons are possibly
too noisy to store information individually anyway, these hypotheses do not
seem far-fetched. The mechanism is furthermore consistent with what is known
about the structure of biological neural networks, with experiments that have
revealed power-law statistics of forgetting, and with recent observation of locally
synchronized synaptic activity.

For the sake of illustration, we have focused here on the simplest model
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neurons that are able to exhibit the behaviour of interest. However, we have
shown how the mechanism can also work with the slightly more sophisticated
Integrate-and-Fire neurons, and there is no reason to believe that it would not
also be viable with more realistic models, or even actual cells. Although CR
comes about thanks to the high modularity of small groups of neurons, we have
shown how robust it is to the details of the topology by carrying out simulations
on clustered networks with no explicitly built-in modularity. And this setting
suggests an interesting point. If an initially homogeneous (i.e., neither modular
nor clustered) area of brain tissue were repeatedly stimulated with different
patterns in the same way as we have done in our simulations, then synaptic
plasticity mechanisms (LTP and LTD) might be expected to alter the network
structure in such a way that synapses within each of the imposed modules
would all tend to become strengthened, while inter-module synapses would vary
their weights in accordance with the details of the patterns being shown [47].
The result would be a modular structure conducive to efficient CR for arbitrary
patterns, with simultaneous Hebbian learning in the inter-synapses of the actual
patterns shown. In this way, the same network might be capable of both short-
term and long-term memory, explaining, perhaps, why our brains can indeed
store completely novel information but usually with a certain bias in favour of
what we are expecting to perceive.

Although we have not gone into the question of neural coding, there would
seem to be an intrinsic difference between semantic storage of information –
used for long-term memory and probably useful for certain working-memory
tasks that require the labelling of previously learned information – and sensory

storage, for which some mechanism such as the one proposed here must store
novel information immediately – in a similar but more efficient way to how
the retina retains the pigmentation left by an image it was recently exposed
to. If novel sensory information were held for long enough in metastable states,
Hebbian learning (either in the same or other areas of the brain) could take place
and the information be stored thereafter indefinitely. This might constitute the
essence of concentrating so as to memorise a recent stimulus.

Finally, we should mention that CR could work in conjunction with other
mechanisms, such as processes leading to cellular bistability, making these more
robust to noise and augmenting their efficacy. Whether CR would work for bio-
logical neural systems could perhaps be put to the test by growing such modular
networks in vitro, stimulating appropriately, and observing the duration of the
metastable states [34, 35]. In vivo recordings of neural activity during short-term
memory tasks, together with a mapping of the underlying synaptic connections,
might be used to ascertain whether the brain could indeed harness this mech-
anism. For this it must be borne in mind that the neurons forming a module
need not find themselves close together in metric space, and that effective mod-
ularity might come about via stronger intra- than inter-connexions, instead of
simply through a higher density of synapses within the clusters. We hope that
observations and experiments such as these will be carried out and eventually
reveal something more about the basis of this puzzling emergent property of the
brain’s known as thought.
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Analysis

The effect of noise

On a random network (λ = 1 − M−1), the Amari-Hopfield model described
in the main text has a second order phase transition with temperature, T , at
Tc = ωk [4]. This can be seen by considering the mean-field equation for the
overlap at the steady state, m = tanh(ωkm/T ), where we have substituted
hi = ω

∑

j aijsi → ωkm in Eq. (1). For T < Tc, the paramagnetic solution
m = 0 becomes unstable, and ferromagnetic solutions m 6= 0 appear [36]. This
result also holds for the modular networks described in the main text. However,
that the global overlap m is different form zero does not mean that the short-
term memory configurations we are interested in are stable. In fact, we know
they are metastable for any T > 0 (see Section Energy and topology), but we can
set an upper bound on the temperature at which these states can be maintained
even for a short time by considering again the mean-field equation for such a
configuration. For a neuron in module µ, hi → ωk[(1 − λ)mµ + λm]. For
patterns with mean activity zero (m = 0), states mµ 6= 0 will be unstable if
T > (1− λ)ωk ≤ Tc.
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Figure 8: Performance η against T for the Hopfield-Amari networks described
in the main text, obtained from MC simulations, for values of the rewiring
λ = 0.0, 0.1, 0.2 and 0.3, and stimulus δ = 8.5. All other parameters as in Fig.
2. (Error bars represent standard deviations; lines – splines – are drawn as a
guide to the eye).

As we saw from Fig. 2, for stimuli δ . ω〈k〉, the system does not always
leave whichever meatastable state it is in to go perfectly to the pattern shown.
A degree of “structural noise” (λ > 0) can lead to a better response. In the same
way, the dynamical noise set by T can improve performance. Figure 8 shows
how performance varies with T for different values of λ. Due to the trade-off
between sensitivity to stimuli and stability of the memory states, there is in
general an optimum level of noise at which the system performs best. This
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dynamics can be interpreted as a kind of stochastic resonance, with the stimuli
playing the part of the periodic forcing typically seen in such systems [48]. Both
the dynamic (annealed) noise, T , and the structural (quenched) noise, λ, serve
to increase the sensitivity of the system to stimuli.

It is interesting to observe in Fig. 8 that whereas highly modular networks
(λ ≃ 0) are most robust to T , for no values of parameters do they exhibit as
good performance as the less modular networks when T is relatively low.

Effective modularity of clustered networks

We wish to estimate λ, the proportion of edges that cross the boundaries of a
box of linear size l placed randomly on a network embedded in d-dimensional
space according to the scheme laid out in Ref. [45]. The number of nodes within
a radius r is n(r) = Adr

d, with Ad a constant. We shall therefore assume a node
with degree k to have edges to all nodes up to a distance r(k) = (k/Ad)

1/d, and
none beyond (note that this is not necessarily always feasible in practice). To
estimate λ, we shall first calculate the probability that a randomly chosen edge
have length x. The chance that the edge belong to a node with degree k is
π(k) ∼ kp(k) (where p(k) is the degree distribution). The proportion of edges
that have length x among those belonging to a node with degree k is ν(x|k) =
dAdx

d−1/k if Adx
d < k, and 0 otherwise. Considering, for example, scale-free

networks (as in Ref. [45]), so that the degree distribution is p(k) ∼ k−γ in some
interval k ∈ [k0, kmax], and integrating over p(k), we have the distribution of
lengths,

P (x) = (Const.)

∫ kmax

max(k0,Axd)

π(k)ν(k|x)dk = d(γ − 2)x−[d(γ−2)+1],

where we have assumed, for simplicity, that the network is sufficiently sparse
that max(k0, Ax

d) = Axd, ∀x ≥ 1, and where we have normalised for the
interval 1 ≤ x < ∞; strictly, x ≤ (kmax/A)

1/d, but we shall also ignore this
effect. Next we need the probability that an edge of length x fall between two
compartments of linear size l. This depends on the geometry of the situation as
well as dimensionality; however, a first approximation which is independent of
such considerations is

Pout(x) = min
(

1,
x

l

)

.

We can now estimate the modularity λ as

λ =

∫ ∞

1

Pout(x)P (x)dx =
1

d(γ − 2)− 1

[

d(γ − 2)l−1 − l−d(γ−2)
]

.

Figure 9 compares this expression with the value obtained numerically after
averaging over many network realizations, and shows that it is fairly good –
considering the approximations used for its derivation.
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