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Free boundary minimal surfaces in B?

Definition :  Free boundary minimal surfaces = Properly embedded
minimal surfaces in B3 which meet S? = OB? orthogonally.
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Free boundary minimal surfaces in B?

Definition :  Free boundary minimal surfaces = Properly embedded
minimal surfaces in B3 which meet S? = OB? orthogonally.

Topological classification :
» - J.C.C. Nitsche 1980 : The only simply connected free boundary

minimal surface in B? is the equatorial disk.

» A. Fraser, M. Li 2012, Conjecture : The unique (up to congruences)
free boundary minimal annulus in B3 is the critical catenoid:

(s,0) — (coshse s), s,tanhs, =1

Sy cosh s,

» - A. Fraser, R. Schoen, 2013 : Vn € N, there exists a genus 0 free
boundary minimal surface in B? with n boundary components.
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Steklov eigenproblem

(M?, g) - compact Riemannian manifold, with OM + ()

Ayjii=0 on M,

u € C(OM) ~ 1 : {
U=1u on OM

Dirichlet-to-Neumann operator :

i
Ly : C®(OM) — C°(OM), Lgu = 6&
n
non-negative, self-adjoint,
diskrete spectrum: op < 01 < 09 < --- (Steklov eigenvalues)
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Genus 0 free boundary minimal surfaces

0*(0,n) := sup o1(g) Length, (OM).

1. Weinstock theorem : 0*(0,1) = 2w, 3 - flat unit disk
2. A. Fraser, R. Schoen :

» For all n € N a maximizing metric is achieved by a free boundary
minimal surface %, in B2 (if n = 2, then 0%(0,2) = 47/1.2 and ¥, is
a critical catenoid)

» n — 00, X, converges on compact sets of B3 to a double equatorial
disk. (0*(0,n) converges to 4).

» For large n, 3, is approximately a pair of nearby parallel plane disks
joined by n boundary bridges ~ scaled down versions of half-catenoids.



Main result
R? «— C xR, &, C O(3) a subgroup of isometries generated by

2mi

(z,t) = (2,t), (z,t)— (2,—-t), (z,t)— (e z,1)

Theorem (A. Folha, F. Pacard, —)

For n large enough we

» Give an alternative proof of existence of genus 0 free boundary
minimal surfaces with n boundary components (invariant under G,,),

Y, —  double copie of D?.
n—0o0

» Prove the xistence of genus 1 free boundary minmal surfaces 3, with
n boundary components (invariant under S,,),

>, —  double copie of D?\ {0}.

n—oo



CMC surfaces by doubling constructions

Ingredients: An initial compact, oriented embedded minimal surface ¥ and
a set of points p1,...,p, € X.

» Construct two "nearby copies” Y. of 3, which converge uniformly to
> when e — 0 :

Yi. =Y+ eUNy, el

» Perform a connected sum of X4, at p1,...,p; and then deform it to a
CMC surface.

P2 P3 Yite

—— 8 B §
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CMC surfaces by doubling constructions

Question : Under what conditions is it possible to carry out a doubling
construction based on given minimal surface?

Neck configuration : The number, the size and the positions of the necks.

Jacobi operator : Jy = Ay, + |A,|? + Ric(Ng, Nx).

3} is said to be nondegenerate if

Jsw=0, wlyy=0 = w=0.

|
F. Pacard, T. Sun : If ¥ is a nondegenerate minimal hypersurface in a
Riemannian manifold, one can choose V. s.t. H(X + ¥ Ny) = +1 and
produce a CMC surface with H = ¢ by doubling ¥ at any nondegenerate
critical point of U (neck size ~ ¢ ).



CMC surfaces by doubling constructions

Question : What if X is degenerate?

» Green's function method (R. Mazzeo, F. Pacard, D. Pollack) :
consists to study the solutions to

k

JsT = "cidy, T|,s = 0,
=1

and construct ¥ 4. as a normal graphs about ¥ of the functions +&T’

(X1c converge to X uniformly on compact sets when € — 0).

» Balancing considerations (using the first variation formula).

A. Butscher, F. Pacard : Surfaces with H = ¢ in S3 can be constructed by
doubling the minimal Clifford torus at the points of a square lattice that
contains 27 Z? (neck size ~ ¢ ).
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Minimal surfaces by doubling constructions ﬁf

» N. Kapouleas, S.D. Yang : Construction of minimal surfaces in S? by
doubling the Clifford torus at the points of the square lattice %Z,
with n large enough.

» N. Kapoules : Construction of minimal surfaces in S3 by doubling the
equatorial sphere

» D. Wiygul : Construction of minimal surfaces in S? by stacking
Clifford tori.

I A certain relation should be satisfied between the number of necks and
the size of the necks = Construction works only for large n !
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Minimal surfaces by doubling constructions ﬂ%

The expansion of the Green’s function in a neighborhood of the poles
reads :
el'=¢ec(n)+elogr+...

On the other hand, catenoid scaled by a factor £ (neck size)
X:,:(5,0) €R x S* = £ (cosh s cos, cosh s sin 6, s)

can be seen as a bi-graph of the function

2 g3
Ge=clog—+e¢elogr+ O
€

r2

I We need the constant terms to match exactly : ¢(n) = logg , which
gives the relation between the size and the number of the necks.
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Parametrization of the unit ball

We choose the following parametrization of B?:
X:D?xR — B3 X(z,t)=A(z1)(z, B(z) sinht),

where B(z) = 1HZ| and A(z,t) = m‘

» t=0 - horizontal disk D? x {0}
» [zl =1 - unit sphere S?
» t =ty - CMC leaf with H = sinhty that meets S? orthogonally.

Induced metric :

X*geucl = A2(Z7t) (|dZ|2 + BQ(Z’) dt2)
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Parametrization of the unit ball
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Free boundary graphs over D? x {0}

Take w € C?(D?) and consider the image in B of the vertical graph of w :

z = X(z,w(2)).

Lemma

1. X(z,w(z)) is orthogonal to S* = OB? at the boundary iff

a"'UJ|7‘:1 = 0’

2. Mean curvature of X (z,w(z)) is given by

. A%(w) B%V :
H(w) = A3(-,1w)Bd1V <\/%> +2+/1+ B? |Vw|? sinhw.
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Linearized mean curvature operator

The linearized mean curvature operator is given by

2
Lyw=A(Bw)=A <1+2|Z w)

14 / 32



Linearized mean curvature operator

The linearized mean curvature operator is given by

2
Lyw=A(Bw)=A <1+2|Z w>

Remark:

» The operator Ly, has a kernel :

2 2
Ker(LgT):{ e 2 }

L4227 1+ |22

This corresponds to tilting the unit disk D? x {0} in B3.

14 / 32



Linearized mean curvature operator

The linearized mean curvature operator is given by

2
Lyw=A(Bw)=A <1+2|Z w>

Remark:

» The operator Ly, has a kernel :

2 2
Ker(LgT):{ e 2 }

L4 [2[2" 1+ 22
This corresponds to tilting the unit disk D? x {0} in B3.

» One can eliminate the kernel by asking the function w to be invariant
under a group of rotations around the coordinate axis Ozg =

(We arrange the catenoidal bridges periodically along S*)



Green’s functions
2mim/n m=1

Take ¢, e Ry and 2z, =
and consider the catenoids in R3 centered at z = 0 and z = z,,

(é cosh s e , és)

(5,0) e R x S'
3 .
[;r W] — (z-:coshsew—i-zm, 68)

(s,0) eR

which can be seen as bi-graphs of the functions
—¢log |z| +

€
Gem(2) i= (z i(slogé—slog]z—zm‘+

m(2) =z,
in small neighborhoods of z = 0 and z = z,,.



Green’s function

Goal : To find the solution to the problem () invariant under rotations by
the angle 27”

A(BF) = C0 50 in D2
%)
or=>"_cnd,, on St

If I'(z) =G(2")/B(z), then G satisfies

AG:d060 in D2
(%)
8TG—%G:d1(51 on Sl

in the sense of distributions.
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Green’s function

We construct explicitly Gy and G, such that

. AGy=dydy in D? , AG1 =0 in D?
8.Go—£Go=0 on S! 8.Gi— LG =di6 on S
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Green’s function

We construct explicitly Gy and G, such that

. AGy=dydy in D? , AG1 =0 in D?
arGo—%G(]:O on Sl 8TG1—%G1:(11(51 on Sl
» G := —log|z| —n - satisfies (1)

> Yk EN, Hy(z) = ZRe Y72, Fr

Ho(z) = —log |1 — Z|, aer|T:1 = %Hk—l

Gi(z) = =5 4+ > 02 Hi(z) - satisfies (2)

» Vo,B eR, T',(z2):= B%Z) (e Go(2") + B G1(2")) satisfies ()



Neck configurations

co(n) + 2na log |z + , as z—0

c1(n) 4 B log|z — zm| + , as 2 — Zm,
where cg(n) ~ ci1(n) ~ n. We obtain :

~ 9
6!\/6’ nN]_OgE:’ aN—’ BNS
n

and do the "gluing" in the regions

2| ~ Y2, |z —zm| ~ €3, m=1,...,n
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Catenoidal bridges orthogonal to S?

C_ :={¢ e C : Re(¢) <0}. Consider the diffeomorphisms

Am(C): Co — D2, Ap(¢) = 2mm/m ig

\
'

0 A

2mmi
Zm — € n

and A, (Gt):Co xR — D? xR, Apn(z,t) = (A\n(2),2t)
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Approximate solution A,

A,, = connected sum of the graph of the Green’s function T';, with n
half-catenoidal bridges and 1 catenoidal neck.

Orthogonality to S? at the boundary:
» The half-catenoid X4 is foliated by horizontal leafs orthogonal to
OC_ x R at the boundary.

» The restriction X o A,, to the horizontal planes is conformal.

» The surface parametrized by X o A, o X4 is foliated by spherical-cap

leafs orthoional to S? at the boundar‘.



Perturbation argument

Define a vector field = transverse to A,
(smoothly interpolating between the "normal” to the catenoids and the

"vertical” vector field), s.t
if & is the associated flow : £ (A,,0) = A, and % =

then A, ; := &(A,) meets S? orthogonally along A, +.



Mean curvature of the perturbed surface

Take w € C?(A,) and put A, (w) = {£(p,w(p)), p€ A.}.

» The Taylor expansion of the mean curvature of A, (w) satisfies

H(A,(w)) = + Ly w + Qp(w, Vw, V2w),

L, - the linearized mean curvature operator,

Q,, - smooth nonlinear function, s.t. Q(0,0,0) = DQ(0,0,0) = 0.

» If w satisfies the Neumann boundary condition : %—%’ =0on 0A,

= A, (w) meets S? orthogonally at the boundary.
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Minimal surface equation

Our goal is to solve the equation H(A,(w)) =0 or

Lnw=—(H(Ap) + Qn(w, Vu, V3w))

> If H(A,) i 0 in a suitable topology

» and if £, were invertible with its inverse bounded uniformly in n

= we could apply Banach fixed point theorem in a ball of an appropriate
Banach space (the radius of the ball being defined by ||H(A,)|).

23 / 32



Weighted Banach spaces

2mim

no |, x € Ap.

n
Weight function : y(z) = |z| Hl\x —e
m=

ForveR, welLX(A,) iff |y 7w <oo.

Then, we find [|H (Ay)|| o < cei™ < ce(5v)

and take v € (0,1). Moreover we have :

Lot L2(An) — L 5(Ap).

In the same manner we define Holder weighted spaces che,
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Properties of the linearized operator

As n — oo,
In the "graph” region : Ly, ~ Lg =A(B-),

” - 13 . . ~ 2 2
In the "catenoidal” regions : L, at = 572 P (8 + 0y + + = s).

(Jacobi operator about the catenoid)

We should study the corresponding operators in noncompact domains

D2\ {0,z1,...,2,}, R x 81, and R x [g,%’r]

Problem : The catenoid is degenerate = there are small eigenvalues of
the operator £,, (eigenvalues that tend to 0 as fast as n — 00).
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Study the homogeneous problem

€2 cosh2 (82+62 cosh2 ) w=0 Rx [g’%r]7
89111:0 R x {g

Fourier series w = > w;(s) e'%.
jez

> || > 2, maximum principle = w; = 0;

» |j| =1 (rotations + horizontal translations),
Neumann boundary condition + symmetry w(s,0) = w(s, 2w — 0)
= wx1 =0;

» j =0 (dilatation + vertical translation),

symmetry w(s, ) = w(—s,0) + suitable function space = wy = 0.
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Linear analysis on the half-catenoid

Lemma

For [v| < 1 and for all f € (gcoshs)”"2 L>®(R x [Z,2X]) there exist
Veat € (e cosh s)” L°(R x [g, 37”]) and c.qt ER | s.t.
Weat = Veat + Ceat Sa tisfies

2 2 _ 3
{h (2 + B+ ) war = f R [5.%],

3
89wcat:O R x g:?ﬂ )

and ||(ecosh 8)™ veat || Lo + |ceat| < O ||(g cosh s) ¥ 42 fl| poo.

Deficiency space : ®qr = span{1}.
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Linear analysis in the punctured disk

We are interested in the problem
A(Bw)=f in D*\ {0},
(%)
Ow=0 on S'\{z,...,2,}.

. . . 271-
Suppose that f and w are invariant under rotations by the angle <

= no bounded kernel.
Put w(z) = W(z")/B(z), then (x) is equivalent to

AW =F in D?\{0},
(**){&W—}LW:O on S\ {1}.
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Linear analysis in the punctured disk

Fix a cut-off function \ € C*°(D?), which is identically equal to 1 in a
neighborhood of z =1 and to 0 in a neighborhood of z = 0.

Weight function : v(z) = |z| |z — 1].

Assume that v € (0,1) , then Vn large enough and for all F, such that
F € L ,(D?), there exists a unique function V,, and unique constants c
and ¢y, such that Wy, = V. + con + ¢ x is a solution to (+*) and

Varllzge + lcol + lei] < C I Fllzee,

Deficiency space : ©g4, = span{n, x}.
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Gluing the parametrices together

We need to solve
Low=f, for feLys(An).
We divide A, in 2 symmetric parts, extend f to
and solve the problem in R x St R x [g, 37”] and D2\ {0, z1,...,2,},

restrict the solutions to A,, and glue the restricted solutions together to
produce :

0

(We need to treat the terms decaying at infinity and deficiency terms
separately).



Conclusion

So, we have

M, o f=w,, LpoM,—-Id=R,, |R,) <1

Finally, £,1:= M, o(Id - R,)"'.
Remark: [|£; ]| ~ n - explodes when n — oo.

Conclusion: £ !0 Q, - a contraction mapping in a ball of radius

£V H(A,)|| of C2®(A,). Banach fixed point theorem is applied.
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Thank you for your attention!
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