Tema 3. Producto escalar, vectorial... Asignatura: Matemáticas I

Grado en Ingeniería Electrónica Industrial Universidad de Granada

Prof. Rafael López Camino Universidad de Granada

3 de septiembre de 2017

Índice

1.	Métrica euclídea	2
2.	Bases ortonormales	4
3.	Subespacios ortogonales, simetría y proyección ortogonal	5
4.	Producto vectorial	7

1. Métrica euclídea

Definición 1.1 La métrica euclídea o producto escalar de \mathbb{R}^n se define como

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \ldots + x_n y_n.$$
 $x, y \in \mathbb{R}^n.$

La propiedades del producto escalar son las siguientes:

- 1. $\langle u, v \rangle = \langle v, u \rangle$.
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- 3. $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$.
- 4. $\langle u, u \rangle \ge 0$ y es 0 si y sólo si u = 0.

Proposición 1.2 Sea V un espacio vectorial y g una forma bilineal. Entonces

- 1. $\langle u, v \rangle = 0$.
- 2. $\langle -u, v \rangle = -\langle u, v \rangle$.

Dos vectores $u, v \in \mathbb{R}^n$ son perpendiculares y escribimos $u \perp v$, si $\langle u, v \rangle = 0$.

Definición 1.3 Se $v \in \mathbb{R}^n$, se llama módulo de v a

$$|v| = \sqrt{\langle v, v \rangle} = \sqrt{x_1^2 + \dots + x_n^2}.$$

Tenemos las siguientes propiedades:

- 1. |v| = 0 si y sólo si v = 0.
- 2. $|\lambda v| = |\lambda| |v|$.
- 3. $|u+v|^2 = |u|^2 + |v|^2 + 2\langle u, v \rangle$.
- 4. $|u+v|^2 = |u|^2 + |v|^2$ si y sólo si $u \perp v$.

Teorema 1.4 (desigualdad de Cauchy-Schwarz) Si $u, v \in V$, entonces

$$|\langle u, v \rangle| \le |u||v|$$

y la igualdad se da si y sólo si $\{u,v\}$ son linealmente dependientes.

Si *u* y *v* no son ceros, la desigualdad de Cauchy-Schwarz se puede escribir como

$$-1 \le \frac{\langle u, v \rangle}{|u||v|} \le 1.$$

Como la aplicación coseno es biyectiva de [0,p] en [-1,1], el número del centro es coseno de un *único* número $\theta \in [0,p]$.

Definición 1.5 Si $u, v \in V$ y no son ceros, se define el ángulo entre u y v como $\angle(u, v) \in [0, p]$ tal que

$$\cos \angle(u,v) = \frac{\langle u,v \rangle}{|u||v|}.$$

Tenemos las siguientes propiedades:

- 1. $\angle(u,v) = \angle(v,u)$.
- 2. $\angle(u,v) \in \{0,p\}$ si y sólo si $\{u,v\}$ son linealmente dependientes.
- 3. $\langle u, v \rangle = |u||v|\cos \angle (u, v)$.
- 4. $u \perp v$ si y sólo si $\angle (u, v) = p/2$.

Definición 1.6 Sea $S \subset V$ un subconjunto de un espacio métrico (V,g). El subespacio ortogonal S^{\perp} es el conjunto

$$S^{\perp} = \{ u \in V : \langle u, v \rangle = 0, \forall v \in S \}.$$

Observemos que S no tiene porqué ser un subespacio vectorial. Probaremos que S^{\perp} es un subespacio vectorial, luego tiene sentido preguntarse por su dimensión y es natural relacionarla con la de S. Ya que S no es, en general, un subespacio vectorial, esta pregunta tiene sentido cambiando S por el subespacio vectorial generado por S.

Proposición 1.7 *Sea* (V,g) *un espacio métrico y* $S \subset V$.

- 1. S^{\perp} es un subespacio vectorial.
- 2. Si $U \subset W$, entonces $W \perp \subset U^{\perp}$.
- 3. Si $U = \langle u_1, ..., u_m \rangle$, entonces $U^{\perp} = \langle \{u_1, ..., u_m\} \rangle^{\perp}$.
- 4. $V^{\perp} = \{0\} \ y \ \{0\}^{\perp} = V$.
- 5. $U = (U^{\perp})^{\perp}$.

Teorema 1.8 Sea (V,g) un espacio no degenerado y $U \subset V$ un subespacio vectorial. Entonces $dim(U^{\perp}) = dim(V) - dim(U)$.

2. Bases ortonormales

Definición 2.1 Una base ortogonal del espacio euclídeo (o de un subespacio suyo) es una base donde todos los elementos son ortogonales dos a dos. Se dice que la base es unitaria si todos los elementos tiene módulo 1. Se dice que es una base ortonormal si es ortogonal y unitarias, es decir, si

$$\langle e_i, e_j \rangle = \left\{ \begin{array}{ll} 0 & i \neq j \\ 1 & i = j \end{array} \right.$$

Las bases ortonormales son muy útiles, especialmente, por el siguiente resultado:

Proposición 2.2 *Sea B* = $\{e_1, ..., e_n\}$ *una base ortonormal.*

- 1. Si $v \in V$, entonces $v = \sum_{i=1}^{n} \langle v, e_i \rangle e_i$.
- 2. Si $u, v \in V$, entonces $\langle u, v \rangle = \sum_{i=1}^{n} \langle u, e_i \rangle \langle v, e_i \rangle$.
- 3. Si $v \in V$, entonces $|v|^2 = \sum_{i=1}^n \langle v, e_i \rangle^2$.

Siempre es posible construir bases ortogonales, unitarias y ortonormales. Para hallar una base unitaria, basta dividir cada elemento de la base por su módulo.

Construcción de bases ortogonales. Sea $\{e_1,\ldots,e_n\}$ una base de un espacio vectorial. La base ortogonal $\{\bar{e}_1,\ldots,\bar{2}_n\}$ es buscamos es la obtenida por el siguiente proceso, llamado método de Gram-Schmidt, el cual es un método recurrente determinado del siguiente modo:

- 1. Sea $\bar{e}_1 = e_1$.
- 2. Se halla $\bar{e}_2=e_2+\lambda\bar{e}_1$ de manera que $\langle\bar{e}_1,\bar{e}_2\rangle=0$. Con esta condición obtenemos

$$0 = \langle e_2, ar{e}_1
angle + \lambda \langle ar{e}_1, ar{e}_1
angle \Rightarrow \lambda = -rac{\langle e_2, ar{e}_1
angle}{\langle ar{e}_1, ar{e}_1
angle}.$$

3. Se halla $\bar{e}_3 = e_3 + \lambda \bar{e}_2 + \mu \bar{e}_1$ de manera que

$$\langle \bar{e}_3, \bar{e}_2 \rangle = \langle \bar{e}_3, \bar{e}_1 \rangle = 0.$$

De aquí,

$$\lambda = -rac{\langle e_3,ar{e}_1
angle}{\langlear{e}_1,ar{e}_1
angle}, \mu = -rac{\langle e_3,ar{e}_2
angle}{\langlear{e}_2,ar{e}_2
angle}.$$

y así se va siguiendo el proceso, obteniendo en cada paso

$$ar{e}_k = e_k - \sum_{i=1}^{k-1} rac{\langle e_k, ar{e}_i
angle}{\langle ar{e}_i, ar{e}_i
angle} ar{e}_i.$$

Obtenida la base ortogonal, la base ortonormal sería

$$\{\frac{\bar{e}_1}{|\bar{e}_1|}, \frac{\bar{e}_2}{|\bar{e}_2|}, \dots, \frac{\bar{e}_n}{|\bar{e}_n|}\}.$$

Recordemos también que ya que una métrica euclídea es no degenerada tenemos el siguiente resultado: si B' es una base ortonormal de un subespacio U, entonces existe una base ortonormal $B' \cup B''$ de V, es decir, podemos *ampliar* una base ortonormal de un subespacio hasta obtener una base ortonormal del espacio entero.

3. Subespacios ortogonales, simetría y proyección ortogonal

Definición 3.1 Sea $S \subset V$ un subconjunto de un espacio euclídeo V. El subespacio ortogonal S^{\perp} es el conjunto

$$S^{\perp} = \{ u \in V : \langle u, v \rangle = 0, \forall v \in S \}.$$

Observemos que S no tiene porqué ser un subespacio vectorial, sin embargo, es inmediato que S^{\perp} es un subespacio vectorial. Probaremos que S^{\perp} es un subespacio vectorial, luego tiene sentido preguntarse por su dimensión y es natural relacionarla con la de S cuando S es un subespacio vectorial (o con L(S) en general).

Proposición 3.2 *Sea* $S \subset V$.

- 1. S^{\perp} es un subespacio vectorial.
- 2. Si $U \subset W$, entonces $W^{\perp} \subset U^{\perp}$.
- 3. Si $U = \langle u_1, ..., u_m \rangle$, entonces $U^{\perp} = \langle \{u_1, ..., u_m\} \rangle^{\perp}$.
- 4. $U = (U^{\perp})^{\perp}$.

Más interesante es el siguiente resultado:

Teorema 3.3 Si U es un subespacio de V, entonces

$$1. \ \dim(U^{\perp}) = \dim(V) - \dim(U).$$

2.
$$U \cap U^{\perp} = \{0\}.$$

En particular, si B_1 es una base de U y B_2 una base de U^{\perp} , entonces $B_1 \cup B_2$ es una base de V.

De nuevo el uso de bases ortonormales facilita el trabajo a la hora de hallar U^{\perp} :

Teorema 3.4 Sea B una base ortonormal de V y U un subespacio de dimensión n-m.

- 1. Si Ax = 0 son las ecuaciones cartesianas de U respecto de B, entonces una base de U^{\perp} es $\{(a_{11}, \ldots, a_{1n}), \ldots, (a_{k1}x_1 + \ldots + a_{kn}x_n = 0)\}$.
- 2. Si una base de U^{\perp} es $\{(a_{11},\ldots,a_{1n}),\ldots,(a_{k1}x_1+\ldots+a_{kn}x_n=0)\}$, entonces Ax=0 son las ecuaciones cartesianas de U respecto de B.

De la última parte del teorema 3.3, y llamando $B_1 = \{e_1, \dots, e_m\}$ y $B_2 = \{e_{m+1}, \dots, e_n\}$, si $v \in V$, entonces

$$v = \sum_{i=1}^{m} \lambda_i e_i + \sum_{i=m+1}^{n} \lambda_i e_i = u + w,$$

donde $u \in U$ y $w \in U^{\perp}$.

Definición 3.5 1. Se llama simetría ortogonal respecto de U a la aplicación

$$S_U = S : V \to V, \ S(v) = u - w, \ (v = u + w).$$

2. Se llama proyección ortogonal sobre U a la aplicación

$$p_U: V \to V, \ p(v) = u, \ (v = u + w)$$

Proposición 3.6 Con la notación anterior,

- 1. S es un isomorfismo con $S \circ S = 1_V$.
- 2. $S_{|U} = 1_U$.
- 3. $S_{|U^{\perp}} = -1_{U^{\perp}}$.
- 4. S es diagonalizable, con valores propios 1 y 1 y los subespacios propios son $V_1 = U$, $V_{-1} = U^{\perp}$.

Proposición 3.7 Con la notación anterior,

- 1. p es una aplicación lineal.
- 2. $p \circ p = p$.
- 3. $Ker(p) = U^{\perp} e Im(p) = U$.
- 4. $p_{|U} = 1_U$.
- 5. p es diagonalizable, con valores propios 1 y 0 y $V_1 = U$, $V_0 = U^{\perp}$.

4. Producto vectorial

El producto vectorial sólo define en el espacio euclídeo \mathbb{R}^3 .

Definición 4.1 Si $u, v \in \mathbb{R}^3$, se define el producto vectorial de u por v como

$$u \wedge v = u \times v = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

También es habitual escribir la igualdad anterior como el determinante

$$u \times v = \left| \begin{array}{ccc} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array} \right|,$$

donde el determinante quiere decir que uno desarrolla el determinante de la forma habitual, obteniendo una combinación lineal en i, j y k, sustituimos i, j, k por (1,0,0),(0,1,0) y (0,0,1), obteniendo la definición.

Proposición 4.2 *1.* $u \times v = -v \times u$.

- 2. $u \times u = 0$.
- 3. $(\lambda u) \times v = u \times (\lambda v) = \lambda (u \times v)$.
- 4. $(u+v) \times w = u \times w + v \times w$.
- 5. $u \times (v + w) = u \times v + u \times w$.

La relación entre el producto escalar y el producto vectorial viene por la siguiente propiedad

$$\langle u \times v, w \rangle = \det(u, v, w). \tag{1}$$

Esta igualdad también prueba que se podría definir el producto vectorial $u \times v$ diciendo que es el único vector de \mathbb{R}^3 que satisface la propiedad anterior *para todo* $w \in \mathbb{R}^3$. Como consecuencia de (1) tenemos:

Proposición 4.3 1. $u \times v \perp u, u \times v \perp u$.

- 2. $|u \times v| = |u||v|\sin \angle (u,v)$.
- 3. Si $\{u,v\}$ son linealmente independientes, entonces $\{u,v,u\times v\}$ es base de \mathbb{R}^3 .