Curvas y Superficies. Examen de junio

– Grado en Matemáticas –
Grupo 2°-B. Curso 2015/16

Nombre:

- 1. Hallar la curvatura de la curva intersección del hiperboloide de dos hojas $x^2 + y^2 z^2 = -1$ con el plano x = 0 y comparar los triedros de Frenet y de Darboux.
- 2. Sea $\alpha: I \to \mathbb{S}^2$ una curva p.p.a. y embebida. Probar que $S = \{t\alpha(s): t > 0, s \in I\}$ es una superficie. Probar que S es minimal si y sólo si α es una geodésica de \mathbb{S}^2 .
- 3. Sean S_1 y S_2 son dos superficies que se intersecan transversalmente en una curva regular C que es línea de curvatura de S_1 . Probar que si S_1 y S_2 forman ángulo constante a lo largo de C, entonces C es una línea de curvatura de S_2 .
- 4. En una superficie de revolución, probar que i) las rectas normales intersecan el eje de revolución y ii) que las rectas normales a lo largo de un meridiano son paralelas a un plano fijo.

Importante: razonar todas las respuestas

Soluciones

1. Haciendo x=0, queda $y^2-z^2=-1$, luego una parametrización de la curva es $\alpha(t)=(0,\sinh(t),\cosh(t))$. Entonces $\alpha'(t)=(0,\cosh(t),\sinh(t))$ y $\alpha''(t)=\alpha(t)$. Así $\alpha'\times\alpha''=(1,0,0)$, luego

$$\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} = \frac{1}{(\sqrt{\cosh(t)^2 + \sinh(t)^2})^3}.$$

El binormal es $\alpha' \times \alpha''$ entre su módulo, luego b(t) = (1,0,0) luego $n(t) = b(t) \times \alpha'(t) = (0,-\sinh(t),\cosh(t))/\sqrt{\cosh(t)^2 + \sinh(t)^2}$. El vector tangente es $T(t) = \alpha'/|\alpha'| = (0,\cosh(t),\sinh(t))/\sqrt{\cosh(t)^2 + \sinh(t)^2}$.

Para el triedro de Darboux, hallamos el normal a la superficie. Como es inversa de un valor regular, $N = \nabla f/|\nabla f|$, es decir, $N(x,y,z) = (x,y,-z)\sqrt{x^2+y^2+z^2}$. Por tanto, $N(t) = N(\alpha(t)) = (0,\cosh(t),-\sinh(t))/\sqrt{\cosh(t)^2+\sinh(t)^2}$, que coincide con n(t). Por tanto, B(t) = b(t) = (1,0,0). Los triedros de Darboux son iguales. [la superficie es de revolución con eje z. Al hacer x=0, se tiene un meridiano que se sabe que se una geodésica, luego los triedros son iguales].

2. Se toma $X(s,t)=t\alpha(s)$ definida de $U=I\times\mathbb{R}^+$ a V=S, que es abierto en S. Esta aplicación en \mathbb{R}^3 es diferenciable y tiene inversa en V: si $p\in V$, hay que hallar (s,t) tal que $t\alpha(s)=p$. Tomando módulos, t=|p|, luego $s=\alpha^{-1}(p/|p|)$. Entonces $X^{-1}(p)=(\alpha^{-1}(p/|p|),|p|)$. Como $X_s=t\alpha'$ y $X_t=\alpha$, serán independientes si lo son $\alpha(s)$ y $\alpha'(s)$. Como α está en \mathbb{S}^2 , $|\alpha|^2=1$, luego al derivar, $\langle \alpha, \alpha' \rangle = 0$, luego perpendiculares y a?si, independientes.

Hallamos H. Como $X_{tt}=0$ y $F=\langle X_s,X_t\rangle=0$, entonces H=0 sii $det(X_s,X_t,X_{ss})=0$, es decir, $det(t\alpha',\alpha,t\alpha'')=0$. Como $t\neq 0$, S es minimal sii $det(\alpha,\alpha',\alpha'')=0$. Se sabe que α es geodésica sii n(s)=N(s). En \mathbb{S}^2 , y salvo un signo, $N(s)=\alpha(s)$ y $n(s)=\alpha''(s)$. Por tanto, el anterior determinante es 0.

Para el recíproco, sabemos que $\langle \alpha', \alpha' \rangle = 1$ y derivado, α'' es perpendicular a α' . Si el determinante es 0, entonces $\langle \alpha \times \alpha', \alpha'' \rangle = 0$. Esto quiere decir que α'' pertenece al plano generado por α y α' . Pero estos vectores son perpendiculares y α'' lo es a α' , luego es proporcional a $\alpha(s) = N(\alpha(s))$, como se quería probar.

- 3. Como $\langle N_1(\alpha(s)), N_2(\alpha(s)) \rangle = ct$, al derivar, $\langle N_1'(s), N_2(s) \rangle + \langle N_1(s), N_2'(s) \rangle = 0$. Como α es línea de curvatura de S_1 , $N_1'(s) = \lambda \alpha'(s)$, luego es tangente a la curva. Como $N_2(\alpha(s))$ es perpendicular a ella, entonces, el primer sumando anterior es 0. Queda pues $\langle N_1(s), N_2'(s) \rangle = 0$. También se sabe que $N_2'(s)$ es perpendicular a N_2 . Pero el vector $\alpha'(s)$ también es perpendicular a $N_1(s)$ y a $N_2(s)$), luego $N_2'(s)$ es proporcional a α' , es decir, es línea de curvatura de S_2 .
- 4. Parametrizamos la superficie como $X(t,\theta)=(f(t)\cos\theta,f(t)\sin\theta,g(t))$ y suponemos, sin perder generalidad, que la curva generatriz está p.p.a, es decir, $f'^2+g'^2=1$.

(a) El vector N es proporcional a $X_t \times X_\theta$, es decir, a $(-g'\cos\theta, -g'\sin\theta, f')$. La recta normal es $\{X(t,\theta) + \lambda(-g'\cos\theta, -g'\sin\theta, f') : \lambda \in \mathbb{R}\}$. Aquí $t \neq \theta$ son fijos. Cortará al eje z si existe λ tal que

$$f\cos\theta - \lambda g'\cos\theta = 0, f\sin\theta - \lambda g'\sin\theta = 0.$$

- Es evidente que $\lambda = f(t)/g'(t)$ es una solución (salvo cuando g'(t) = 0, que la recta es paralela al eje z).
- (b) Tomamos el meridiano θ_0 . Los vectores directores de las rectas normales son $\{(-g'(t)\cos\theta_0, -g'(t)\sin\theta_0, f'(t)) : t \in I\}$. Es evidente que el vector $(\sin\theta_0, -\cos\theta_0, 0)$ es perpendicular a todos ellos. Por tanto, los vectores directores se encuentra en el plano $<(\sin\theta_0, -\cos\theta_0, 0)>^{\perp}$.