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Abstract

In this paper we study, using critical point theory for strongly indefinite
functionals, the Neumann problem associated to some prescribed mean
curvature problems in a FLRW spacetime with one spatial dimension. We
assume that the warping function is even and positive and the prescribed
mean curvature function is odd and sublinear. Then, we show that our
problem has infinitely many solutions. The keypoint is that our problem
has a Hamiltonian formulation. The main tool is an abstract result of
Clark type for strongly indefinite functionals.
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1 Introduction

In this paper we initiate the study by variational methods of the Neumann
problem associated to the prescribed mean curvature equation in a certain fam-
ily of Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes. The FLRW
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metric models a spatially homogeneous and isotropic Universe and has the ex-
pression

ds2 = −dt2 + f(t)dx2,

where f(t) is a positive function of time called the scale factor or warping
function in the related literature (see for example [15]).

The mathematical problem under consideration in this paper is described as
follows. Let f ∈ C1([−ε, ε]) be a positive function. For R > ρ ≥ 0 and a given
continuous function g : [ρ,R] × R → R, we look for solutions of the following
ODE with Neumann conditions

−
(

q′√
f(q)2−q′2

)′
− f(q)f ′(q)√

f(q)2−q′2
= f(q)g(r, q) (1)

|q′| < f(q) in [ρ,R],

q′(ρ) = 0 = q′(R).

A solution of the above Neumann problem is a function q ∈ C1([ρ,R]) such that

||q||∞ < ε, |q′| < f(q) in [ρ,R], q′√
f(q)2−q′2

∈ C1([ρ,R]) and the above problem

holds true.
The study of Neumann problems in FLRW spacetimes started very recently

with the paper [13] (see also [16]). The main result of these works is an exis-
tence result in a ball centered in the origin and a small radius, proved by using
Leray-Schauder degree. In the present paper, following [12], we prove a multi-
plicity result assuming that the prescribed mean curvature function is odd and
sublinear and the warping function is even. To the best of our knowledge, it is
the first time that variational methods are applied to this problem.

Consider G : [ρ,R]× R→ R given by

G(r, q) =

∫ q

0

f(t)g(r, t)dt.

The main result of this paper is the following

Theorem 1 Assume that g(r, ·) is odd for all r ∈ [ρ,R], f is even with

f(0) = max
[−ε,ε]

f, f(0)− f(q) ≤ dq2, (2)

for all q ∈ [−ε, ε] for some d > 0. If

lim
q→0

G(r, q)

q2
= +∞ uniformly in r ∈ [ρ,R], (3)

then, (1) has infinitely many solutions qk with ||qk||∞ → 0 as k →∞.

The following example illustrates the applicability of the result.

Example 1 Consider the warping function (see [13, 15])

f(t) = β(cosαt)2/3 (α, β > 0)
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or the Minkowski case (see [4, 8, 9])

f(t) = 1.

Assume that 1 < s < 2 < t, λ > 0 and µ ∈ R. Then, the Neumann problem (1)
with

g(u) = λ|u|s−2u+ µ|u|t−2u

has infinitely many solutions qk with ||qk||∞ → 0 as k → ∞. See [1, 6] for the
analogous result for the Laplacian operator.

For the proof, a key observation is that the above Neumann problem is
equivalent to the Hamiltonian system

p′ = −Hq(r, p, q), q′ = Hp(r, p, q), p(ρ) = 0 = p(R),

where the Hamiltonian function H is given by

H(r, p, q) = f(q)
√

1 + p2 − f(0) +G(r, q),

and

p =
q′√

f(q)2 − q′2
.

Once the hamiltonian setting has been identified, our main tool is a modification
of a Clark’s type result for strongly indefinite functionals given in Theorem
1.2 from [12]. Using this abstract result, it is shown in [12] that a general
Hamiltonian system has infinitely many periodic solutions if the Hamiltonian
function is even in the spatial variable and sublinear around zero. We observe
that our H defined above does not satisfy this condition due to the presence of
the term f(q)

√
1 + p2 − f(0). An analogous situation occurs in [11] in the case

of first and second order superquadratic Hamiltonian systems. To prove both
cases simultaneously, the main idea in [11] is to use an auxiliar operator B of
the form

B(p, q) = (µsp, µtq),

together with a minimax theorem including B which is a version of Benci -
Rabinowitz minimax theorem for strongly indefinite functionals (see [7, 14]).
Notice that a different situation occurs for first and second order forced super-
linear autonomous systems. It is proved separately in [2, 3] that this type of
systems have infinitely many periodic solutions, and there is no proof unifying
both cases. In this paper we use like in [11] an auxiliar operator Lµ and a critical
point theorem including this operator which is a version of Theorem 1.2 from
[12]. Then, we will apply this abstract result to the action functional associated
to the above Hamiltonian system.

Problem (1) corresponds to the prescribed mean curvature equation with
Neumann conditions in a FLRW spacetime with n=1 spatial dimension. The
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consideration of the Neumann problem in the ball for a general FLRW spacetime
with arbitrary dimension n ≥ 1 is an interesting open problem. The use of a
Theorem of Clark type imposes necessarily the even symmetry in the functional,
which implies serious restrictions on the warping and the prescribed curvature
functions. As a counterpart, for n = 1 we find an infinite number of solutions, a
result that seems quite new in this context. At this moment, we are not able to
identify a variational structure for the case n ≥ 2, which is another intriguing
open question.

This paper is organized as follows. In Section 2, we prove the abstract
version of Theorem 1.2 from [12]. In Section 3, we show that our problem has
a Hamiltonian formulation and we introduce the functional setting. Section 4
is devoted to the proof of the main result.

2 An abstract result

Let E be a Hilbert space such that E = ⊕m∈ZEm where dimEm = 1 for all
m ∈ Z. We denote E± = ⊕m≥1E±m. For any positive integer k let Lk : E → E
be a linear bijective operator such that (||Lk||) is a bounded sequence and

Lk(

n⊕
m=−n

Em) =

n⊕
m=−n

Em for all n ≥ 1.

On the other hand, let

Xn =
⊕
m≥−n

Em (n ≥ 1).

For I ∈ C1(E,R), we recall that I satisfies (PS) condition if any sequence
(uk) ⊂ E for which (I(uk)) is bounded and I ′(uk) → 0 as k → ∞, possesses
a convergent subsequence. Also, I is said to satisfy the (PS)∗ condition with
respect to the sequence of subspaces (Xn) if for any subsequence (nj) of (n),
any sequence (unj ) such that unj ∈ Xnj for all j, (I(unj )) is bounded and
||(I|Xnj )′(unj )|| → 0 as j →∞, contains a subsequence converging to a critical

point of I.
In the next lemma, we denote Sρ = {u ∈ E : ||u|| = ρ}.

Lemma 1 Let I ∈ C1(E,R) be even with I(0) = 0, I|E+ satisfies (PS) con-
dition and I satisfies (PS)∗ condition with respect to the sequence of subspaces
(Xn). Suppose that

(i) the functional I|E+ is bounded from below,

(ii) there exists ρk, εk > 0 with ρk → 0 such that, for all k ≥ k0

sup
Lk(Sρk∩(⊕m≤kEm))

I ≤ −εk,

for some positive integer k0.
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Then I possesses a sequence of critical points (uk) such that ||uk|| → 0 as
k →∞.

Proof. We will show, following [12], that at least one of the following propo-
sitions holds.

(i) There exists a sequence of critical points (uk) such that I(uk) < 0 for all
k and ||uk|| → 0 as k →∞.

(ii) There exists r > 0 such that for any 0 < a ≤ r there exists a critical
point u ∈ Sa with I(u) = 0.

Assume by contradiction that both (i) and (ii) are false. It follows that there
exists 0 < r1 < r0 such that if one of the following propositions holds true

- ||u|| ≤ r0 and I(u) < 0,
- ||u|| = r1 and I(u) = 0,

then, I ′(u) 6= 0. Using that I(0) = 0, we may assume that

I(u) > −1 for all ||u|| ≤ r0. (4)

Let us denote IcA = {u ∈ E : u ∈ A, I(u) ≤ c}. Then, using the (PS)∗

condition it follows that there exists a, b with 0 < a < r1 < b ≤ r0, ν1 > 0 and
a positive integer n1, such that for any n ≥ n1 one has that

||(I|Xn)′(u)|| ≥ ν1 for all u ∈ I0Xn with a ≤ ||u|| ≤ b. (5)

Now, for n ≥ n1, consider Kn = {u ∈ Xn : (I|Xn)′(u) = 0} and let Wn :
Xn \ Kn → Xn be an odd pseudogradient vector field of I|Xn . For a fixed
u ∈ Xn\Kn there exists a unique maximal solution ηn(·, u) : [0, Tn(u)[→ Xn\Kn

of the following Cauchy problem in Xn \Kn

d

dt
η(t, u) = −Wn(η(t, u)) (t ≥ 0), η(0, u) = u.

We also define ηn(t, u) = u for t ≥ 0 and Tn(u) = ∞ if u ∈ Kn. Then, using
(5) we deduce that if u ∈ I0Xn\Kn and 0 ≤ t1 < t2 < Tn(u) are such that

||ηn(t1, u)|| = a, ||ηn(t2, u)|| = b and a < ||ηn(t, u)|| < b for all t ∈]t1, t2[, then

I(ηn(t2, u)) ≤ −µ0 := − (b− a)ν1
2

. (6)

Next, using that I is even, I(0) = 0, I|E+ is bounded from below and satisfies
(PS) it follows that

k0 := γ(I−µ0

E+ ) <∞, (7)

where γ is the generalized genus (see [5]). Then, using that I−µ0

E+ is closed in

I−µ0

Xn
and (7), one has that

γ(I−µ0

Xn
) ≤ γ(Xn \ E+) + γ(I−µ0

E+ ) = n+ 1 + k0. (8)
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Let k1 > k0 be such that ρk||Lk|| < a for all k ≥ k1. Fix k ≥ k1. Then, the
choice of r0 and (PS)∗ imply that there exists ν2 > 0 and n2 ≥ n1 + k+ 1 such
that for any n ≥ n2 one has that

||(I|Xn)′(u)|| ≥ ν2 for all u ∈ I−εkXn
, ||u|| ≤ r0. (9)

We denote

Ak = Lk

Sρk ∩ k⊕
j=−n

Ej


and note that Ak ⊂ ⊕nj=−nEj ⊂ Xn.

One has that for all u ∈ Ak there exists sn(u) ∈]0, Tn(u)[ such that ||ηn(sn(u), u)|| >
b. Suppose by contradiction that there exists u ∈ Ak such that ||ηn(t, u)|| ≤ b ≤
r0 for all t ∈]0, Tn(u)[. From (4) it follows that

−1 < I(ηn(t, u)) ≤ I(u) ≤ −εk for all t ∈]0, Tn(u)[.

Hence, for all t ∈]0, Tn(u)[, using the properties of Wn,

1 ≥ 1− εk ≥ I(u)− I(ηn(t, u))

≥
∫ t

0

||(I|Xn)′(ηn(s, u))||2ds

≥ ν22 t,

which implies that Tn(u) ≤ ν−22 . It follows that

||ηn(t1, u)− ηn(t2, u)|| ≤ 2(t2 − t1)1/2 for all 0 < t1 < t2 < Tn(u),

and there exists the limit u∗ = limt→Tn(u)− ηn(t, u). One has that u∗ ∈ I−εkXn∩Bb ,
which implies that u∗ ∈ Xn\Kn. This gives a contradiction with the maximality
of the interval [0, Tn(u)[.

Now, consider u ∈ Ak. Using that ||u|| < a and ||ηn(sn(u), u)|| > b, it follows
that there exists 0 < t1 < t2 < sn(u) such that ||ηn(t1, u)|| = a, ||ηn(t2, u)|| = b
and a < ||ηn(t, u)|| < b for all t ∈]t1, t2[. Notice that u ∈ I−εkBa

, which implies

that u ∈ I0Xn\Kn . Hence, using (6) we deduce that

I(ηn(sn(u), u)) < I(ηn(t2, u)) ≤ −µ0.

Then, following [12], for all n ≥ n2 there exists an odd continuous function

hn : Ak → I−µ0

Xn
.

Finally, using (8), one has that

n+ 1 + k = γ

Sρk ∩ k⊕
j=−n

Ej


= γ(Ak)

≤ γ(hn(Ak))

≤ γ(I−µ0

Xn
)

≤ n+ 1 + k0,
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which contradicts the fact that k > k0. The proof is completed.

3 Hamiltonian formulation and the functional
setting

3.1 The Hamiltonian

The following result shows that the above Neumann nonlinear differential equa-
tion has a Hamiltonian structure. We have the following key

Lemma 2 Consider the Hamiltonian function H : [ρ,R]×R×]−ε, ε[→ R given
by

H(r, p, q) = f(q)
√

1 + p2 − f(0) +G(r, q),

and p, q ∈ C1([ρ,R]) with ||q||∞ < ε. The following statements are equivalent:
(i) q is a solution of (1) and, for all r ∈ [ρ,R],

p(r) =
q′(r)√

f(q(r))2 − q′2(r)
. (10)

(ii) (p, q) is a solution of the Hamiltonian system

p′(r) = −Hq(r, p(r), q(r)), q′(r) = Hp(r, p(r), q(r)) (r ∈ [ρ,R]) (11)

p(ρ) = 0 = p(R).

Proof. We will prove that (ii) implies (i). The reversed implication is anal-
ogous and easier. One has that

p′(r) = −f ′(q(r))
√

1 + p2(r)− f(q(r))g(r, q(r)) (r ∈ [ρ,R]),

and

q′(r) =
f(q(r))p(r)√

1 + p2(r)
(r ∈ [ρ,R]).

Hence
q′(ρ) = 0 = q′(R).

Then, using the second equation and that f is positive, it follows that

|q′(r)| < f(q(r)) for all r ∈ [ρ,R],

and (10) holds true. This, together with the second equation imply that, for all
r ∈ [ρ,R], √

1 + p2(r) =
f(q(r))√

f(q(r))2 − q′2(r)
.

Then, the first equation gives the conclusion.
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3.2 The functional

Consider ω = π
R−ρ and, for any positive integer m,

em(r) = sin(mω(r − ρ)) (r ∈ [ρ,R])

Let H
1/2
0 be the set of functions p ∈ L2(ρ,R) having Fourier expansion

p =
∑
m≥1

pmem

such that ∑
m≥1

mp2m <∞.

Taking ϕ ∈ H1/2
0 with ϕ =

∑
m≥1 ϕmem, we define the scalar product

(p|ϕ)
H

1/2
0

=
ωπ

2

∑
m≥1

mpmϕm.

It is well known that H
1/2
0 is a Hilbert space together with the above scalar

product. Notice that H
1/2
0 is compactly embedded into Ls(0, π) for all 1 ≤ s <

∞. In particular there is ls > 0 such that

||p||Ls ≤ ls||p||H1/2
0

for all p ∈ H1/2
0 . (12)

We need also a second fractional Sobolev space. For any nonnegative integer
m, let

fm(r) = cos(mω(r − ρ)) (r ∈ [ρ,R])

and H1/2 be the set of functions q ∈ L2(ρ,R) having Fourier expansion

q =
∑
m≥0

qmfm

such that ∑
m≥1

mq2m <∞.

Taking ψ ∈ H1/2 with ψ =
∑
m≥0 ψmfm, we define the scalar product

(q|ψ)H1/2 = (R− ρ)q0ψ0 +
ωπ

2

∑
m≥1

mqmψm.

Like before, H1/2 is compactly embedded into Ls(0, π) for all 1 ≤ s < ∞. In
particular there is ls > 0 such that

||q||Ls ≤ ls||q||H1/2 for all q ∈ H1/2. (13)
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Finally, consider the Hilbert space E = H
1/2
0 ×H1/2 endowed with usual scalar

product
(z|w) = (p|ϕ)

H
1/2
0

+ (q|ψ)H1/2

for any z = (p, q) and w = (ϕ,ψ) in E.
In the sequel we will write (·|·) and || · || for any scalar product and norm in

the spaces defined above.
We introduce now a modified Hamiltonian function Ĥ. Consider H̃ : [ρ,R]×

R2 → R smooth, such that H = H̃ on [ρ,R] × [−1, 1] × [−ε2 ,
ε
2 ], H̃ = 0 on

[ρ,R] × (R2 \ [−2, 2] × [−2, 2]). The Hamiltonian H̃ is defined as follows. Let
f̃ ∈ C∞(R) be an even smooth positive function such that f̃ = f on [−ε2 ,

ε
2 ],

f̃ = c̃ > 0 constant on R\]− ε, ε[, f̃ ≥ c̃ on R, and β ∈ D(R) be an even smooth
positive function such that β = 1 on [−1, 1], supp β ⊂]− 2, 2[, β nonincreasing
on [1, 2]. Consider H̃ given by

H̃(r, p, q) = β(p)[f̃(q)
√

1 + p2 − f(0)] + β(q)G(r, q),

for all (r, p, q) ∈ [ρ,R]×R2. Now, we consider α ∈ D(R2) an even smooth positive
function such that supp α ⊂ [−3, 3]× [−3, 3], α ≤ 1, α = 1 on [−2, 2]× [−2, 2],
then the hamiltonian Ĥ is defined by

Ĥ(r, z) = α(z)H̃(r, z) + (1− α(z))ĉ|z|2

for all (r, z) ∈ [ρ,R]×R2, where (2l2ω)−1 > ĉ > 0 is a small fixed constant. The
reason for introducing Ĥ was that we could not verify (PS)∗ condition without
the Hamiltonian growing at a prescribed rate at infinity,

Next, consider the functional

J : H
1/2
0 → R : p 7→

∫ R

ρ

√
1 + p2dr.

Then, it is easy to prove that J ∈ C1(H
1/2
0 ,R) and

J ′(p)(ϕ) =

∫ R

ρ

pϕ√
1 + p2

dr for all p, ϕ ∈ H1/2
0 .

It follows that the following result holds true.

Lemma 3 Assume that Ĥ satisfies the above conditions and consider the func-
tional

Ĵ : E → R : z 7→
∫ R

ρ

Ĥ(r, z)dr.

One has that Ĵ ∈ C1(E,R) and

Ĵ ′(z)(w) =

∫ R

ρ

Ĥz(r, z) · wdr,

for all z, w ∈ E.
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Consider now the Hamiltonian system associated to Ĥ

p′(r) = −Ĥq(r, p(r), q(r)), q′(r) = Ĥp(r, p(r), q(r)) (r ∈ [ρ,R]) (14)

p(ρ) = 0 = p(R).

We define the action functional associated to (14) as follows. Consider the
continuous symmetric bilinear form

B : E × E → R : (z, w) 7→ −π
2

∑
m≥1

m(pmψm + ϕmqm),

where
z = (

∑
m≥1

pmem,
∑
m≥0

qmfm)

and
w = (

∑
m≥1

ϕmem,
∑
m≥0

ψmfm).

For z, w ∈ H1
0 ×H1 with z = (p, q) and w = (ϕ,ψ) one has that

B[z, w] =

∫ R

ρ

(pψ′ + ϕq′)dr.

Consider now the quadratic form associated to B,

A : E → R : z 7→ 1

2
B[z, z].

One has that, for z ∈ H1
0 ×H1 with z = (p, q)

A(z) =

∫ R

ρ

pq′dr.

Next, consider

E± = {(p, q) ∈ E : p =
∑
m≥1

pmem, q =
∑
m≥1

(∓pm)fm},

E0 = {(0, q0) : q0 ∈ R},

and notice that E = E− ⊕ E0 ⊕ E+. It follows that for

z = (
∑
m≥1

pmem,
∑
m≥0

qmfm) ∈ E,

one has z = z− + z0 + z+, where z0 = (0, q0) and

z± =

∑
m≥1

(
pm ∓ qm

2

)
em,

∑
m≥1

(
qm ∓ pm

2

)
fm

 .
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This implies that

A(z) = (2ω)−1(||z+||2 − ||z−||2) for all z ∈ E.

Using Lemma 3 and a classical strategy (see [14]), it is not difficult to show the
following

Lemma 4 Consider the action functional

I : E → R : z 7→ A(z)−
∫ R

ρ

Ĥ(r, z)dr.

Then I ∈ C1(E,R) with

I ′(z)(w) = B[z, w]−
∫ R

ρ

Ĥz(r, z) · wdr (z, w ∈ E).

Moreover, if z ∈ E with I ′(z) = 0, then z = (p, q) is a solution of (14).

3.3 (PS) and (PS)∗

Consider, for any positive integer m,

E±m = {(p, q) ∈ E : p = pmem, q = (∓pm)fm},

and remark that

k⊕
m=−k

Em = {(p, q) ∈ E : p =

k∑
m=1

pmem, q =

k∑
m=0

qmfm}.

Lemma 5 One has that I|E+ satisifes (PS) condition and I has (PS)∗ condi-
tion with respect to the sequence of subspaces

Xn =
⊕
m≥−n

Em (n ≥ 1).

Proof. We will prove that I has (PS)∗ condition with respect to (Xn). Con-
sider (nj) a subsequence of (n) and zj ∈ Xnj be such that (I(zj)) be bounded
and ||(I|Xnj )′(zj)|| → 0 as j →∞. Note that for all j ≥ 1,

B[zj , z
+
j ] = ω−1||z+j ||

2,

∫ R

ρ

zj · z+j dr =

∫ R

ρ

|z+j |
2dr.

It follows that

(I|Xnj )′(zj)[z
+
j ] ≥ ω−1||z+j ||

2 − c1
∫ R

ρ

|z+j |dr − 2ĉl2||z+j ||
2,
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which implies that (||z+j ||) is bounded. Similarly, one has that (||z−j ||) is bounded.

In particular (||z+j + z−j ||L2) is bounded. On the other hand, using moreover

that (I(zj)) is bounded, we deduce that ||zj ||L2 is bounded. It follows that (|z0j |)
is bounded and ||zj || is bounded. Hence, passing to a subsequence, one has that
zj ⇀ z weakly in E and zj → z in L2 and a.e. on [ρ,R]. We can assume also
that z0j → z0. One has that

(I ′(zj)− I ′(z))[z+j − z
+] = ω−1||z+j − z

+||2

+

∫ R

ρ

(Ĥz(r, z)− Ĥz(r, zj)) · [z+j − z
+]dr,

which implies that ||z+j − z+|| → 0 as j → ∞. Now, let Pj be the orthogonal

projection onto Xnj , and note that ||z− − Pjz−|| → 0 as j →∞. On the other

hand, like above, one has that ||z−j −Pjz−|| → 0 as j →∞, and ||z−j −z−|| → 0.
Hence, we have that ||z − zj || → 0 and z is a critical point of I. The fact that
I|E+ has (PS) follows in the same way and it is more easy.

4 Proof of the main result

One has that√
1 + p2 − 1 ≥ 1

4
√

2
p2 ((r, p) ∈ [0, R]× [−1, 1]).

This, together with (2) imply that for all (r, p, q) ∈ [ρ,R]× [−1, 1]× [−ε2 ,
ε
2 ],

β(p)[f̃(q)
√

1 + p2 − f(0)] = f(q)[
√

1 + p2 − 1]

−[f(0)− f(q)]

≥ c̃ 1

4
√

2
p2 − dq2.

It follows that for all (r, p, q) ∈ [ρ,R]× [−1, 1]× [−1, 1],

Ĥ(r, p, q) ≥ c̃ 1

4
√

2
p2 − d̃q2 +G(r, q), (15)

for some d̃ > 0. Then, from (3) and (15), it follows that there exist c1 > 0 such
that for any λ > 0 there exists c2 = c2(λ) with

Ĥ(r, p, q) ≥ c1p2 + λq2 − c2(λ)q4 for all (r, p, q) ∈ [ρ,R]× R2. (16)

Consider µ > 0 and the linear operator

Lµ : E → E : (p, q) 7→ (p, µq).
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One has that ||Lµ|| ≤ 1 + µ and

Lµ(

j⊕
m=−j

Em) =

j⊕
m=−j

Em for all j ≥ 1.

Let z = Lµ(p, q), where (p, q) = (p−, q−) + (0, q0) + (p+, q+) and

(p−, q−) = (
∑
m≥1

amem,
∑
m≥1

amfm),

(p+, q+) = (

k∑
m=1

bmem,

k∑
m=1

(−bm)fm),

with k a positive fixed integer. It follows that z0 = (0, µq0), and if we denote
z± = (p̃±, q̃±), then

p̃± =

k∑
m=1

(am + bm)∓ µ(am − bm)

2
em +

∑
m≥k+1

(1∓ µ)am
2

em.

This implies that

A(z) =
µπ

2

 k∑
m=1

mb2m −
∑
m≥1

ma2m

 .

On the other hand

||p||2L2 =
R− ρ

2

 k∑
m=1

(am + bm)2 +
∑

m≥k+1

a2m

 ,

||q||2L2 =
R− ρ

2

 k∑
m=1

(am − bm)2 +
∑

m≥k+1

a2m

+ (R− ρ)q20 ,

and

||(p, q)||2 = (R− ρ)q20 + ωπ

 k∑
m=1

mb2m +
∑
m≥1

ma2m

 .

Then, from (16) it follows that

I(z) ≤ A(z)− c1||p||2L2 − λµ2||q||2L2 + c2µ
4||q||4L4

≤ µπ

2

 k∑
m=1

mb2m −
∑
m≥1

ma2m

− (c1 + λµ2)(R− ρ)

 k∑
m=1

b2m +
∑
m≥1

a2m


+(µ2λ− c1)(R− ρ)

k∑
m=1

ambm − λµ2(R− ρ)q20 + c2µ
4||q||4L4 .
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Now, consider

µk =
2c1(R− ρ)

kπ
, λk = c1/µ

2.

Then, using that

k

k∑
m=1

b2m ≥
k∑

m=1

mb2m,

it follows that

µkπ

2

k∑
m=1

mb2m − (c1 + λkµ
2)(R− ρ)

k∑
m=1

b2m ≤ −
µkπ

2

k∑
m=1

mb2m.

Hence, there exists k0 > 0 such that for all k ≥ k0, one has that

I(z) ≤ −µkπ
2

 k∑
m=1

mb2m +
∑
m≥1

ma2m

− c1(R− ρ)q20 + c2µ
4
kl4||q||4H1/2

≤ −µk
2ω
||(p, q)||2 + c2µ

4
kl4||(p, q)||4.

Consider ρk < 1/k such that

−(2ω)−1 + c2l4µ
3
kρ

2
k < 0.

Then, it follows that I satisfies (ii) from Lemma 1.
Next, one has that there exists c3 > 0 such that

Ĥ(r, z) ≤ ĉ|z|2 + c3 for all (r, z) ∈ [ρ,R]× R2.

This implies that for any z ∈ E+ one has that

I(z) ≥ (2ω)−1||z+||2 − ĉ||z||2L2 − c3(R− ρ)

≥ ((2ω)−1 − ĉl2)||z+||2 − c3(R− ρ),

which together with (2l2ω)−1 > ĉ > 0 imply that I satisfies (i) from Lemma
1. Then, using Lemma 5 we deduce that I satisfies the assumptions of Lemma
1 and I has a sequence (zk) of critical points such that ||zk|| → 0 as k → ∞.
Passing to a subsequence one has that ||zk||L2 → 0 and zk → 0 a.e. on [ρ,R]
as k → ∞. On the other hand from Lemma 4 one has that zk = (pk, qk) is a
solution of the Hamiltonian system (14). Then, integrating in (14) and using
the convergence in L2 and a.e. on [ρ,R] it follows that ||zk||∞ → 0 as k → ∞.
This implies that zk = (pk, qk) is a solution of (11), and using Lemma 2 we
deduce that qk is a solution of (1). Moreover, ||qk||∞ → 0 as k →∞.

The proof of Theorem 1 is complete.
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