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The problem

We consider the existence and multiplicity of radial positive
solutions of the problem

Mv + f (|x |, v) = 0, x ∈ BR, (1)
v = 0, x ∈ ∂BR, (2)

where BR = {x ∈ RN : |x | < R} and f : [0,R]× [0, α)→ R is a
continuous function, which is positive on (0,R]× (0, α), and

Mv = div

(
∇v√

1− |∇v |2

)
.



The problem

Setting, as usual, r = |x | and v(x) = u(r), the Dirichlet problem
(1) reduces to the mixed boundary value problem

(rN−1φ(u′))′ + rN−1f (r ,u) = 0, u′(0) = 0 = u(R), (3)

Standing hypotheses:

(Hφ) φ : (−a,a)→ R (0 < a <∞) is an odd, increasing
homeomorphism with φ(0) = 0;

(Hf ) f : [0,R]× [0, α)→ [0,∞) is a continuous function with
0 < α ≤ ∞ and f (r , s) > 0 for all (r , s) ∈ (0,R]× (0, α).



Existence result I

Theorem 1
Assume that

lı́m
s→0+

f (r , s)

φ(s)
= +∞ uniformly with r ∈ [0,R] (4)

lı́m sup
s→0

φ(τs)

φ(s)
< +∞ for all τ > 0. (5)

Then problem (3) has at least one positive solution if either
aR < α or α = a, R = 1 and

lı́m
s→a−

f (r , s)

φ(s)
= 0 uniformly with r ∈ [0,1], (6)

holds true.



Examples

Fix 0 ≤ q < 1 and let µ : [0,R] → (0,∞), h : [0,R] × [0,∞) →
[0,∞) be continuous functions.

(i) The Dirichlet problem

Mv + µ(|x |)vq + h(|x |, v) = 0 in BR, v = 0 on ∂BR,

has at least one positive classical radial solution for any R > 0.



Examples

According to Theorem 3.2 and Remark 3.1 in
A. Capietto, W. Dambrosio, F. Zanolin, Infinitely many
radial solutions to a boundary value problem in a ball, Ann.
Mat. Pura Appl. 179 (2001), 159-188.

the problem

Mv + µ(|x |)|v |q−1v = 0 in BR, v = 0 on ∂BR

has infinitely many radial solutions with prescribed number of
nodes (the positive case is not covered), provided that 0 < q < 1
and µ is continuously differentiable.



Examples

(ii) If 0 ≤ q < 1 ≤ p and λ > 0, then problem

Mv + λvq + vp = 0 in BR, v = 0 on ∂BR

has at least one positive classical radial solution for any R > 0.



Examples

(ii) If 0 ≤ q < 1 ≤ p and λ > 0, then problem

Mv + λvq + vp = 0 in BR, v = 0 on ∂BR

has at least one positive classical radial solution for any R > 0.

In the classical case, using the upper and lower solutions met-
hod, it has been proved by Ambrosetti, Brezis and Cerami that
problem

∆v + λvq + vp = 0 in BR, v = 0 on ∂BR

has a positive solution iff 0 < λ ≤ Λ for some Λ > 0 (0 < q <
1 < p).



Examples

(iii) The Dirichlet problems

Mv +
µ(|x |)vq
√
α2 − v2

= 0 in BR, v = 0 on ∂BR,

and

Mv +
µ(|x |)vq

(α− v)γ
= 0 in BR, v = 0 on ∂BR,

have at least one positive classical radial solution for any R < α.
(iv) If, in addition, γ < 1

2 , then the Dirichlet problem

Mv +
µ(|x |)vq

(1− v2)γ
= 0 in B(R), v = 0 on ∂B(R),

has at least one positive classical radial solution for any R ≤ 1.



Sketch of the proof

We use the compact linear operators

S : C → C, Su(r) =
1

rN−1

∫ r

0
tN−1u(t)dt , Su(0) = 0;

K : C → C, Ku(r) =

∫ R

r
u(t)dt , (r ∈ [0,R])

and the Nemytskii type operator

Nf : Bα → C, Nf (u) = f (·, |u(·)|).



Sketch of the proof

Lemma 1
A function u ∈ C is a solution of (3) if and only if it is a fixed
point of the continuous nonlinear operator

N : Bα → C, N = K ◦ φ−1 ◦ S ◦ Nf .

Moreover, N is compact on Bρ for all ρ ∈ (0, α).



Sketch of the proof

Proposition 1
Assume (4) and (5). Then there exists 0 < ρ0 < α such that

dLS[I −N ,Bρ,0] = 0 for all 0 < ρ ≤ ρ0.



Sketch of the proof

Let H(λ, ·) : Bα → C be the fixed point operator associated to

(rN−1φ(u′))′ + rN−1[f (r , |u|) + λ] = 0, u′(0) = 0 = u(R), (7)

where λ ∈ [0,1].

We can prove

u 6= H(λ,u) for all (λ,u) ∈ [0,1]× ∂Bρ

This implies

dLS[I −H(0, ·),Bρ,0] = dLS[I −H(1, ·),Bρ,0].

Besides
u 6= H(1,u) for all u ∈ Bρ,

implying that
dLS[I −H(1, ·),Bρ,0] = 0.

Consequently,

dLS[I −N ,Bρ,0] = dLS[I −H(0, ·),Bρ,0]

= dLS[I −H(1, ·),Bρ,0]

= 0.
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Sketch of the proof

Proposition 2
If aR < α, then one has

dLS[I −N ,BaR,0] = 1.

Consider the compact homotopy

H : [0,1]× BaR → C, H(λ,u) = λN (u).

Let (λ,u) ∈ [0,1]× BaR be such that H(λ,u) = u. It follows
immediately that ||u′|| < a, implying that ||u|| < aR. So,

u 6= H(λ,u) for all (λ,u) ∈ [0,1]× ∂BaR,

which implies that

dLS[I −H(0, ·),BaR,0] = dLS[I −H(1, ·),BaR,0].

Consequently,

dLS[I −N ,BaR,0] = dLS[I,BaR,0] = 1
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Sketch of the proof

If α = a, then in Proposition 2 one has that R < 1. We consider
now the case R = 1, assuming that f is sublinear with respect
to φ at a.

Proposition 3
Assume that a = α and R = 1. If

lı́m
s→a−

f (r , s)

φ(s)
= 0 uniformly with r ∈ [0,1],

then there exists 0 < δ1 < a such that

dLS[I −N ,Bδ,0] = 1 for all δ1 ≤ δ < a.



A second existence result

Now, we study the problem(
rN−1 u′√

1− u′2

)′
+ rN−1µ(r)p(u) = 0, u′(0) = 0 = u(R), (8)

under the standing hypotheses:

(Hµ) µ : [0,R]→ R is continuous and µ(r) > 0 for all r > 0;

(Hp) p : [0,∞)→ R is a continuous function such that
p(0) = 0 and p(s) > 0 for all s > 0.



A second existence result

Theorem 2
Let P be the primitive of p with P(0) = 0. If

RN < N
∫ R

0
rN−1µ(r)P(R − r)dr , (9)

then problem (12) has at least one solution u such that u > 0
on [0,R) and u is strictly decreasing.



Example

Given m ≥ 0 and q > 0, let us consider the Hénon type problem

Mv + λ|x |mvq = 0 in BR, v = 0 on ∂BR. (10)

It is easy to see that in this case inequality (9) becomes

1 < λ
NRm+q+1Γ(q + 2)Γ(N + m)

(q + 1)Γ(N + m + q + 2)
. (11)

Consequently, if (11) holds then problem (10) has at least one
classical positive radial solution.



Sketch of the proof

We follow a VARIATIONAL APPROACH. The problem is(
rN−1 u′√

1− u′2

)′
+ rN−1µ(r)p(u) = 0, u′(0) = 0 = u(R),(12)

Define K0 := {v ∈W 1,∞ : ‖v ′‖ ≤ a, v(R) = 0}. The
associated energy functional I : C → (−∞,+∞] is

I(v) =
RN

N
−
∫ R

0
rN−1

√
1− v ′2dr−

∫ R

0
rN−1µ(r)P(v)dr (v ∈ K0)

and I ≡ +∞ on C \ K0.
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Sketch of the proof

Step 1: Each critical point of I is a solution of (12). Moreover, (12)
has a solution which is a minimum point of I on C.

Step 2: Assume ı́nfK0 I < 0. Then problem (12) has at least one
solution u such that u > 0 on [0,R) and u is strictly
decreasing.

Step 3: Consider the function vR ∈ K0 given by

vR(r) = R − r for all r ∈ [0,R].

Using (9), one gets

I(vR) =
RN

N
−
∫ R

0
rN−1µ(r)P(R − r)dr < 0.



Sketch of the proof

Step 1: Each critical point of I is a solution of (12). Moreover, (12)
has a solution which is a minimum point of I on C.

Step 2: Assume ı́nfK0 I < 0. Then problem (12) has at least one
solution u such that u > 0 on [0,R) and u is strictly
decreasing.

Step 3: Consider the function vR ∈ K0 given by

vR(r) = R − r for all r ∈ [0,R].

Using (9), one gets

I(vR) =
RN

N
−
∫ R

0
rN−1µ(r)P(R − r)dr < 0.



Sketch of the proof

Step 1: Each critical point of I is a solution of (12). Moreover, (12)
has a solution which is a minimum point of I on C.

Step 2: Assume ı́nfK0 I < 0. Then problem (12) has at least one
solution u such that u > 0 on [0,R) and u is strictly
decreasing.

Step 3: Consider the function vR ∈ K0 given by

vR(r) = R − r for all r ∈ [0,R].

Using (9), one gets

I(vR) =
RN

N
−
∫ R

0
rN−1µ(r)P(R − r)dr < 0.



A multiplicity result for the Hénon problem
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A multiplicity result for the Hénon problem

Given m ≥ 0 and q > 1, let us consider the Hénon type problem

Mv + λ|x |mvq = 0 in BR, v = 0 on ∂BR. (14)

It is interesting to compare with the classical Hénon equation

∆v + λ|x |mvq = 0 in BR, v = 0 on ∂BR.

If N ≥ 3, it has a unique positive radial solution if 1 < q <
N+2m+2

N−2 and no solution if q ≥ N+2m+2
N−2 ( Pohozaev identity)



A multiplicity result for the Hénon problem

Theorem 3

Define µM := máx[0,R] |µ|. There exists Λ > 2N/(µMRq+1) such
that problem (13) has zero, at least one or at least two positive
solutions according to λ ∈ (0,Λ), λ = Λ or λ > Λ. Moreover, Λ is
strictly decreasing with respect to R.



Sketch of the proof

Step 1: No solution for smal λ.

Step 2:

dLS[I −N ,Bρ,0] = 1 for all ρ ≥ a(R + 1).

Step 3:

dLS[I −Nf ,Bρ,0] = 1 for all 0 < ρ ≤ ρ0.

Step 4:

dLS[I −N ,B(u0, ρ),0] = 1 for all 0 < ρ ≤ ρ0,

where u0 is the solution found by the variational approach.

We conclude by a simple excision argument.
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