A Dirichlet problem involving the mean curvature operator in Minkowski space

Pedro J. Torres
(joint work with C. Bereanu and P. Jebelean)

Departamento de Matemática Aplicada, Universidad de Granada (Spain)

Trieste 2013
On the occasion of the 60th birthday of Fabio Zanolin

The problem

We consider the existence and multiplicity of radial positive solutions of the problem

$$
\begin{array}{r}
\mathcal{M} v+f(|x|, v)=0, \quad x \in B_{R}, \\
v=0, \quad x \in \partial B_{R}, \tag{2}
\end{array}
$$

where $B_{R}=\left\{x \in \mathbb{R}^{N}:|x|<R\right\}$ and $f:[0, R] \times[0, \alpha) \rightarrow \mathbb{R}$ is a continuous function, which is positive on $(0, R] \times(0, \alpha)$, and

$$
\mathcal{M} v=\operatorname{div}\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^{2}}}\right)
$$

The problem

Setting, as usual, $r=|x|$ and $v(x)=u(r)$, the Dirichlet problem (1) reduces to the mixed boundary value problem

$$
\begin{equation*}
\left(r^{N-1} \phi\left(u^{\prime}\right)\right)^{\prime}+r^{N-1} f(r, u)=0, \quad u^{\prime}(0)=0=u(R) \tag{3}
\end{equation*}
$$

Standing hypotheses:
$\left(H_{\phi}\right) \quad \phi:(-a, a) \rightarrow \mathbb{R}(0<a<\infty)$ is an odd, increasing homeomorphism with $\phi(0)=0$;
$\left(H_{f}\right) \quad f:[0, R] \times[0, \alpha) \rightarrow[0, \infty)$ is a continuous function with
$0<\alpha \leq \infty$ and $f(r, s)>0$ for all $(r, s) \in(0, R] \times(0, \alpha)$.

Existence result I

Theorem 1

Assume that

$$
\begin{gather*}
\lim _{s \rightarrow 0+} \frac{f(r, s)}{\phi(s)}=+\infty \quad \text { uniformly with } \quad r \in[0, R] \tag{4}\\
\operatorname{límsup}_{s \rightarrow 0} \frac{\phi(\tau s)}{\phi(s)}<+\infty \quad \text { for all } \tau>0 \tag{5}
\end{gather*}
$$

Then problem (3) has at least one positive solution if either $a R<\alpha$ or $\alpha=a, R=1$ and

$$
\begin{equation*}
\lim _{s \rightarrow a-} \frac{f(r, s)}{\phi(s)}=0 \quad \text { uniformly with } \quad r \in[0,1] \tag{6}
\end{equation*}
$$

holds true.

Examples

Fix $0 \leq q<1$ and let $\mu:[0, R] \rightarrow(0, \infty), h:[0, R] \times[0, \infty) \rightarrow$ $[0, \infty)$ be continuous functions.
(i) The Dirichlet problem

$$
\mathcal{M} v+\mu(|x|) v^{q}+h(|x|, v)=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R},
$$

has at least one positive classical radial solution for any $R>0$.

Examples

According to Theorem 3.2 and Remark 3.1 in

- A. Capietto, W. Dambrosio, F. Zanolin, Infinitely many radial solutions to a boundary value problem in a ball, Ann. Mat. Pura Appl. 179 (2001), 159-188.
the problem

$$
\mathcal{M} v+\mu(|x|)|v|^{q-1} v=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R}
$$

has infinitely many radial solutions with prescribed number of nodes (the positive case is not covered), provided that $0<q<1$ and μ is continuously differentiable.

Examples

(ii) If $0 \leq q<1 \leq p$ and $\lambda>0$, then problem

$$
\mathcal{M} v+\lambda v^{q}+v^{p}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R}
$$

has at least one positive classical radial solution for any $R>0$.

Examples

(ii) If $0 \leq q<1 \leq p$ and $\lambda>0$, then problem

$$
\mathcal{M} v+\lambda v^{q}+v^{p}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R}
$$

has at least one positive classical radial solution for any $R>0$.

In the classical case, using the upper and lower solutions method, it has been proved by Ambrosetti, Brezis and Cerami that problem

$$
\Delta v+\lambda v^{q}+v^{p}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R}
$$

has a positive solution iff $0<\lambda \leq \Lambda$ for some $\Lambda>0(0<q<$ $1<p$).

Examples

(iii) The Dirichlet problems

$$
\mathcal{M} v+\frac{\mu(|x|) v^{q}}{\sqrt{\alpha^{2}-v^{2}}}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R}
$$

and

$$
\mathcal{M} v+\frac{\mu(|x|) v^{q}}{(\alpha-v)^{\gamma}}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R}
$$

have at least one positive classical radial solution for any $R<\alpha$. (iv) If, in addition, $\gamma<\frac{1}{2}$, then the Dirichlet problem

$$
\mathcal{M} v+\frac{\mu(|x|) v^{q}}{\left(1-v^{2}\right)^{\gamma}}=0 \quad \text { in } \quad \mathcal{B}(R), \quad v=0 \quad \text { on } \quad \partial \mathcal{B}(R)
$$

has at least one positive classical radial solution for any $R \leq 1$.

Sketch of the proof

We use the compact linear operators

$$
\begin{gathered}
S: C \rightarrow C, \quad S u(r)=\frac{1}{r^{N-1}} \int_{0}^{r} t^{N-1} u(t) d t, \quad S u(0)=0 ; \\
K: C \rightarrow C, \quad K u(r)=\int_{r}^{R} u(t) d t, \quad(r \in[0, R])
\end{gathered}
$$

and the Nemytskii type operator

$$
N_{f}: B_{\alpha} \rightarrow C, \quad N_{f}(u)=f(\cdot,|u(\cdot)|)
$$

Sketch of the proof

Lemma 1

A function $u \in C$ is a solution of (3) if and only if it is a fixed point of the continuous nonlinear operator

$$
\mathcal{N}: B_{\alpha} \rightarrow C, \quad \mathcal{N}=K \circ \phi^{-1} \circ S \circ N_{f}
$$

Moreover, \mathcal{N} is compact on \bar{B}_{ρ} for all $\rho \in(0, \alpha)$.

Sketch of the proof

Proposition 1

Assume (4) and (5). Then there exists $0<\rho_{0}<\alpha$ such that

$$
d_{L S}\left[I-\mathcal{N}, B_{\rho}, 0\right]=0 \quad \text { for all } \quad 0<\rho \leq \rho_{0}
$$

Sketch of the proof

Let $\mathcal{H}(\lambda, \cdot): B_{\alpha} \rightarrow C$ be the fixed point operator associated to $\left(r^{N-1} \phi\left(u^{\prime}\right)\right)^{\prime}+r^{N-1}[f(r,|u|)+\lambda]=0, \quad u^{\prime}(0)=0=u(R),(7)$ where $\lambda \in[0,1]$.

Sketch of the proof

Let $\mathcal{H}(\lambda, \cdot): B_{\alpha} \rightarrow C$ be the fixed point operator associated to $\left(r^{N-1} \phi\left(u^{\prime}\right)\right)^{\prime}+r^{N-1}[f(r,|u|)+\lambda]=0, \quad u^{\prime}(0)=0=u(R)$,
where $\lambda \in[0,1]$. We can prove

$$
u \neq \mathcal{H}(\lambda, u) \quad \text { for all } \quad(\lambda, u) \in[0,1] \times \partial B_{\rho}
$$

This implies

$$
d_{L S}\left[I-\mathcal{H}(0, \cdot), B_{\rho}, 0\right]=d_{L S}\left[I-\mathcal{H}(1, \cdot), B_{\rho}, 0\right]
$$

Sketch of the proof

Let $\mathcal{H}(\lambda, \cdot): B_{\alpha} \rightarrow C$ be the fixed point operator associated to $\left(r^{N-1} \phi\left(u^{\prime}\right)\right)^{\prime}+r^{N-1}[f(r,|u|)+\lambda]=0, \quad u^{\prime}(0)=0=u(R)$,
where $\lambda \in[0,1]$. We can prove

$$
u \neq \mathcal{H}(\lambda, u) \quad \text { for all } \quad(\lambda, u) \in[0,1] \times \partial B_{\rho}
$$

This implies

$$
d_{L S}\left[I-\mathcal{H}(0, \cdot), B_{\rho}, 0\right]=d_{L S}\left[I-\mathcal{H}(1, \cdot), B_{\rho}, 0\right] .
$$

Besides

$$
u \neq \mathcal{H}(1, u) \quad \text { for all } \quad u \in \bar{B}_{\rho},
$$

implying that

$$
d_{L S}\left[I-\mathcal{H}(1, \cdot), B_{\rho}, 0\right]=0 .
$$

Consequently,

$$
\begin{aligned}
d_{L S}\left[I-\mathcal{N}, B_{\rho}, 0\right] & =d_{L S}\left[I-\mathcal{H}(0, \cdot), B_{\rho}, 0\right] \\
& =d_{L S}\left[I-\mathcal{H}(1, \cdot), B_{\rho}, 0\right] \\
& =0 .
\end{aligned}
$$

Sketch of the proof

Proposition 2
If $a R<\alpha$, then one has

$$
d_{L S}\left[I-\mathcal{N}, B_{a R}, 0\right]=1
$$

Sketch of the proof

Proposition 2

If $a R<\alpha$, then one has

$$
d_{L S}\left[I-\mathcal{N}, B_{a R}, 0\right]=1
$$

Consider the compact homotopy

$$
\mathcal{H}:[0,1] \times \bar{B}_{a R} \rightarrow C, \quad \mathcal{H}(\lambda, u)=\lambda \mathcal{N}(u) .
$$

Sketch of the proof

Proposition 2

If $a R<\alpha$, then one has

$$
d_{L S}\left[I-\mathcal{N}, B_{a R}, 0\right]=1
$$

Consider the compact homotopy

$$
\mathcal{H}:[0,1] \times \bar{B}_{a R} \rightarrow C, \quad \mathcal{H}(\lambda, u)=\lambda \mathcal{N}(u)
$$

Let $(\lambda, u) \in[0,1] \times \bar{B}_{a R}$ be such that $\mathcal{H}(\lambda, u)=u$. It follows immediately that $\left\|u^{\prime}\right\|<a$, implying that $\|u\|<a R$. So,

$$
u \neq \mathcal{H}(\lambda, u) \quad \text { for all } \quad(\lambda, u) \in[0,1] \times \partial B_{a R}
$$

Sketch of the proof

Proposition 2

If $a R<\alpha$, then one has

$$
d_{L S}\left[I-\mathcal{N}, B_{a R}, 0\right]=1
$$

Consider the compact homotopy

$$
\mathcal{H}:[0,1] \times \bar{B}_{a R} \rightarrow C, \quad \mathcal{H}(\lambda, u)=\lambda \mathcal{N}(u)
$$

Let $(\lambda, u) \in[0,1] \times \bar{B}_{a R}$ be such that $\mathcal{H}(\lambda, u)=u$. It follows immediately that $\left\|u^{\prime}\right\|<a$, implying that $\|u\|<a R$. So,

$$
u \neq \mathcal{H}(\lambda, u) \quad \text { for all } \quad(\lambda, u) \in[0,1] \times \partial B_{a R}
$$

which implies that

$$
d_{L S}\left[I-\mathcal{H}(0, \cdot), B_{a R}, 0\right]=d_{L S}\left[I-\mathcal{H}(1, \cdot), B_{a R}, 0\right] .
$$

Sketch of the proof

Proposition 2

If $a R<\alpha$, then one has

$$
d_{L S}\left[I-\mathcal{N}, B_{a R}, 0\right]=1
$$

Consider the compact homotopy

$$
\mathcal{H}:[0,1] \times \bar{B}_{a R} \rightarrow C, \quad \mathcal{H}(\lambda, u)=\lambda \mathcal{N}(u)
$$

Let $(\lambda, u) \in[0,1] \times \bar{B}_{a R}$ be such that $\mathcal{H}(\lambda, u)=u$. It follows immediately that $\left\|u^{\prime}\right\|<a$, implying that $\|u\|<a R$. So,

$$
u \neq \mathcal{H}(\lambda, u) \quad \text { for all } \quad(\lambda, u) \in[0,1] \times \partial B_{a R}
$$

which implies that

$$
d_{L S}\left[I-\mathcal{H}(0, \cdot), B_{a R}, 0\right]=d_{L S}\left[I-\mathcal{H}(1, \cdot), B_{a R}, 0\right]
$$

Consequently,

$$
d_{L S}\left[I-\mathcal{N}, B_{a R}, 0\right]=d_{L S}\left[I, B_{a R}, 0\right]=1
$$

Sketch of the proof

If $\alpha=a$, then in Proposition 2 one has that $R<1$. We consider now the case $R=1$, assuming that f is sublinear with respect to ϕ at a.

Proposition 3

Assume that $a=\alpha$ and $R=1$. If

$$
\lim _{s \rightarrow a-} \frac{f(r, s)}{\phi(s)}=0 \quad \text { uniformly with } \quad r \in[0,1]
$$

then there exists $0<\delta_{1}<$ a such that

$$
d_{L S}\left[I-\mathcal{N}, B_{\delta}, 0\right]=1 \quad \text { for all } \quad \delta_{1} \leq \delta<a
$$

A second existence result

Now, we study the problem

$$
\begin{equation*}
\left(r^{N-1} \frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}+r^{N-1} \mu(r) p(u)=0, \quad u^{\prime}(0)=0=u(R) \tag{8}
\end{equation*}
$$

under the standing hypotheses:
$\left(H_{\mu}\right) \quad \mu:[0, R] \rightarrow \mathbb{R}$ is continuous and $\mu(r)>0$ for all $r>0$;
$\left(H_{p}\right) \quad p:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function such that $p(0)=0$ and $p(s)>0$ for all $s>0$.

A second existence result

Theorem 2

Let P be the primitive of p with $P(0)=0$. If

$$
\begin{equation*}
R^{N}<N \int_{0}^{R} r^{N-1} \mu(r) P(R-r) d r \tag{9}
\end{equation*}
$$

then problem (12) has at least one solution u such that $u>0$ on $[0, R)$ and u is strictly decreasing.

Example

Given $m \geq 0$ and $q>0$, let us consider the Hénon type problem

$$
\begin{equation*}
\mathcal{M} v+\lambda|x|^{m} v^{q}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R} \tag{10}
\end{equation*}
$$

It is easy to see that in this case inequality (9) becomes

$$
\begin{equation*}
1<\lambda \frac{N R^{m+q+1} \Gamma(q+2) \Gamma(N+m)}{(q+1) \Gamma(N+m+q+2)} \tag{11}
\end{equation*}
$$

Consequently, if (11) holds then problem (10) has at least one classical positive radial solution.

Sketch of the proof

We follow a VARIATIONAL APPROACH. The problem is

$$
\left(r^{N-1} \frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}+r^{N-1} \mu(r) p(u)=0, \quad u^{\prime}(0)=0=u(R),(12)
$$

Sketch of the proof

We follow a VARIATIONAL APPROACH. The problem is
$\left(r^{N-1} \frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}+r^{N-1} \mu(r) p(u)=0, \quad u^{\prime}(0)=0=u(R),(12)$
Define $K_{0}:=\left\{v \in W^{1, \infty}:\left\|v^{\prime}\right\| \leq a, v(R)=0\right\}$. The associated energy functional $I: C \rightarrow(-\infty,+\infty]$ is
$I(v)=\frac{R^{N}}{N}-\int_{0}^{R} r^{N-1} \sqrt{1-v^{\prime 2}} d r-\int_{0}^{R} r^{N-1} \mu(r) P(v) d r \quad\left(v \in K_{0}\right)$ and $I \equiv+\infty$ on $C \backslash K_{0}$.

Sketch of the proof

Step 1: Each critical point of I is a solution of (12). Moreover, (12) has a solution which is a minimum point of I on C.

Sketch of the proof

Step 1: Each critical point of I is a solution of (12). Moreover, (12) has a solution which is a minimum point of I on C.
Step 2: Assume ínf $_{K_{0}} I<0$. Then problem (12) has at least one solution u such that $u>0$ on $[0, R)$ and u is strictly decreasing.

Sketch of the proof

Step 1: Each critical point of I is a solution of (12). Moreover, (12) has a solution which is a minimum point of I on C.
Step 2: Assume ínf $_{K_{0}} I<0$. Then problem (12) has at least one solution u such that $u>0$ on $[0, R)$ and u is strictly decreasing.
Step 3: Consider the function $v_{R} \in K_{0}$ given by

$$
v_{R}(r)=R-r \quad \text { for all } \quad r \in[0, R] .
$$

Using (9), one gets

$$
I\left(v_{R}\right)=\frac{R^{N}}{N}-\int_{0}^{R} r^{N-1} \mu(r) P(R-r) d r<0
$$

A multiplicity result for the Hénon problem

Given $m \geq 0$ and $q>1$, let us consider the Hénon type problem

$$
\begin{equation*}
\mathcal{M} v+\lambda|x|^{m} v^{q}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R} \tag{13}
\end{equation*}
$$

A multiplicity result for the Hénon problem

Given $m \geq 0$ and $q>1$, let us consider the Hénon type problem

$$
\begin{equation*}
\mathcal{M} v+\lambda|x|^{m} v^{q}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R} \tag{14}
\end{equation*}
$$

It is interesting to compare with the classical Hénon equation

$$
\Delta v+\lambda|x|^{m} v^{q}=0 \quad \text { in } \quad B_{R}, \quad v=0 \quad \text { on } \quad \partial B_{R} .
$$

If $N \geq 3$, it has a unique positive radial solution if $1<q<$ $\frac{N+2 m+2}{N-2}$ and no solution if $q \geq \frac{N+2 m+2}{N-2}$ (Pohozaev identity)

A multiplicity result for the Hénon problem

Theorem 3

Define $\mu_{M}:=\operatorname{máx}_{[0, R]}|\mu|$. There exists $\Lambda>2 N /\left(\mu_{M} R^{q+1}\right)$ such that problem (13) has zero, at least one or at least two positive solutions according to $\lambda \in(0, \Lambda), \lambda=\Lambda$ or $\lambda>\Lambda$. Moreover, Λ is strictly decreasing with respect to R.

Sketch of the proof

Step 1: No solution for smal λ.

Sketch of the proof

Step 1: No solution for smal λ.

Step 2:

$$
d_{L S}\left[I-\mathcal{N}, B_{\rho}, 0\right]=1 \quad \text { for all } \rho \geq a(R+1)
$$

Sketch of the proof

Step 1: No solution for smal λ.

Step 2:

$$
d_{L S}\left[I-\mathcal{N}, B_{\rho}, 0\right]=1 \quad \text { for all } \rho \geq a(R+1)
$$

Step 3:

$$
d_{L S}\left[I-\mathcal{N}_{f}, B_{\rho}, 0\right]=1 \quad \text { for all } \quad 0<\rho \leq \rho_{0}
$$

Sketch of the proof

Step 1: No solution for smal λ.

Step 2:

$$
d_{L S}\left[I-\mathcal{N}, B_{\rho}, 0\right]=1 \quad \text { for all } \rho \geq a(R+1)
$$

Step 3:

$$
d_{L S}\left[I-\mathcal{N}_{f}, B_{\rho}, 0\right]=1 \quad \text { for all } \quad 0<\rho \leq \rho_{0}
$$

Step 4:

$$
d_{L S}\left[I-\mathcal{N}, B\left(u_{0}, \rho\right), 0\right]=1 \quad \text { for all } 0<\rho \leq \rho_{0}
$$

where u_{0} is the solution found by the variational approach.

Sketch of the proof

Step 1: No solution for smal λ.

Step 2:

$$
d_{L S}\left[I-\mathcal{N}, B_{\rho}, 0\right]=1 \quad \text { for all } \rho \geq a(R+1)
$$

Step 3:

$$
d_{L S}\left[I-\mathcal{N}_{f}, B_{\rho}, 0\right]=1 \quad \text { for all } \quad 0<\rho \leq \rho_{0}
$$

Step 4:

$$
d_{L S}\left[I-\mathcal{N}, B\left(u_{0}, \rho\right), 0\right]=1 \quad \text { for all } 0<\rho \leq \rho_{0}
$$

where u_{0} is the solution found by the variational approach.
We conclude by a simple excision argument.

THANKS AND
CONGRATULATIONS FABIO!!

