Existence and stability of periodic solutions of the relativistic oscillator

Pedro J. Torres

Departamento de Matemática Aplicada, Universidad de Granada (Spain)

Santiago de Compostela September 2008

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical pendulum equation:

$$x'' + kx' + a\sin x = p(t) \equiv \overline{p} + \widetilde{p}(t)$$
(1)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Classical pendulum equation:

$$x'' + kx' + a\sin x = p(t) \equiv \overline{p} + \widetilde{p}(t)$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For a given $\tilde{p} \in \tilde{C}_T$, let $I_{\tilde{p}}$ be the closed interval of mean values for which equation (1) has at least a *T*-periodic solution.

Classical pendulum equation:

$$x'' + kx' + a\sin x = p(t) \equiv \overline{p} + \widetilde{p}(t)$$
(1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For a given $\tilde{p} \in \tilde{C}_T$, let $I_{\tilde{p}}$ be the closed interval of mean values for which equation (1) has at least a *T*-periodic solution.

Questions:

- **Degeneracy problem:** is $I_{\tilde{p}}$ nondegenerate?.
- If k = 0, it is known that 0 ∈ I_{p̃} (Hamel, 1922). Is this true for k > 0?

Theorem (Ortega's counterexample)

Given positive constants a, k and T, there exists $p \in \tilde{C}_T$ such that the equation (1) with $\overline{p} = 0$ has no T-periodic solutions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Relativistic pendulum equation:

$$\phi(x')' + kx' + a\sin x = \rho(t) \equiv \overline{\rho} + \widetilde{\rho}(t)$$
(2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $\phi:] - c, c[\rightarrow \mathbb{R} \text{ is given by}$

$$\phi(u)=\frac{u}{\sqrt{1-\frac{u^2}{c^2}}}.$$

 $c \equiv$ Speed of light in the vacuum

$$(\phi(x'))' + h(x)x' + g(x) = p(t)$$
 (3)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where h, g are continuous functions, p is continuous and T-periodic and $\phi :] - c, c[\rightarrow \mathbb{R}$ is an increasing homeomorphism with $\phi(0) = 0$.

$$(\phi(x'))' + h(x)x' + g(x) = p(t)$$
 (3)

(ロ) (同) (三) (三) (三) (○) (○)

where h, g are continuous functions, p is continuous and T-periodic and $\phi :] - c, c[\rightarrow \mathbb{R}$ is an increasing homeomorphism with $\phi(0) = 0$.

Theorem (Bereanu-Mawhin, JDE, 2007)

If $g : \mathbb{R} \to \mathbb{R}$ is strictly monotone then $I_{\tilde{p}} = Range \ g$ for any $\tilde{p} \in \tilde{C}_T$.

Theorem

Let us assume that there exist real numbers $R_1 < R_2$ such that (H1) $g \in C^1([R_1, R_2])$ and g'(x) > 0 for all $x \in]R_1, R_2[$. (H2) $\frac{cT}{\sqrt{3}} \max_{x \in [R_1, R_2]} |g'(x)| \le |g(R_2) - g(R_1)|$. Then, for every $\tilde{p} \in \tilde{C}_T$, the set $I_{\tilde{p}}$ of eq. (3) contains the closed interval

$$[g(R_1) + \frac{cT}{2\sqrt{3}} \max_{x \in [R_1, R_2]} |g'(x)|, g(R_2) - \frac{cT}{2\sqrt{3}} \max_{x \in [R_1, R_2]} |g'(x)|]$$

Moreover, if \overline{p} belongs to the previous interval, then the corresponding *T*-periodic solution belongs to $[R_1, R_2]$.

Theorem

Let us assume that there exist real numbers $R_1 < R_2$ such that (H1) $g \in C^1([R_1, R_2])$ and g'(x) < 0 for all $x \in]R_1, R_2[$. (H2) $\frac{cT}{\sqrt{3}} \max_{x \in [R_1, R_2]} |g'(x)| \le |g(R_2) - g(R_1)|$. Then, for every $\tilde{p} \in \tilde{C}_T$, the set $I_{\tilde{p}}$ of eq. (3) contains the closed interval

$$\left[g(R_{2}) + \frac{cT}{2\sqrt{3}} \max_{x \in [R_{1},R_{2}]} |g'(x)|, g(R_{1}) - \frac{cT}{2\sqrt{3}} \max_{x \in [R_{1},R_{2}]} |g'(x)|\right]$$

Moreover, if \overline{p} belongs to the previous interval, then the corresponding *T*-periodic solution belongs to $[R_1, R_2]$.

Corollary for the relativistic pendulum

Corollary

Let us assume that $cT \le 2\sqrt{3}$. Then, for every

$$|\overline{p}| \leq a\left(1 - \frac{cT}{2\sqrt{3}}\right),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

eq. (2) possesses two different solutions x_1, x_2 which verify $-\frac{\pi}{2} \le x_1 \le \frac{\pi}{2} \le x_2 \le \frac{3\pi}{2}$.

Step 1: change of variables $y = g(x) - \overline{p}$

$$\phi\left(\frac{y'}{g'(g^{-1}(y+\overline{p}))}\right)' + h(g^{-1}(y+\overline{p}))\frac{y'}{g'(g^{-1}(y+\overline{p}))} + y(t) = \tilde{p}(t).$$
(4)

Step 1: change of variables $y = g(x) - \overline{p}$

$$\phi\left(\frac{y'}{g'(g^{-1}(y+\overline{p}))}\right)' + h(g^{-1}(y+\overline{p}))\frac{y'}{g'(g^{-1}(y+\overline{p}))} + y(t) = \tilde{p}(t).$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Step 2: Formulation of the fixed point problem.

Step 1: change of variables $y = g(x) - \overline{p}$

$$\phi\left(\frac{y'}{g'(g^{-1}(y+\overline{p}))}\right)' + h(g^{-1}(y+\overline{p}))\frac{y'}{g'(g^{-1}(y+\overline{p}))} + y(t) = \tilde{p}(t).$$
(4)

Step 2: Formulation of the fixed point problem. Integrating,

$$\phi\left(\frac{y'}{g'(g^{-1}(y+\overline{p}))}\right) = \int_0^t (p(s)-y(s))ds - H(g^{-1}(y+\overline{p})) + C,$$

where H is a primitive of the function h and C is a constant to be fixed later.

lf

$$F[y](t) = \int_0^t (p(s) - y(s))ds - H(g^{-1}(y + \overline{p})).$$

then

$$y(t) = \int_0^t g'(g^{-1}(y + \overline{p}))\phi^{-1}(F[y](t) + C)ds + D.$$

Step 2: Formulation of the fixed point problem.

Lemma

For any $y \in \tilde{C}_T$, there exists a unique choice of C_y , D_y such that

$$\mathcal{T}[y](t) \equiv \int_0^t g'(g^{-1}(y+\overline{\rho}))\phi^{-1}\left(F[y](t)+C_y\right)ds + D_y \in \tilde{C}_T.$$
(5)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The functional $\mathcal{T}: \tilde{C}_T \to \tilde{C}_T$ is continuous and compact.

Step 3: Application of the Schauder fixed point problem.

Step 3: Application of the Schauder fixed point problem.

$$K = \{y \in \tilde{C}_T : y(t) \in [g(R_1) - \overline{p}, g(R_2) - \overline{p}]\}.$$

<□ > < @ > < E > < E > E のQ @

Step 3: Application of the Schauder fixed point problem.

$$K = \{y \in \tilde{C}_T : y(t) \in [g(R_1) - \overline{p}, g(R_2) - \overline{p}]\}.$$

$$\left\|\mathcal{T}[y]\right\|_{\infty} \leq \frac{T}{2\sqrt{3}} \left\|\mathcal{T}[y]'\right\|_{\infty} < \frac{cT}{2\sqrt{3}} \max_{x \in [R_1, R_2]} \left|g'(x)\right|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

By using condition (*H*2), $\mathcal{T}[y] \in K$.

Open problems

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Open problems

• Prove or disprove existence for T >>.

Stability

Stability

The relativistic (an)harmonic oscillator

$$\left(\frac{mx'}{\sqrt{1-\frac{x'^2}{c^2}}}\right)' + kx = -F_0 \cos \omega t \tag{6}$$

Stability

The relativistic (an)harmonic oscillator

$$\left(\frac{mx'}{\sqrt{1-\frac{x'^2}{c^2}}}\right)' + kx = -F_0 \cos \omega t \tag{6}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chaotic behavior shown numerically in

 J.H. Kim, H.W. Lee, Relativistic chaos in the driven harmonic oscillator, Physical Rev. E, 51 n.2 (1995), pp. 1579-1581.

Stability: Main result

Theorem

Assume that the parameters m, k, ω and F_0 satisfy the following conditions

(H1)
$$\frac{k}{m} < \frac{\omega^2}{16}$$
,
(H2) $F_0 < \frac{1}{4}mc\omega$
(H3) $\frac{(mc\omega)^{19}[(mc\omega)^2 - 16F_0^2]}{120\pi F_0^2(c^2m^2\omega^2 + 4F_0^2)^{19/2}} \sin\left(\frac{6\pi\omega^{1/2}mc^{3/2}k^{1/2}}{(c^2m^2\omega^2 + 4F_0^2)^{3/4}}\right) > 1$,
then the driven relativistic harmonic oscillator (6) has a unique
stable $2\pi/\omega$ -periodic solution with a twist dynamics around
 $it(\Longrightarrow Lyapunov stability+ generically KAM dynamics)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Stability: Corollaries

Corollary

Fixed ω , k, F_0 , c in (6), there exists $M_0 \equiv M_0(\omega, k, F_0, c) > 0$ such that if $m > M_0$ then the conclusion of Theorem 7 holds.

Corollary

Fixed m, k, F_0, c in (6), there exists a critical frequency $\omega_0 \equiv \omega_0(m, k, F_0, c)$ such that if $\omega > \omega_0$ then the conclusion of Theorem 7 holds.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(6) can be written as

$$x' = rac{c^2 y}{\sqrt{y^2 c^2 + m^2 c^4}}, \qquad y' = -kx - F_0 \cos \omega t.$$
 (7)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

(6) can be written as

$$x' = rac{c^2 y}{\sqrt{y^2 c^2 + m^2 c^4}}, \qquad y' = -kx - F_0 \cos \omega t.$$
 (7)

By deriving in the second equation, this system is equivalent to the second order equation

$$y'' + f(y) = \omega F_0 \sin \omega t, \qquad (8)$$

with

$$f(y) = \frac{kc^2y}{\sqrt{y^2c^2 + m^2c^4}}.$$
 (9)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposition

Let us assume that $4k < m\omega^2$. Then, the equation (8) has a *T*-periodic solution φ such that

$$-\frac{F_0}{\omega}(1+\sin\omega t) < \varphi(t) < \frac{F_0}{\omega}(1-\sin\omega t)$$
(10)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for all t.

Proposition

Let us assume that $4k < m\omega^2$. Then, the equation (8) has a *T*-periodic solution φ such that

$$-\frac{F_0}{\omega}(1+\sin\omega t) < \varphi(t) < \frac{F_0}{\omega}(1-\sin\omega t)$$
(10)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all t.

Proof.

• $\alpha(t) = \frac{F_0}{\omega}(1 - \sin \omega t)$ lower solution • $\beta(t) = -\frac{F_0}{\omega}(1 + \sin \omega t)$ upper solution • $\beta(t) < \alpha(t)$ • $|f'(s)| \le \frac{k}{m} < \left(\frac{\pi}{T}\right)^2$

Uniqueness and linear stability.

Uniqueness and linear stability.

Proposition

Assume that

$$4k < m\omega^2 \tag{11}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then, (8) has a unique a T-periodic solution φ which is elliptic.

Lyapunov stability.

・ロト・日本・日本・日本・日本

Lyapunov stability.

The periodic solution $\varphi(t)$ of a general equation y'' + g(t, y) = 0 is translated to the origin by the canonical change $x = y - \varphi(t)$. For the equivalent equation

$$\mathbf{x}'' + \mathbf{g}(t, \mathbf{x} + \varphi(t)) - \mathbf{g}(t, \varphi(t)) = \mathbf{0}, \tag{12}$$

the equilibrium $x \equiv 0$ is a solution. By developing the nonlinearity up to the third order,

$$x'' + a(t)x + b(t)x^{2} + c(t)x^{3} + R(t,x) = 0.$$
 (13)

where

$$a(t) = g_x(t, \varphi(t)), b(t) = g_{xx}(t, \varphi(t))2, c(t) = g_{xxx}(t, \varphi(t))6.$$

Definition

We say that the equilibrium $x \equiv 0$ of (13) is of twist type if it is elliptic, not strongly resonant and the associated first twist coefficient $\beta \neq 0$.

Lyapunov stability.

Theorem

Assume that for the equation (13) the following conditions holds:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

i) $-c(t) > c_* > 0, \forall t \in \mathbb{R}$ ii) $|b(t)| \le b^*, \forall t \in \mathbb{R}$ iii) $0 < \sigma_1^2 < a(t) < \sigma_2^2 \le (\frac{\pi}{2T})^2, \forall t \in \mathbb{R},$ iv) $c_* > \frac{10T\sigma_2^7}{3\sin(\frac{3T}{2}\sigma_1)\sigma_1^8}b^{*2}$ (twist condition) Then the equilibrium $x \equiv 0$ of (13) is of twist type.