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Introduction

Classical pendulum equation:

x ′′ + kx ′ + a sin x = p(t) ≡ p + p̃(t) (1)

For a given p̃ ∈ C̃T , let Ip̃ be the closed interval of mean values
for which equation (1) has at least a T -periodic solution.

Questions:
I Degeneracy problem: is Ip̃ nondegenerate?.
I If k = 0, it is known that 0 ∈ Ip̃ (Hamel, 1922). Is this true

for k > 0?
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Introduction

Theorem (Ortega’s counterexample)
Given positive constants a, k and T , there exists p ∈ C̃T such
that the equation (1) with p = 0 has no T -periodic solutions.



Introduction

Relativistic pendulum equation:

φ(x ′)′ + kx ′ + a sin x = p(t) ≡ p + p̃(t) (2)

where φ :]− c, c[→ R is given by

φ(u) =
u√

1− u2

c2

.

c ≡ Speed of light in the vacuum



Main result

(
φ(x ′)

)′
+ h(x)x ′ + g(x) = p(t) (3)

where h,g are continuous functions, p is continuous and
T -periodic and φ :]− c, c[→ R is an increasing
homeomorphism with φ(0) = 0.

Theorem (Bereanu-Mawhin, JDE, 2007)
If g : R→ R is strictly monotone then Ip̃ = Range g for any
p̃ ∈ C̃T .
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Main result

Theorem
Let us assume that there exist real numbers R1 < R2 such that

(H1) g ∈ C1([R1,R2]) and g′(x) > 0 for all x ∈]R1,R2[.
(H2) cT√

3
maxx∈[R1,R2] |g

′(x)| ≤ |g(R2)− g(R1)|.

Then, for every p̃ ∈ C̃T , the set Ip̃ of eq. (3) contains the closed
interval

[g(R1) +
cT

2
√

3
max

x∈[R1,R2]

∣∣g′(x)
∣∣ ,g(R2)−

cT
2
√

3
max

x∈[R1,R2]

∣∣g′(x)
∣∣]

Moreover, if p belongs to the previous interval, then the
corresponding T -periodic solution belongs to [R1,R2].
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Theorem
Let us assume that there exist real numbers R1 < R2 such that
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cT

2
√

3
max

x∈[R1,R2]

∣∣g′(x)
∣∣ ,g(R1)−

cT
2
√

3
max

x∈[R1,R2]

∣∣g′(x)
∣∣]
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Corollary for the relativistic pendulum

Corollary
Let us assume that cT ≤ 2

√
3. Then, for every

|p| ≤ a
(

1− cT
2
√

3

)
,

eq. (2) possesses two different solutions x1, x2 which verify
−π

2 ≤ x1 ≤ π
2 ≤ x2 ≤ 3π

2 .



Proof.
Step 1: change of variables y = g(x)− p

φ

(
y ′

g′(g−1(y + p))

)′
+h(g−1(y+p))

y ′

g′(g−1(y + p))
+y(t) = p̃(t).

(4)

Step 2: Formulation of the fixed point problem.
Integrating,

φ

(
y ′

g′(g−1(y + p))

)
=

∫ t

0
(p(s)− y(s))ds−H(g−1(y + p)) + C,

where H is a primitive of the function h and C is a constant to
be fixed later.
If

F [y ](t) =

∫ t

0
(p(s)− y(s))ds − H(g−1(y + p)).

then

y(t) =

∫ t

0
g′(g−1(y + p))φ−1 (F [y ](t) + C) ds + D.
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Proof.

Step 2: Formulation of the fixed point problem.

Lemma
For any y ∈ C̃T , there exists a unique choice of Cy ,Dy such that

T [y ](t) ≡
∫ t

0
g′(g−1(y + p))φ−1 (F [y ](t) + Cy

)
ds + Dy ∈ C̃T .

(5)
The functional T : C̃T → C̃T is continuous and compact.



Proof.

Step 3: Application of the Schauder fixed point problem.

K = {y ∈ C̃T : y(t) ∈ [g(R1)− p,g(R2)− p]}.

‖T [y ]‖∞ ≤
T

2
√

3

∥∥T [y ]′
∥∥
∞ <

cT
2
√

3
max

x∈[R1,R2]

∣∣g′(x)
∣∣ .

By using condition (H2), T [y ] ∈ K .
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Open problems

I Prove or disprove existence for T >>.
I Stability
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Stability

The relativistic (an)harmonic oscillator mx ′√
1− x ′2

c2

′ + kx = −F0 cosωt (6)

Chaotic behavior shown numerically in
I J.H. Kim, H.W. Lee, Relativistic chaos in the driven

harmonic oscillator, Physical Rev. E, 51 n.2 (1995), pp.
1579-1581.
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Stability: Main result

Theorem
Assume that the parameters m, k , ω and F0 satisfy the
following conditions

(H1) k
m < ω2

16 ,

(H2) F0 <
1
4mcω

(H3) (mcω)19[(mcω)2−16F 2
0 ]

120πF 2
0 (c2m2ω2+4F 2

0 )19/2 sin
(

6πω1/2mc3/2k1/2

(c2m2ω2+4F0
2)3/4

)
> 1,

then the driven relativistic harmonic oscillator (6) has a unique
stable 2π/ω-periodic solution with a twist dynamics around
it( =⇒ Lyapunov stability+ generically KAM dynamics).



Stability: Corollaries

Corollary
Fixed ω, k ,F0, c in (6), there exists M0 ≡ M0(ω, k ,F0, c) > 0
such that if m > M0 then the conclusion of Theorem 7 holds.

Corollary
Fixed m, k ,F0, c in (6), there exists a critical frequency
ω0 ≡ ω0(m, k ,F0, c) such that if ω > ω0 then the conclusion of
Theorem 7 holds.



Existence: an equivalent Newtonian oscillator

(6) can be written as

x ′ =
c2y√

y2c2 + m2c4
, y ′ = −kx − F0 cosωt . (7)

By deriving in the second equation, this system is equivalent to
the second order equation

y ′′ + f (y) = ωF0 sinωt , (8)

with

f (y) =
kc2y√

y2c2 + m2c4
. (9)
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Existence: an equivalent Newtonian oscillator

Proposition
Let us assume that 4k < mω2. Then, the equation (8) has a
T -periodic solution ϕ such that

− F0

ω
(1 + sinωt) < ϕ(t) <

F0

ω
(1− sinωt) (10)

for all t .
Proof.

I α(t) = F0
ω (1− sinωt) lower solution

I β(t) = −F0
ω (1 + sinωt) upper solution

I β(t) < α(t)

I |f ′(s)| ≤ k
m <

(
π
T

)2
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Uniqueness and linear stability.

Proposition
Assume that

4k < mω2 (11)

Then, (8) has a unique a T -periodic solution ϕ which is elliptic.
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Lyapunov stability.

The periodic solution ϕ(t) of a general equation
y ′′ + g(t , y) = 0 is translated to the origin by the canonical
change x = y − ϕ(t). For the equivalent equation

x ′′ + g(t , x + ϕ(t))− g(t , ϕ(t)) = 0, (12)

the equilibrium x ≡ 0 is a solution. By developing the
nonlinearity up to the third order,

x ′′ + a(t)x + b(t)x2 + c(t)x3 + R(t , x) = 0. (13)

where
a(t) = gx(t , ϕ(t)),b(t) = gxx(t , ϕ(t))2, c(t) = gxxx(t , ϕ(t))6.

Definition
We say that the equilibrium x ≡ 0 of (13) is of twist type if it is
elliptic, not strongly resonant and the associated first twist
coefficient β 6= 0.
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Lyapunov stability.

Theorem
Assume that for the equation (13) the following conditions
holds:

i) −c(t) > c∗ > 0, ∀t ∈ R
ii) |b(t)| ≤ b∗,∀t ∈ R
iii) 0 < σ2

1 < a(t) < σ2
2 ≤ ( π

2T )2, ∀t ∈ R,

iv) c∗ >
10Tσ7

2
3 sin( 3T

2 σ1)σ
8
1
b∗2 (twist condition)

Then the equilibrium x ≡ 0 of (13) is of twist type.


