Existence and stability of periodic solutions of the relativistic oscillator

Pedro J. Torres

Departamento de Matemática Aplicada,
Universidad de Granada (Spain)
Santiago de Compostela
September 2008

Introduction

Classical pendulum equation:

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+a \sin x=p(t) \equiv \bar{p}+\tilde{p}(t) \tag{1}
\end{equation*}
$$

Introduction

Classical pendulum equation:

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+a \sin x=p(t) \equiv \bar{p}+\tilde{p}(t) \tag{1}
\end{equation*}
$$

For a given $\tilde{p} \in \tilde{C}_{T}$, let $\tilde{l}_{\tilde{p}}$ be the closed interval of mean values for which equation (1) has at least a T-periodic solution.

Introduction

Classical pendulum equation:

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+a \sin x=p(t) \equiv \bar{p}+\tilde{p}(t) \tag{1}
\end{equation*}
$$

For a given $\tilde{p} \in \tilde{C}_{T}$, let $l_{\tilde{p}}$ be the closed interval of mean values for which equation (1) has at least a T-periodic solution.

Questions:

- Degeneracy problem: is $I_{\tilde{p}}$ nondegenerate?.
- If $k=0$, it is known that $0 \in I_{\tilde{p}}$ (Hamel, 1922). Is this true for $k>0$?

Introduction

Theorem (Ortega's counterexample)

Given positive constants a, k and T, there exists $p \in \tilde{C}_{T}$ such that the equation (1) with $\bar{p}=0$ has no T-periodic solutions.

Introduction

Relativistic pendulum equation:

$$
\begin{equation*}
\phi\left(x^{\prime}\right)^{\prime}+k x^{\prime}+a \sin x=p(t) \equiv \bar{p}+\tilde{p}(t) \tag{2}
\end{equation*}
$$

where $\phi:]-c, c[\rightarrow \mathbb{R}$ is given by

$$
\phi(u)=\frac{u}{\sqrt{1-\frac{u^{2}}{c^{2}}}} .
$$

$c \equiv$ Speed of light in the vacuum

Main result

$$
\begin{equation*}
\left(\phi\left(x^{\prime}\right)\right)^{\prime}+h(x) x^{\prime}+g(x)=p(t) \tag{3}
\end{equation*}
$$

where h, g are continuous functions, p is continuous and T-periodic and $\phi:]-c, c[\rightarrow \mathbb{R}$ is an increasing homeomorphism with $\phi(0)=0$.

Main result

$$
\begin{equation*}
\left(\phi\left(x^{\prime}\right)\right)^{\prime}+h(x) x^{\prime}+g(x)=p(t) \tag{3}
\end{equation*}
$$

where h, g are continuous functions, p is continuous and T-periodic and $\phi:]-c, c[\rightarrow \mathbb{R}$ is an increasing homeomorphism with $\phi(0)=0$.

Theorem (Bereanu-Mawhin, JDE, 2007)
If $g: \mathbb{R} \rightarrow \mathbb{R}$ is strictly monotone then $I_{\tilde{p}}=$ Range g for any $\tilde{p} \in \tilde{C}_{T}$.

Main result

Theorem

Let us assume that there exist real numbers $R_{1}<R_{2}$ such that
(H1) $g \in C^{1}\left(\left[R_{1}, R_{2}\right]\right)$ and $g^{\prime}(x)>0$ for all $\left.x \in\right] R_{1}, R_{2}[$.
(H2) $\frac{c T}{\sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right| \leq\left|g\left(R_{2}\right)-g\left(R_{1}\right)\right|$.
Then, for every $\tilde{p} \in \tilde{C}_{T}$, the set $l_{\tilde{p}}$ of eq. (3) contains the closed interval

$$
\left[g\left(R_{1}\right)+\frac{c T}{2 \sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right|, g\left(R_{2}\right)-\frac{c T}{2 \sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right|\right]
$$

Moreover, if \bar{p} belongs to the previous interval, then the corresponding T-periodic solution belongs to $\left[R_{1}, R_{2}\right]$.

Main result

Theorem

Let us assume that there exist real numbers $R_{1}<R_{2}$ such that
(H1) $g \in C^{1}\left(\left[R_{1}, R_{2}\right]\right)$ and $g^{\prime}(x)<0$ for all $\left.x \in\right] R_{1}, R_{2}[$.
(H2) $\frac{c T}{\sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right| \leq\left|g\left(R_{2}\right)-g\left(R_{1}\right)\right|$.
Then, for every $\tilde{p} \in \tilde{C}_{T}$, the set $l_{\tilde{p}}$ of eq. (3) contains the closed interval

$$
\left[g\left(R_{2}\right)+\frac{c T}{2 \sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right|, g\left(R_{1}\right)-\frac{c T}{2 \sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right|\right]
$$

Moreover, if \bar{p} belongs to the previous interval, then the corresponding T-periodic solution belongs to $\left[R_{1}, R_{2}\right]$.

Corollary for the relativistic pendulum

Corollary

Let us assume that $c T \leq 2 \sqrt{3}$. Then, for every

$$
|\bar{p}| \leq a\left(1-\frac{c T}{2 \sqrt{3}}\right)
$$

eq. (2) possesses two different solutions x_{1}, x_{2} which verify $-\frac{\pi}{2} \leq x_{1} \leq \frac{\pi}{2} \leq x_{2} \leq \frac{3 \pi}{2}$.

Proof.

Step 1: change of variables $y=g(x)-\bar{p}$

$$
\begin{equation*}
\phi\left(\frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}\right)^{\prime}+h\left(g^{-1}(y+\bar{p})\right) \frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}+y(t)=\tilde{p}(t) \tag{4}
\end{equation*}
$$

Proof.

Step 1: change of variables $y=g(x)-\bar{p}$
$\phi\left(\frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}\right)^{\prime}+h\left(g^{-1}(y+\bar{p})\right) \frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}+y(t)=\tilde{p}(t)$.

Step 2: Formulation of the fixed point problem.

Proof.

Step 1: change of variables $y=g(x)-\bar{p}$
$\phi\left(\frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}\right)^{\prime}+h\left(g^{-1}(y+\bar{p})\right) \frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}+y(t)=\tilde{p}(t)$.

Step 2: Formulation of the fixed point problem. Integrating,
$\phi\left(\frac{y^{\prime}}{g^{\prime}\left(g^{-1}(y+\bar{p})\right)}\right)=\int_{0}^{t}(p(s)-y(s)) d s-H\left(g^{-1}(y+\bar{p})\right)+C$,
where H is a primitive of the function h and C is a constant to be fixed later.
If

$$
F[y](t)=\int_{0}^{t}(p(s)-y(s)) d s-H\left(g^{-1}(y+\bar{p})\right)
$$

then

$$
y(t)=\int_{0}^{t} g^{\prime}\left(g^{-1}(y+\bar{p})\right) \phi^{-1}(F[y](t)+C) d s+D
$$

Proof.

Step 2: Formulation of the fixed point problem.

Lemma

For any $y \in \tilde{C}_{T}$, there exists a unique choice of C_{y}, D_{y} such that

$$
\begin{equation*}
\mathcal{T}[y](t) \equiv \int_{0}^{t} g^{\prime}\left(g^{-1}(y+\bar{p})\right) \phi^{-1}\left(F[y](t)+C_{y}\right) d s+D_{y} \in \tilde{C}_{T} . \tag{5}
\end{equation*}
$$

The functional $\mathcal{T}: \tilde{C}_{T} \rightarrow \tilde{C}_{T}$ is continuous and compact.

Proof.

Step 3: Application of the Schauder fixed point problem.

Proof.

Step 3: Application of the Schauder fixed point problem.

$$
K=\left\{y \in \tilde{C}_{T}: y(t) \in\left[g\left(R_{1}\right)-\bar{p}, g\left(R_{2}\right)-\bar{p}\right]\right\} .
$$

Proof.

Step 3: Application of the Schauder fixed point problem.

$$
\begin{gathered}
K=\left\{y \in \tilde{C}_{T}: y(t) \in\left[g\left(R_{1}\right)-\bar{p}, g\left(R_{2}\right)-\bar{p}\right]\right\} . \\
\|\mathcal{T}[y]\|_{\infty} \leq \frac{T}{2 \sqrt{3}}\left\|T[y]^{\prime}\right\|_{\infty}<\frac{c T}{2 \sqrt{3}} \max _{x \in\left[R_{1}, R_{2}\right]}\left|g^{\prime}(x)\right| .
\end{gathered}
$$

By using condition $(H 2), \mathcal{T}[y] \in K$.

Open problems

Open problems

- Prove or disprove existence for $T \gg$.
- Stability

Stability

The relativistic (an)harmonic oscillator

$$
\begin{equation*}
\left(\frac{m x^{\prime}}{\sqrt{1-\frac{x^{\prime 2}}{c^{2}}}}\right)^{\prime}+k x=-F_{0} \cos \omega t \tag{6}
\end{equation*}
$$

Stability

The relativistic (an)harmonic oscillator

$$
\begin{equation*}
\left(\frac{m x^{\prime}}{\sqrt{1-\frac{x^{\prime 2}}{c^{2}}}}\right)^{\prime}+k x=-F_{0} \cos \omega t \tag{6}
\end{equation*}
$$

Chaotic behavior shown numerically in

- J.H. Kim, H.W. Lee, Relativistic chaos in the driven harmonic oscillator, Physical Rev. E, 51 n. 2 (1995), pp. 1579-1581.

Stability: Main result

Theorem

Assume that the parameters m, k, ω and F_{0} satisfy the following conditions
(H1) $\frac{k}{m}<\frac{\omega^{2}}{16}$,
(H2) $F_{0}<\frac{1}{4} m c \omega$
(H3) $\frac{(m c \omega)^{19}\left[(m c \omega)^{2}-16 F_{0}^{2}\right]}{120 \pi F_{0}^{2}\left(c^{2} m^{2} \omega^{2}+4 F_{0}^{2}\right)^{19 / 2}} \sin \left(\frac{6 \pi \omega^{1 / 2} m c^{3 / 2} k^{1 / 2}}{\left(c^{2} m^{2} \omega^{2}+4 F_{0}^{2}\right)^{3 / 4}}\right)>1$,
then the driven relativistic harmonic oscillator (6) has a unique stable $2 \pi / \omega$-periodic solution with a twist dynamics around it $(\Longrightarrow$ Lyapunov stability + generically KAM dynamics).

Stability: Corollaries

Corollary

Fixed ω, k, F_{0}, c in (6), there exists $M_{0} \equiv M_{0}\left(\omega, k, F_{0}, c\right)>0$ such that if $m>M_{0}$ then the conclusion of Theorem 7 holds.

Corollary

Fixed m, k, F_{0}, c in (6), there exists a critical frequency
$\omega_{0} \equiv \omega_{0}\left(m, k, F_{0}, c\right)$ such that if $\omega>\omega_{0}$ then the conclusion of Theorem 7 holds.

Existence: an equivalent Newtonian oscillator

Existence: an equivalent Newtonian oscillator

(6) can be written as

$$
\begin{equation*}
x^{\prime}=\frac{c^{2} y}{\sqrt{y^{2} c^{2}+m^{2} c^{4}}}, \quad y^{\prime}=-k x-F_{0} \cos \omega t \tag{7}
\end{equation*}
$$

Existence: an equivalent Newtonian oscillator

(6) can be written as

$$
\begin{equation*}
x^{\prime}=\frac{c^{2} y}{\sqrt{y^{2} c^{2}+m^{2} c^{4}}}, \quad y^{\prime}=-k x-F_{0} \cos \omega t \tag{7}
\end{equation*}
$$

By deriving in the second equation, this system is equivalent to the second order equation

$$
\begin{equation*}
y^{\prime \prime}+f(y)=\omega F_{0} \sin \omega t \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
f(y)=\frac{k c^{2} y}{\sqrt{y^{2} c^{2}+m^{2} c^{4}}} \tag{9}
\end{equation*}
$$

Existence: an equivalent Newtonian oscillator

Existence: an equivalent Newtonian oscillator

Proposition

Let us assume that $4 k<m \omega^{2}$. Then, the equation (8) has a T-periodic solution φ such that

$$
\begin{equation*}
-\frac{F_{0}}{\omega}(1+\sin \omega t)<\varphi(t)<\frac{F_{0}}{\omega}(1-\sin \omega t) \tag{10}
\end{equation*}
$$

for all t.

Existence: an equivalent Newtonian oscillator

Proposition

Let us assume that $4 k<m \omega^{2}$. Then, the equation (8) has a T-periodic solution φ such that

$$
\begin{equation*}
-\frac{F_{0}}{\omega}(1+\sin \omega t)<\varphi(t)<\frac{F_{0}}{\omega}(1-\sin \omega t) \tag{10}
\end{equation*}
$$

for all t.
Proof.

- $\alpha(t)=\frac{F_{0}}{\omega}(1-\sin \omega t)$ lower solution
- $\beta(t)=-\frac{F_{0}}{\omega}(1+\sin \omega t)$ upper solution
- $\beta(t)<\alpha(t)$
- $\left|f^{\prime}(s)\right| \leq \frac{k}{m}<\left(\frac{\pi}{T}\right)^{2}$

Uniqueness and linear stability.

Uniqueness and linear stability.

Proposition

Assume that

$$
\begin{equation*}
4 k<m \omega^{2} \tag{11}
\end{equation*}
$$

Then, (8) has a unique a T-periodic solution φ which is elliptic.

Lyapunov stability．

Lyapunov stability.

The periodic solution $\varphi(t)$ of a general equation $y^{\prime \prime}+g(t, y)=0$ is translated to the origin by the canonical change $x=y-\varphi(t)$. For the equivalent equation

$$
\begin{equation*}
x^{\prime \prime}+g(t, x+\varphi(t))-g(t, \varphi(t))=0 \tag{12}
\end{equation*}
$$

the equilibrium $x \equiv 0$ is a solution. By developing the nonlinearity up to the third order,

$$
\begin{equation*}
x^{\prime \prime}+a(t) x+b(t) x^{2}+c(t) x^{3}+R(t, x)=0 \tag{13}
\end{equation*}
$$

where
$a(t)=g_{x}(t, \varphi(t)), b(t)=g_{x x}(t, \varphi(t)) 2, c(t)=g_{x x x}(t, \varphi(t)) 6$.
Definition
We say that the equilibrium $x \equiv 0$ of (13) is of twist type if it is elliptic, not strongly resonant and the associated first twist coefficient $\beta \neq 0$.

Lyapunov stability.

Theorem
Assume that for the equation (13) the following conditions holds:
i) $-c(t)>c_{*}>0, \forall t \in \mathbb{R}$
ii) $|b(t)| \leq b^{*}, \forall t \in \mathbb{R}$
iii) $0<\sigma_{1}^{2}<a(t)<\sigma_{2}^{2} \leq\left(\frac{\pi}{2 T}\right)^{2}, \forall t \in \mathbb{R}$,
iv) $C_{*}>\frac{10 T \sigma_{2}^{7}}{3 \sin \left(\frac{3 T}{2} \sigma_{1}\right) \sigma_{1}^{8}} b^{* 2}$ (twist condition)

Then the equilibrium $x \equiv 0$ of (13) is of twist type.

