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Introduction

Classical pendulum equation:

X"+ kx' + asinx = p(t) = p + p(t) (1)

For a given p € Cr, let I; be the closed interval of mean values
for which equation (1) has at least a T-periodic solution.

Questions:
» Degeneracy problem: is /; nondegenerate?.

» If k =0, itis known that 0 € I (Hamel, 1922). Is this true
for k > 07?



Introduction

Theorem (Ortega’s counterexample)

Given positive constants a, k and T, there exists p € Ct such
that the equation (1) with p = 0 has no T -periodic solutions.



Introduction

Relativistic pendulum equation:
d(X') + kx' + asinx = p(t) = p + p(t)

where ¢ :] — ¢, c[— R is given by

¢ = Speed of light in the vacuum



Main result

(6(x"))" + h(x)x" + g(x) = p(t)
where h, g are continuous functions, p is continuous and
T-periodic and ¢ :] — ¢, c[— R is an increasing
homeomorphism with ¢(0) = 0.



Main result

(6(x"))" + h(x)x" + g(x) = p(t) ®3)
where h, g are continuous functions, p is continuous and
T-periodic and ¢ :] — ¢, c[— R is an increasing
homeomorphism with ¢(0) = 0.

Theorem (Bereanu-Mawhin, JDE, 2007)
Ifg: R — R is strictly monotone then I = Range g for any
,E) S éT-



Main result

Theorem
Let us assume that there exist real numbers Ry < R such that

(H1) g € C'([Ry, Ra]) and g'(x) > 0 for all x €]Ry, Ra|.
(H2) % MaXye(r,,Ry 19'(X)| < 19(R2) — 9(R1)l.

Then, for every p € Cr, the set I5 of eq. (3) contains the closed
interval

[9(Ry) + 19(x)], o(Re) — 2 max 19 (x)]]

cT
— Mmax
2v/3 x€[Ry,Ro] 2/3 x€[Ry,Rs]

Moreover, if p belongs to the previous interval, then the
corresponding T -periodic solution belongs to [Ry, Ro].
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Corollary for the relativistic pendulum

Corollary
Let us assume that cT < 2/3. Then, for every

pl<a(i- %)
- 2V3)’
eq. (2) possesses two different solutions xy, xo which verify
—I<x<F<x<¥.



Proof.
Step 1: change of variables y = g(x) — p
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Proof.
Step 1: change of variables y = g(x) — p

y PP DR y
¢ (g'(g—1(y+p»> TP g Ty

/!

Step 2: Formulation of the fixed point problem.
Integrating,

Y N s — CHa'(v+B
(g i) = L PO - ¥e)ds -~ Hig (v +B)+ C,

where H is a primitive of the function h and C is a constant to
be fixed later.
If

t
FIVI(t) = /0 (B(s) — y(s))ds — H(g"(y + P)).

then

t
y(t) = /0 g(a (v +P)é" (FIYI(t) + C) ds + D.



Proof.

Step 2: Formulation of the fixed point problem.

Lemma B
Forany y € Cr, there exists a unique choice of Cy, D, such that

Iy / g0 (v +5)é (FIYI(t) + C,) ds+ D < &r.
©)

The functional T : Cy — Cr is continuous and compact.



Proof.

Step 3: Application of the Schauder fixed point problem.
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Proof.

Step 3: Application of the Schauder fixed point problem.

K ={y e Cr:y(t)€[g(Ri) - P,9(Rz) — PI}

17l < \f 1707 9'(x)]-

max
2\/5 x€[Ry, Ry
By using condition (H2), T[y] € K.



Open problems



Open problems

» Prove or disprove existence for T >>.
» Stability



Stability

The relativistic (an)harmonic oscillator

/
m /
(\/Xiz> + kx = —Fycos wt
X/
T2



Stability

The relativistic (an)harmonic oscillator

/
/
(mx) + kx = —Fycos wt (6)

x'2
-z

Chaotic behavior shown numerically in

» J.H. Kim, H.W. Lee, Relativistic chaos in the driven
harmonic oscillator, Physical Rev. E, 51 n.2 (1995), pp.
1579-1581.



Stability: Main result

Theorem
Assume that the parameters m, k, w and Fy satisfy the
following conditions

w2
(H1) £ < «,
(H2) Fy < fmew

w 19 w 2 2 1/2 241/2

(H3) ot e tneerarayire Sin (g ) > 1
then the driven relativistic harmonic oscillator (6) has a unique
stable 27 /w-periodic solution with a twist dynamics around
itt= Lyapunov stability+ generically KAM dynamics).




Stability: Corollaries

Corollary
Fixed w, k, Fy, c in (6), there exists My = My(w, k, Fp,c) > 0
such that if m > My then the conclusion of Theorem 7 holds.

Corollary

Fixed m, k, Fy, c in (6), there exists a critical frequency
wo = wo(m, k, Fy, ¢) such that if w > wq then the conclusion of
Theorem 7 holds.



Existence: an equivalent Newtonian oscillator



Existence: an equivalent Newtonian oscillator

(6) can be written as

2
x' = cy y' = —kx — Fycoswt. (7)

/y2c2 + mc*’




Existence: an equivalent Newtonian oscillator

(6) can be written as

2
X = Y y' = —kx — Fycos wt. (7)

/y2c2 + mc*’

By deriving in the second equation, this system is equivalent to
the second order equation

y" +f(y) = wFysinwt, (8)
with
kc?y

fly) = .
) /y2¢2 + m2ch




Existence: an equivalent Newtonian oscillator



Existence: an equivalent Newtonian oscillator

Proposition
Let us assume that 4k < mw?. Then, the equation (8) has a
T -periodic solution ¢ such that

— 50(1 +sinwt) < p(t) < ,:5)(1 —sinwt) (10)

for all t.



Existence: an equivalent Newtonian oscillator

Proposition
Let us assume that 4k < mw?. Then, the equation (8) has a
T -periodic solution ¢ such that

— IZ)(1 +sinwt) < o(t) < ,2)(1 — sinwt) (10)
for all t.
Proof.
a(t) = ( — sinwt) lower solution
3(t) = —Fo(1 + sinwt) upper solution
At ) < ( )



Uniqueness and linear stability.



Uniqueness and linear stability.

Proposition
Assume that
4k < mw? (11)

Then, (8) has a unique a T -periodic solution ¢ which is elliptic.



Lyapunov stability.



Lyapunov stability.

The periodic solution (t) of a general equation
y" + g(t,y) = O is translated to the origin by the canonical
change x = y — ¢(t). For the equivalent equation

X"+ g(t,x + (1)) — gt ¢(1)) = 0, (12)

the equilibrium x = 0 is a solution. By developing the
nonlinearity up to the third order,

x" + a(t)x + b(t)x? + c(t)x® + R(t, x) = 0. (13)
where
a(t) = gx(t, (1)), b(t) = gux(t, £(1))2, c(t) = G (t, (1))6.
Definition

We say that the equilibrium x = 0 of (13) is of twist type if it is
elliptic, not strongly resonant and the associated first twist
coefficient 5 # 0.



Lyapunov stability.

Theorem
Assume that for the equation (13) the following conditions
holds:

i) —c(t)>c.>0,VteR

i) [b(t)] < b*,Vt€R

i) 0 < o? < a(t) < o3 < (%)%, VteR,

107’:72

3sin(3Loy)od

Then the equilibrium x = 0 of (13) is of twist type.

iv) ¢, > b*? (twist condition)



